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Abstract The reference-lines-framework has been suc-
cessfully used for developing efficient many-objective

evolutionary algorithms. In this paper, the concepts

and methodologies of such evolutionary algorithms are

adapted in the parlance of multi-objective particle

swarm optimization (MOPSO) for addressing the chal-
lenges of assigning and updating the global and local

guides. The proposed algorithm, which is referred to

as RMaOPSO, is developed via five modules using the

framework so that a diverse set of guides can be se-
lected to steer the search of MOPSO toward the Pareto-

optimal front. The modules include global guide as-

signment, local and global guide update, line assign-

ment to the guides and swarm, and evolutionary search

for global guides. The proposed algorithm is tested on
DTLZ and WFG test instances of 3-, 5-, 8-, 10- and

15- objectives. Results obtained from RMaOPSO show

its efficacy over six multi-objective evolutionary and

MOPSO algorithms from the literature.

Keywords MOPSO · Guide Assignment · Guide

Update · Reference Lines ·Many objective optimization

1 Introduction

The real-world optimization problems such as car-cab

design [21], topology optimization of continuum struc-

tures [46, 50, 51], water resource management [47],

bulldozer-blade parametric optimization [6] to name a
few, are modeled with multiple objectives. A generic

multi-objective optimization problem (MOP) can be
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written as

min f(x) = (f1(x), . . . , fM (x))T , (1)

subject to x ∈ Ω, where f ∈ R
M is the vector of conflict-

ing objectives, x ∈ R
N is the vector of design variables,

and Ω is the search space.

Evolutionary and swarm algorithms are mainly pre-

ferred for solving equation (1) because these algorithms

can generate Pareto-optimal (PO) solutions in one run.

Among them, particle swarm optimization (PSO) has
been the choice for many researchers because it is sim-

ple in concept, easy to implement, and computationally

efficient as compared to other meta-heuristic algorithms

[26, 48].

PSO has been used for solving MOP, which is gener-

ally referred to as MOPSO. In the most commonly used

framework of MOPSO, a swarm is initialized by assign-

ing random values to xi(t) for each particle i ∈ R
N at

generation t = 0. The initial velocity (vi(t)) of each

particle i is either kept zero or chosen randomly. The

archives of global guides (Gt) and local guides (Lt) are

initialized. At the beginning, the non-dominated solu-

tions from the swarm are copied to the global guide
archive and xi’s for all particles are copied to the lo-

cal guide archive. In a typical loop of generation, the

global guide is chosen for each particle in the swarm.

The velocity of each particle is then calculated as

vi(t+1) = wvi(t)+c1r1(Gti−xi(t))+c2r2(Lti−xi(t)),

(2)

where w is the inertia weight of the particle, c1 and c2
are the coefficients for exploitation and exploration, r1
and r2 are the random numbers between [0, 1], Lti is

the personal best of i−th particle at t−th generation,
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and Gti is the global best of i−th particle at t−th gen-

eration. The position of each particle i is then updated

as

xi(t+ 1) = xi(t) + vi(t+ 1). (3)

The new position of each particle is evaluated and the

archives of the global and local guides are updated. The
counter for the generation (t) is then increased by one.

PSO finally terminates when (t > T ), where T is the

maximum number of allowed generations.

It can be observed from the framework that a set

of challenges needs to be addressed for developing
MOPSO [15, 24, 26, 63, 64]. The first challenge is up-

dating the archive of global guides. While solving MOP,

the number of non-dominated solutions can be more

than the size of the archive. In this situation, only a
diverse set of non-dominated solutions needs to be se-

lected for which an efficient selection operator is needed.

Once the archive is updated, the another challenge is

to select an appropriate global guide for a particle. It

is crucial because the selection of guide can change the
flight direction of a particle that can affect the conver-

gence and diversity of MOPSO. Another challenge is

diversity loss among the particles of a swarm due to

the fast convergence characteristic of PSO.

The above challenges have been addressed by keep-
ing an external archive of non-dominated solutions and

the global guides are updated for every particle in

a swarm. For example, MOPSOs are developed us-

ing an adaptive grid procedure [13, 14], ǫ−dominance
method [54], distance-based ranking method [38], non-

dominated sorting and crowding distance [40, 63], par-

allel coordinate system method [26], global margin

ranking method [32], multi-objective gradient method

[24], and circular crowding distance measure [12] for
pruning the size of the archive and for selecting global

guides. Decomposition-based MOPSOs use Tchebycheff

function [43], PBI function [5], and crowding distance

[34] for the same purpose.

In addition to the above challenges, MOPSOs en-
counter another big challenge when solving many-

objective optimization problems (MaOPs), when M ≥
3 in equation (1). It is because many of the above MOP-

SOs can fail due to the reduction of selection pressure
when almost all particles become non-dominated [44]

along with the global guides in the archive. In this sit-

uation, the Pareto-ranking cannot differentiate parti-

cles/guides and selection procedure depends only on

diversity preserving operator.

Efforts have been made in the literature for de-

veloping MOPSO for MaOPs. For example, MOPSOs

are developed using the gradual Pareto-dominance [31],

the weighted average ranking and distance-based rank-

ing [39], Tchebycheff function and augmented scalar-

izing function (ASF) [55], ideal point and NWSUM

method [7], reference points with k−means clustering

[11], Tchebycheff function and crowding distance mea-
sure [25], non-dominated sorting and minimum angle

approach [15]. The idea of association and niching of

structured reference lines of NSGA-III [18] is also ex-

plored and the global guides are selected [23]. In another
attempt, association and PBI distance are used for stor-

ing non-dominated solutions in an external archive [42].

Parallel cell coordinate system [27], scalar projection

approach [59], balanceable fitness estimator [35], coop-

erative hybrid strategy [61] are few recent attempts of
developing MOPSOs for MaOPs.

In this paper, the challenges described earlier for

developing MOPSO are addressed using the reference-

lines-based framework of NSGA-III in order to select
a diverse set of solutions using the reference lines. The

proposed algorithm, which is referred to as RMaOPSO,

is developed by adapting the concepts and methodolo-

gies of NSGA-III in the parlance of MOPSO for improv-

ing its performance. Therefore, RMaOPSO is developed
using the five modules with the following contributions.

– The first contribution of RMaOPSO is the develop-

ment Global Guide Assignment module in which

a global guide is assigned to each particle through

an evenly distributed reference lines. These lines are
drawn through the origin and the reference points

generated on a unit hyperplane using Das and Den-

nis approach [16]. The first challenge is addressed by

assigning the nearest non-dominated solution from
the archive of global guides (Gt) to each reference

line. The same solution becomes the global guide for

all particles in a swarm that are associated with the

same reference line.

– Another contribution is the update of global guides
using the Global Guide Update module, which is

developed using the concept of niching of NSGA-

III. At this point, other challenges are addressed

in which guides are assigned and updated using the
structured reference lines that can help in maintain-

ing diversity among the guides and can steer the

search toward the PO front along these reference

lines.

– Since the reference-lines-based framework is used,
the local guide for each particle is updated using the

Local Guide Update module. In this module, the

update of local guide is performed by comparing the

rank followed by the distance between the particle
and local guide with their respective reference lines.

– Since the guides and particles are updated in each

generation, they are ranked and associated together
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with the reference lines using the Line Assignment

module.

– Evolutionary Search is also coupled with the

global guides of RMaOPSO so that these guides do

not stuck in the local optima and can further im-
prove the search of the algorithm. It is performed

by using the simulated binary crossover and poly-

nomial mutation operators [17].

RMaOPSO is tested using DTLZ and WFG test prob-

lems. Since both the sets of test problems are scalable,

the objective instances of M = {3, 5, 8, 10, 15} are used
and the results are compared using the inverse gen-

eralized distance (IGD) and hypervolume (HV) indi-
cators, and using the Wilcoxon test. The outcome of

RMaOPSO is compared with six multi-objective evolu-

tionary and MOPSO algorithms from the literature.

The paper is organized into five sections. Section 2
presents the approaches of Pareto-based MOPSO for

MaOP. Section 3 presents the proposed RMaOPSO al-

gorithm in which the framework and all modules are

described. Section 4 presents the results obtained by

RMaOPSO on DTLZ and WFG test problems, and the
outcome of RMaOPSO is compared with six exiting al-

gorithms. Section 5 concludes the paper with a future

work.

2 Overview of Pareto-based Many-Objective

PSO

A many-objective optimization problem is referred to

as MaOP defined in equation (1), when M > 3 ob-
jectives. In the parlance of PSO, various many objec-

tive PSO algorithms have been developed. For exam-

ple, MOPSO using gradual Pareto-dominance [31] for

MaOPs is proposed in which ranking is given to each

solution by calculating the degree of being dominated.
The global guides for particles are selected through the

fuzzy Pareto-dominance concept. MOPSOs are also de-

veloped using weighted average ranking and distance-

based ranking [39] in which the global guides are se-
lected using fitness proportionate selection and tourna-

ment selection. In another attempt, a distance-metric

using Tchebycheff function and augmented scalarizing

function [55] are used with MOPSO. The archive is

maintained using these functions, and both global and
local guides are updated.

Speed-constrained Multi-objective PSO (SMPSO)

has also been extended for MaOP. An ideal point is

used for pruning the size of the archive in which the
non-dominated solution farthest from the ideal point

is removed [7]. The global guide for each particle is

selected through NWSum method [41]. Later, a set

of reference points is used for pruning the size of the

archive [9]. A multi-grid archiver approach is also cou-

pled with SMPSO [11], which stores a diverse set of

non-dominated solutions. The clusters are then made

using k−means algorithm in the variable space of non-
dominated solutions for generating new solutions.

An objective space decomposition approach is at-

tempted that uses two-step search with MOPSO [25].

First, a swarm is divided into M + 1 groups, where
M is the number of objective functions. The best solu-

tion from each group is selected as a global guide us-

ing Tchebycheff function. In step-2, these global guides

are used for diversity. The archive size is controlled us-

ing crowding distance measure. In another approach,
the objective space is decomposed using weight vectors

and the clusters are made for every weight vector. The

non-dominated solution, which makes the smallest an-

gle to each weight vector, is selected for the archive [15].
In the recent attempt, MOPSO is modified using the

decomposition-based approach for different ideal points

for MaOP [45].

A reference-lines-based framework similar to

NSGA-III [18] is used for MOPSO in which the
archive size is controlled through the niche count of

each reference line [23]. The non-dominated solutions

closer to the reference lines are selected as the global

guides for the swarm. On a similar framework, an
external archive is maintained through the associa-

tion of non-dominated solutions using PBI distance

[42]. The non-dominated solution, which makes the

maximum cosine angle, becomes the global guide

for the particle. A bottleneck learning strategy for
convergence and multiple swarm strategy for diversity

is coupled with NSGA-III framework for updating

the archive [36]. An evolutionary state estimation is

used [57] for selecting two types of global guides for
convergence and diversity. The reference-lines-based

framework is used for updating the archive. The unary

epsilon indicator for selecting the local guides, and

the reference-vector framework for global guides and

the archive are proposed by [37]. Using the reference-
lines-based framework, a diversity preference approach

is developed [53] for MOPSO in which diversity is

preserved first by making clusters of solutions and

then one solution from each cluster is selected using
PBI method. The approach is used for updating the

archives of global and local guides.

Some other recent approaches include an immune-

based evolutionary strategy [64] for an archive update

and pruning of the same is done using crowding dis-
tance measure. The global guide for a particle is se-

lected randomly from the archive. Parallel cell coordi-

nate system [27] is also used for MaOP in which two
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archives of global guides are kept separately for conver-

gence and diversity. A scalar projection approach [59]

is used for selecting the global guides from the swarm

which is updated through fitness summation and L2

norm. A balanceable fitness estimator [35] consisting
of convergence and diversity distances is proposed for

updating the archive. The convergence distance is cal-

culated with respect to the ideal point and the diversity

distance is found using shift-based density estimation.
Intuitionistic fuzzy dominance [60] is used with dou-

ble search strategy for updating particle’s position. The

archive is updated using reference points with PBI dis-

tance metric. A concept of dominant different [33] is

used for comparing solutions, selection of global and
local guides, and for updating the archive.

Meanwhile, some comparative studies are also per-

formed for ranking the solutions, guides assignment,
and archive update. The study [30] presents com-

parison among the guide selection methods, such as

random, crowding distance, WSum, NWSum, Sigma-

method, and opposite method, which are coupled with
SMPSO. It is found that NWSum and Sigma method

evolve better results. Another study [8] presents com-

parison of various archiving methods, such as adap-

tive grid, crowding distance, dominating archive, adap-

tive ǫ−approx archiving, adaptive ǫ−Pareto archiv-
ing, multi-level grid archiving, random archiver, and

unbounded archive. The unbounded archiver and

ǫ−Pareto archiving are found to be the best. The study

[56] presents comparison of the methods that can dif-
ferentiate non-dominated solutions for MaOP. Methods

like favour relation, k−optimality, CDAS, crowding dis-

tance and average ranking, and sum ratios are consid-

ered. It is found that CDAS-based archiving method

[10] is the most efficient among others.

In the literature, there is a considerable effort

toward developing MOPSO for solving MaOP. Still,
the performance of MOPSOs is not comparable with

other multi-objective evolutionary algorithms for solv-

ing MaOPs. In this paper, an efficient MOPSO is devel-

oped using the reference-lines-framework through mod-

ules for better convergence and diversity. The proposed
algorithm is described in the following section.

3 RMaOPSO: Proposed Many-objective

MOPSO

The reference-lines-based framework is used to develop

MOPSO, which is presented in Algo. 1. It is referred
to as RMaOPSO that begins by initializing random

swarm (Pt) of size N . At the same time, the archives

to store local guides (Lt) and global guides (Gt) are

kept empty. In order to assign Lt and Gt in subse-

quent generations, RMaOPSO adopts various features

of reference lines-based-framework similar to NSGA-

III [18] in which swarm Pt is evaluated, ranked, nor-

malized and associated with a set of structured refer-
ence lines in Step 2 using Line Assignment module of

Algo. 1, which is discussed later. Initially, Lt and Gt

archives are filled with the same swarm of Pt. An ex-

treme vector (e ∈ R
M ) [49, 52] is also initialized with

the Nadir point, which is evaluated from the set of the

non-dominated solutions from Pt. The vector e will be

used later for normalization.

RMaOPSO enters into the standard loop of gener-

ation in Step 5. Since PSO is used for multi-objective

optimization, there are always multiple global guides
to steer the search of particles in the swarm. Generally,

the non-dominated solutions are considered as global

guides for which various algorithms have been adopted

in the literature as discussed in Section 2. RMaOPSO
proposes Global Guide Assignmentmodule for assign-

ing the global guides to particles in the swarm using the

reference-lines-based framework. Once the guides are

assigned, particle’s velocity and position are updated in

Steps 7 and 8. Thereafter, the Line Assignment mod-
ule is used on the combined population of the current

swarm at t−th generation and the archives of global

and local guides (Mt = Pt∪Gt∪Lt) to rank, normalize

and associate them together with the set of structured
reference lines. In Step 10, the Local Guide Update

module is developed to update the local guides using

the rank and association obtained in Step 9. There-

after, the Global Guide Update module is developed

to update the global guides in Step 11 from the com-
bined popualtion (Mt). The niching concept of NSGA-

III is adopted to develop this module. At the last, the

Evolutionary Search module is applied to the archive

of the global guides in Step 12 in which crossover and
mutation operators are used to update Gt. The modules

under the generation-loop are repeated until t reaches

to the maximum allowed generations (T ). The archive

of the global guides is then reported as the set of non-

dominated solutions for the given optimization prob-
lem. In the following subsections, the reference-lines-

based framework and the modules of Algo. 1 are dis-

cussed in detail.

3.1 Reference-Lines-based Framework

In this framework, a set of structured reference points
is generated on a unit hyperplane using [16] approach

in the objective space. In this approach, each objec-

tive axis is divided into p equal divisions that create
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Algorithm 1 Reference-Lines-based Framework for

MOPSO (RMaOPSO)

Input: t = 1, M : objectives, N : swarm size, H :
reference points

Output: A set of non-dominated solutions
(Gt)

1: Initialize random swarm (Pt), and initialize the archive
of global guides (Gt = ∅) and local guides (Lt = ∅);

2: Line Assignment(Pt );
3: Assign global guides (Gt = Pt) and local guides (Lt =

Pt);
4: Compute extreme point: e = (e1, e2, . . . , eM )T such that

ej = max
x∈Pt

fj(x) and x is a non-dominated solution

5: while t ≤ T do

6: Global Guide Assignment(Gt );
7: Wt = Velocity Update(Pt);
8: Pt = Position Update(Wt);
9: Line Assignment(Mt = Pt ∪Gt ∪ Lt);
10: Lt = Local Guide Update(Pt , Lt);
11: Gt = Global Guide Update(Mt);
12: Evolutionary Search(Gt);
13: t = t+ 1
14: end while

|H | number of reference points on a unit hyperplane as

given in (4).

|H | =

(

M + p− 1

p

)

. (4)

The set of structured reference points for M = 3 ob-
jective case is shown in Fig. 1. The figure on the top

shows 21 reference points when p = 5 is taken. The

two-layered approach [18] is shown at the bottom of

the figure in which p = 2 for the outer layer and p = 1

for the inner layer are used. Although the two-layered
approach is shown for 3-objective case, but it is mainly

used for the instances of more than five objectives. It

is because the number of reference points becomes very

high for higher number of objectives as given by equa-
tion (4). The reference lines are then drawn, which pass

from these reference points and the origin. These ref-

erence lines are used to associate each particle in the

swarm. For example, a particle (s) is associated to that

reference line (w) which is closest to it. The Euclidean
distance, referred to as dist(s,w), between (s) and (w)

is calculated using (5).

dist(s,w) = ||(s−wT sw/||w||2)||. (5)

In the reference-lines-based framework, the con-
vergence of a swarm is maintained through the non-

dominated sorting [19] in which particles are sorted in

different fronts based on their ranks. The diversity is

maintained by associating particles with the reference
lines. In the ideal condition when the global guides are

assigned to each reference line and particles are asso-

ciated with their closest reference lines, particles are

Unit
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Fig. 1 A set of structured reference lines are drawn using
Das and Dennis approach [16].

expected to converge along those reference lines onto

the PO front. Thus, the framework can evolve a well
converge and diverse set of non-dominated solutions,

which is maintained through the distribution of those

structured reference lines.

3.2 Line Assignment Module: Steps 2 and 9 of Algo. 1

Line assignment module is developed to quantify the

solution based on its rank and association. Algo. 2 for

this module presents three major steps in which solu-

tions of Rt are ranked, normalized and associated with

their nearest reference lines. For ranking, solutions ofRt

are sorted in different fronts based on their ranks using

the non-dominated sorting [19]. Thereafter in Step 2,

Rt is normalized using Algo. 3 in which the ideal point

(zI) of Rt is calculated in Step 1 using (6).

zI = (zI1 , z
I
2 , . . . , z

I
M )T : zIj = min

s∈Rt

fj(s) (6)

Algorithm 2 Line Assignment(Rt)

1: (F1, F2, . . . ) = Non-dominated sorting (Rt);
2: R̄t = Normalize(Rt); %Using Algo. 3
3: Associate(R̄t); %Using Algo. 4
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In this case, the minimum of each objective is stored to

translate Rt in Step 2 using (7).

f
′

(s) = (f
′

1(s), f
′

2(s), . . . , f
′

M (s))T : f
′

j(s) = fj(s)−zIj , ∀s ∈ Rt

(7)

The ideal point of Rt is now translated to the origin.
For normalizing Rt, the extreme vectors (Z) in each ob-

jective are calculated in Step 3 of Algo. 3 by minimizing

the achievement scalarizing function given in (8).

Z = (ze1, z
e

2, . . . , z
e

M) : zej = f
′

(s), s : min
s∈Rt

(

M
max
i=1

f
′

i (s)/wi

)

.

(8)

Here, wi is set to 1.0 when i = j for zej and 10−6 for

rest of the objectives. These vectors in Z construct the
M−dimensional hyperplane. This plane intersects each

objective axis at aj that is used for normalizing Rt as

given in (9).

f̄j(s) =
f

′

j(s)

aj
, ∀j ∈ {1, . . . ,M}. (9)

However, it has been found that the extreme vectors

in Z can have duplicates that results in a degener-

ate case. In Step 6, the Nadir point (ZN) is com-

puted from the set of non-dominated solutions of Rt

if there is any duplicate in Z. Otherwise, the intercept

a = (a1, a2, . . . , aM )T on each objective axis is found

in Step 8. At this stage, any intercept can become neg-

ative after solving a system of linear equations. In or-

der to deal with this degenerate case, the Nadir point
(ZN) is again computed in Step 10. If negative intercept

is not found, the extreme vector e is updated in Step

13. Otherwise, the component of the extreme vector is

compared with its corresponding Nadir point compo-
nent and is updated accordingly in Step 18 [49]. The

normalization of Rt is performed with the updated e

vector in Step 21.

The last step in Algo. 2 is association, which is pre-

sented in Algo. 4. First, the reference lines (w) are cre-

ated using the structured reference points generated on

the hyperplane, which pass through these points and
the origin in Step 2 of Algo. 4. Thereafter, an Eu-

clidean distance (dist(s,w)) is calculated for each solu-

tion (s ∈ Rt) to all reference lines (w) using (5). The

solution is then associated with the nearest reference
line in Step 8 and its distance is stored in d(s). This

association will help RMaOPSO in assignment and up-

dating the global guides.

Algorithm 3 Normalize(Rt) [49]

1: Compute ideal point using (6);
2: Translate objectives using (7);
3: Compute extreme points using (8);
4: Compute number of duplicate points (D) in Z;
5: if D > 0 then

6: Compute Nadir point, zN = (zN1 , zN2 , . . . , zNM )T from
the set of the non-dominated solutions of Rt;

7: else

8: Compute intercept a = (a1, a2, . . . , aM )T from (Z)
and assign flag= 0;

9: if ai < 0 then

10: Compute Nadir point, zN = (zN1 , zN2 , . . . , zNM )T

from the set of the non-dominated solutions of Rt;
11: flag = 1;
12: else

13: update e = a;
14: end if

15: end if

16: if D > 0 or flag= 1 then

17: if zNj < ej , where j ∈ {1, . . . ,M} then

18: ej = zNj
19: end if

20: end if

21: f̄j(s) = f
′

j(s)/ej , ∀s ∈ Rt, ∀j ∈ {1, . . . ,M}

Algorithm 4 Associate (R̄t) [18]

1: for all r ∈ H do

2: Compute reference line w and W = W ∪w; %Note
that |W | = H.

3: end for

4: for all s ∈ R̄t do

5: for all w ∈ W do

6: Compute dist(s,w) using (5);
7: end for

8: π(s) = w : argmin dist(s,w); %Associates s to line
π(s)

9: d(s) = dist(s, π(s));%Stores minimum distance of s to
d(s)

10: end for

3.3 Global Guide Assignment Module: Step 6 of
Algo. 1

Using Algo. 2, all particles in the swarm and global

guides in Gt are associated with their respective near-

est reference lines. In this module, first the global guide
is found for each reference line (w) and the same global

guide is then assigned to all particles, which are associ-

ated with the same reference line w. This module is de-

veloped using Algo. 5 in which a set of non-dominated

global guides associated with the reference line w is
stored in Tw in Step 2. If Tw 6= ∅, the nearest solution

s from Tw is assigned as the global guide for the line w

in Step 4. In case Tw = ∅, the non-dominated solution

s from Gt, which is closest to the line w, is selected as
the global guide for the line w in Step 6. It is noted

that Step 6 shows a different approach than NSGA-III

in which the line is deleted if any solution is not asso-
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ciated with it. However, since particles of the current

swarm (Pt) can be associated with the line for which

Tw = ∅, Step 6 helps RMaOPSO to find the nearest

non-dominate global guide.

Algorithm 5 Global Guide Assignment(Gt)

1: for all w ∈ W do

2: Tw = s : π(s) = w, s ∈ Gt and s is non-dominated
solution;

3: if Tw 6= ∅ then

4: GBw = GBw ∪ {s : argmin
s∈Tw

d(s)}; %GBw

refers to the global best solution for line w

5: else

6: GBw = GBw ∪ {s : argmin d(s), s ∈ Gt and s is
non-dominated solution};

7: end if

8: end for

3.4 Velocity and Position Update

The velocity and the position of a particle are updated

using equations (2) and (3). The most commonly used

approach for setting w, c1, and c2 parameters is to sam-
ple them randomly in their respective ranges. Since

this approach did not work well with RMaOPSO, an

adaptive approach is used in which the parameters are

changed as given in equation (10).

w = 0.9× (1− t/T ),

c1 = 2.5× (1− t/T ),

c2 = 2.5× (1− t/T ),

(10)

where t is the current generation, and T is the maxi-

mum allowed generations.

3.5 Local Guide Update Module: Step 10 of Algo. 1

Once particles updated their positions in Step 8 and

associated with reference lines in Step 9 of Algo. 1, the
archive of the local guides is updated. Algo. 6 presents

the local guide update rules, which depend on the rank

and distance of a particle to the associated line. If the

rank of a particle is better than its local guide, the local

guide is updated in Step 3. If rank is the same, the
local guide is updated based on the smaller Euclidean

distance of a particle from the associated reference line

in Step 6.

3.6 Global Guide Update Module: Step 11 of Algo. 1

The global guide update module is developed by

adopting the niching mechanism of NSGA-III so that

Algorithm 6 Local Guide Update(Pt, Lt)

1: for all i ∈ N do

2: if (rank of P i
t < rank of Li

t) then

3: Update Li
t = P i

t ;%P i
t and Li

t are i−th swarm of Pt

and Lt

4: else if (rank is same) then

5: if (d(P i
t ) < d(Li

t)) then

6: Update Li
t = P i

t ; %Based on distance found in
Step 8 of Algo. 4

7: end if

8: end if

9: end for

Algorithm 7 Global Guide Update(Rt)

1: Classify solutions in different fronts based on the ranks
obtained earlier by Line Assignment module;

2: Initialize St = ∅ and i = 1;
3: while |St| ≤ N do

4: St = St ∪ Fi and i = i+ 1;
5: end while

6: if (|St| = N) then

7: Gt = St, Stop;
8: else

9: Gt = ∪l−1

i=1
Fi; %Inclusion of fronts till last but one.

10: Compute niche count of each reference line (w) such
that ρw =

∑
s∈St/Fl

((π(s) = j) ? 1 : 0);

11: while (|Gt| ≤ H) do

12: Find a line which has the least niche count. In case of
multiple lines having minimum niche count, choose
one of them (w) at random;

13: Iw = {s : π(s) = w, s ∈ Fl} ; %Fl is the last front
to be used for filling Gt

14: if (Iw 6= ∅) then

15: if (ρw = 0) then

16: Gt = Gt ∪ (s : argmin
s∈Iw

d(s)); %Copy the
solution closest to the line w

17: else

18: Gt = Gt ∪ random(Iw);
19: end if

20: ρw = ρw + 1, Fl = Fl \ s;
21: else

22: Remove line w

23: end if

24: end while

25: end if

a set of good solutions can be stored in the archive of

global guides. Algo. 7 presents the global guide update
for Step 11 of Algo. 1 in which the combined population

(Mt) is sent and for Step 4 of Algo. 8 in which (Gt∪Ĝt)

is sent. Since ranking and association have already been

done by Line Assignment module, solutions of Rt are

classified into different fronts based on their ranks in
Step 1 of Algo. 7. Solutions of Rt are then copied front-

wise into St till its size is more than N in Step 4. If the

size of St is the same as N , all solutions of St are copied

into Gt in Step 7 and the module is terminated. Other-
wise, solutions in the fronts are copied to Gt, excluding

the last front (Fl) solutions in Step 9. Thereafter, the

niche count of each reference line is computed in Step
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10. This count signifies the number of solutions associ-

ated with a line. If the niche count of a line is relatively

lower than other lines, it signifies that the region around

this line is less crowded. It means that a solution can

be chosen to update the archive of global guides. The
same procedure is followed in Step 12 to find the line

which has the minimum niche count. If the line has no

associated solution from St/Fl, its niche becomes zero.

For this line, a solution from Fl, which is nearest to it, is
copied to Gt in Step 16. In case, the niche count of the

line is non-zero, any random solution from Fl, which is

associated with it, is copied to Gt in Step 18. When a

solution from Fl is copied to Gt, the niche count is up-

dated and the selected solution is removed from Fl so
that a distinct solution can be copied. If a line has no as-

sociated solution from St/Fl and also from Fl, this line

is then removed for further consideration in Step 22.

This update for the archive of the global guides ensures
selection of a diverse set of the best-ranked solutions

into Gt, which is useful for velocity update of particles

and also to report the non-dominated solutions.

3.7 Evolutionary Search Module: Step 12 of Algo. 1

An evolutionary search is performed on the archive of

the global guides (Gt) in every generation so that the

global guides do not stuck to any local optima and can

improve further to steer the search of the swarm toward
the PO front. Algo. 8 presents the four major steps

in which crossover is performed using SBX operator

and mutation is performed using polynomial mutation

operator [17]. The new set of global guides (Ĝt) along

with the current global guides (Gt) are then ranked,
normalized and associated together with the lines using

Line Assignment(Gt ∪ Ĝt) module in Step 3 of Algo.

8. Thereafter, the global guides are selected through

Global Guide Update(Gt ∪ Ĝt) module in Step 4.

Algorithm 8 Evolutionary Search(Gt)

1: Ḡt = crossover(Gt); %by using SBX crossover operator

2: Ĝt = mutate(Ḡt); %by using Polynomial mutation
operator

3: Line Assignment(Gt ∪ Ĝt) using Algo. 2;
4: Global Guide Update(Gt ∪ Ĝt) using Algo. 7;

3.8 Computational Complexity

The computational complexity of RMaOPSO is simi-

lar to NSGA-III since it involves all the key operations,

such as non-dominated ranking, normalization, associ-

ation, and niching. However, the non-dominated rank-

ing and association are performed thrice in one genera-

tion. Therefore, the worst-case computational complex-

ity of one generation of RMaOPSO is either the non-
dominated ranking (O(3×N2logM−2N)) or association

(O(3 ×N2M)), whichever is larger.

4 Results and Discussion

In this section, RMaOPSO is tested on DTLZ [20]

and WFG [28] problem instances having M =

{3, 5, 8, 10, 15} objectives. The number of variables for

DTLZ problems is n = M + k − 1, where k = 5 is

kept fixed for DTLZ1, and k = 10 is kept the same
for DTLZ2-4 problems. Similarly, n = k + l is used for

WFG1-9 problems in which k = 2 × (M − 1) is the

position-related variable and l = 20 is kept fixed for

the distance-related variable. These test problems are
chosen because they have different characteristics, such

as DTLZ1 is linear and multi-modal; DTLZ2 is concave;

DTLZ3 is concave and multi-modal; DTLZ4 is con-

cave and biased; WFG1 is mixed and biased; WFG2 is

convex, disconnected, multi-modal and non-separable;
WFG3 is linear, degenerate and non-separable; WFG4

is concave and multi-modal; WFG5 is concave and de-

ceptive; WFG6 is concave and non-separable; WFG7

is concave and biased; WFG8 is concave, biased and
non-separable; WFG9 is concave, biased, multi-modal,

deceptive and non-separable. These characteristics pose

challenges for algorithms to converge to the PO front.

Two statistical indicators, such as inverse general-

ized distance (IGD) and hypervolume (HV) are used
to assess the performance of RMaOPSO with respect

to the existing multi-objective evolutionary algorithms

andMOPSOs. IGD indicator measures convergence and

diversity of a set of the obtained non-dominated solu-
tions (P ) with respect to the PO solutions (Q∗). It is

calculated using (11) in which d(q∗i , pj) = ||q∗j − pi||2 is

the Euclidean distance in the objective space, |Q∗| and
|P | are the cardinality of Q∗ and P , respectively.

IGD(P,Q∗) =

|Q∗|
∑

i=1

|P |

min
j=1

d(q∗i , pj)

|Q∗|
. (11)

HV indicator measures the size of the objective space

dominated by the solutions in P and bounded by zr. It

is given in (12), where V OL(.) represents the Lebesgue

measure, and zr = (zr1 , . . . , z
r
M )T is the reference point,

which is dominated by all PO solutions. Larger is the

HV value, better is the quality of P for approximating

the PO front. For DTLZ1, zr = (1, . . . , 1)T is chosen.
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For other DTLZ and WFG problems, zr = (2, . . . , 2)T

is considered. The HV values presented in this paper

are normalized between [0, 1] by dividing z =
M
∏

i=1

zri .

Both the indicators are determined by normalizing P ,
except for DTLZ1.

HV (Q) = V OL

(

⋃

s∈P

[f1((s), z
r
i ]× . . . [fM ((s), zrM ]

)

,

(12)

RMaOPSO is compared with six algorithms from
the literature, that are, NSGA-III [18]1, SPEA/R [29] 2,

VaEA [58], dMOPSO 3 [62], SMPSO [40], and MaPSO

[59]. NSGA-III is chosen because RMaOPSO is devel-

oped using its reference-lines-based framework. How-
ever, RMaOPSO has adopted the concepts of NSGA-III

for developing procedure for the global and local guides’

assignment and update. SPEA/R is chosen because it

uses k−layered reference direction search method in

which it emphasis first on diversity followed by conver-
gence. VaEA is chosen because it also uses the reference-

lines-based framework; however, the environmental se-

lection is performed using the maximum-vector-angle

approach and worst-elimination principle. SMPSO and
dMOPSO are chosen because these algorithms are es-

tablished MOPSOs which have been tested success-

fully on many multi-objective optimization problems.

MaPSO is the recently published MOPSO and its work-

ing principle was discussed in Section 2.

All the algorithms are run 20 times with differ-

ent initial populations or swarms and their results are

compared. The Wilcoxon signed-rank test at 5% sig-

nificance level is performed to compare the outcome
of RMaOPSO with the existing algorithms. The pop-

ulation size for all algorithms is chosen based on the

number of reference points calculated using (4). The

details are given in Table 1. These algorithms are ter-

minated based on the number of generations, which are
presented in Table 2.

For a fair comparison, the algorithm parameters are

kept same. The SBX and polynomial mutation opera-

tors are used as evolutionary search. The probability of
crossover is kept 1.0, and the probability of mutation

is pm = 1/n. The distribution index for SBX operator

is ηc = 30, and the distribution index for polynomial

mutation operator is ηm = 20. For all MOPSOs, the

1 NSGA-III code developed by [49] is used, which is avail-
able in the public domain.
2 The codes of SPEA/R, VaEA and MaPSO are provided

by the authors.
3 The source codes of dMOPSO and SMPSO are obtained

from the jmetal framework [22].

Table 1 Number of reference points and corresponding pop-
ulation sizes for the algorithms.

No. of divisions No. of ref. Population
obj. (M) p or (p1, p2) points (|H|) (N)

3 12 91 92
5 6 210 210
8 (3, 2) 156 156
10 (3, 2) 275 276
15 (2, 1) 135 136

Table 2 Maximum number of generations for algorithms.

No. of DTLZ1 DTLZ2 DTLZ3 DTLZ4 WFG (all)
objectives

3 400 250 1000 600 1000
5 600 350 1000 1000 1250
8 750 500 1000 1250 1500
10 1000 750 1500 2000 2000
15 1500 1000 2000 3000 3000

parameters (w, c1, c2) are sampled randomly from their

respective ranges, such as w ∈ [0.1, 0.5], and c1, c2 ∈
[1.5, 2.5]. For SPEA/R, the archive size is set same as
the population size, and the number of k−layers for

3-, 5-, 8-, 10-, and 15-objectives for all problems is

k = 7, 8, 5, 6, and 3, respectively. The population size is

determined as N = 4×ceil(((M×k×(k+3)/2)+1)/4).

For MaPSO, the parameters K = 3 and θmax = 0.5 are
kept fixed.

4.1 Performance on DTLZ Problems

The performance of RMaOPSO is tested on scalable

DTLZ1-4 problems in this section, and its outcome

is tested using the IGD and HV indicators. Table 3

presents the best, median, and worst values of IGD in-
dicator for each objective of DTLZ problems. The gray

cells represent the best IGD value for each row among

the algorithms. Here, smaller IGD value is better. It

can be seen that RMaOPSO shows better IGD values

in 44 out of 60 rows, which is the highest in number.
The outcome from the Wilcoxon test is also shown for

each instance in the same table. The symbol ‘+’ in-

dicates that RMaOPSO is significantly better than the

corresponding algorithm. Similarly, the symbols ‘−’ and
‘=’ indicate significantly worse and equivalent perfor-

mance of RMaOPSO with respect to the corresponding

algorithm, respectively. At the bottom of the table, the

collective outcome (+/ = /−) from the Wilcoxon test is

shown. It can be seen that RMaOPSO outperforms all
the algorithms on all instances of DTLZ1-4 problems.

Table 4 presents the best, median and worst HV in-

dicator values for DTLZ problems. The gray cells again

represent the best HV values for each row. Here, larger
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HV value is better. RMaOPSO shows the best HV val-

ues in 33 out of 48 rows, which is the highest in number.

It can be seen again at the bottom of the table that

RMaOPSO again outperforms all the algorithms based

on the outcome of Wilcoxon test.
The obtained non-dominated solutions for 3- and

10-objective DTLZ3 problem are shown here because

DTLZ3 is concave and multi-modal multi-objective op-

timization problem. The plots are generated corre-
sponding to the run of median IGD value. Fig. 2 shows

the obtained non-dominated solutions for 3-objective

problem from all the algorithms. It can be seen that

RMaOPSO, NSGA-III, SPEA/R, and MaPSO are able

to converge to the PO front of DTLZ3. However, the
evenness in the distribution of solutions can be seen

with RMaOPSO and NSGA-III. SMPSO and dMOPSO

generates the solutions quite close to the PO front

but the distribution of solutions is not as even as
RMaOPSO. VaEA is only the algorithm which fails to

converge to the PO front.

Fig. 3 shows the value path of the obtained non-

dominated solutions for 10-objective DTLZ3 problem.

It can be seen that RMaOPSO and NSGA-III generate
a converged and well-distributed set of solutions, where

the rest of the algorithms fail to converge to the PF.

Except for the tenth objective, VaEA is also converged

to the PO front.

4.2 Performance on WFG Problems

Now, RMaOPSO is tested on the WFG test problems

and its outcome is compared with other algorithms
based on the IGD and HV values, and on Wilcoxon test

outcome. Table 5 presents the best, median, and worst

IGD values obtained from the algorithms for WFG1-

9 problem instances. The gray cells represent the best

IGD values among the algorithm for each row. Here,
smaller IGD value is better. For WFG problems, a scat-

tered distribution of gray cells can be seen in which

RMaOPSO shows better IGD values in 39 rows out of

135, which is the highest in number. The table also
shows the outcome of Wilcoxon test for individual in-

stances and the cumulative outcome is presented at the

bottom of the table. It can be seen that RMaOPSO out-

performs all MOPSOs and shows better performance

over SPEA/R and VaEA. RMaOPSO shows an equiv-
alent performance with NSGA-III.

Table 6 presents the statistical HV indicator values

for WFG1-9 problem instances. The gray cells again

represent the better HV value. Here, larger HV value is
better. Again, a scatter gray cells can be seen in which

RMaOPSO shows better HV values in 31 out of 108

rows, which is the highest in number. The outcome of

Wilcoxon test is shown for each problem instance and

the cumulative performance can be seen at the bottom

of the table. It can be observed that RMaOPSO out-

performs dMOPSO and SMPSO. It shows better per-

formance than SPEA/R and VaEA and an equivalent
performance with MaPSO. Based on HV values, NSGA-

III shows slightly better outcome of Wilcoxon test over

RMaOPSO. The main reason is the frequent jumping of

the particles out of the bounds which are then brought
back to the bounds.

The non-dominated solutions obtained from all al-

gorithms are shown in Fig. 4 for 3-objective WFG6
problem in the normalized objective space. The plots

are generated corresponding to the run of median IGD

value. It can be seen that RMaOPSO and NSGA-III

are converged to the PO front and the obtained solu-
tions are evenly spread over the PO front. The rest of

the algorithms are little far from the PO front. Fig. 5

shows value path plots of algorithms for 10-objective

WFG6 problem. Except for dMOPSO, all algorithms

have generated the extreme solutions in each objective.
However, RMaOPSO and NSGA-III show a better dis-

tribution of the obtained non-dominated solutions over

the PO front.

4.3 Average Performance

Since a large set of problem instances is solved in
which none of the algorithms come out to be the

clear winner, an average performance score of the al-

gorithms for different objectives and problems is calcu-

lated [26, 53, 57, 60]. The score is calculated by compar-

ing the median IGD values obtained in Table 3 and Ta-
ble 4 and then, a rank is assigned to every algorithm for

each instance. The smaller average performance score

represents better performance. Fig. 6 shows the aver-

age performance score of all algorithms for different ob-
jectives. It can be clearly seen that RMaOPSO shows

the best performance in all objective instances cumu-

latively. Fig. 7 shows the average performance score

over different DTLZ and WFG problems. RMaOPSO

shows the best performance for DTLZ2-4 problems, and
WFG4-6 and WFG8 problems. RMaOPSO is the sec-

ond best in DTLZ1, WFG3, WFG7, and WGF9 prob-

lems. Based on the above average performance scores,

the ranking of the algorithms is calculated and shown in
Fig. 8. It can be seen that RMaOPSO emerges as the

best algorithm among the others. It is slightly better

than NSGA-III but outperforms the others.
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Fig. 2 Obtained non-dominated solutions by the algorithms for 3-objective DTLZ3 problem.
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Table 3 Best, median and worst IGD values obtained by RMaOPSO and other algorithms on DTLZ instances with different
number of objectives. Best performances are highlighted in bold face with gray background.

M NSGA-III SPEA/R VaEA dMOPSO SMPSO MaPSO RMaOPSO

D
T
L
Z
1

3
3.510E-04 4.447E-03 1.280E-02 2.398E-02 2.900E-02 2.135E-02 1.238E-04

1.536E-03 + 2.138E-02 + 4.899E-02 + 2.826E-02 + 3.197E-02 + 2.331E-02+ 2.127E-04

5.787E-03 9.910E-02 4.039E-01 4.943E-02 3.485E-02 2.494E-02 3.073E-04

5
4.962E-04 1.517E-02 1.898E-02 7.658E+00 9.169E-02 6.422E-02 3.706E-04

7.431E-04 + 4.038E-02 + 3.401E-02 + 3.939E+01+ 1.094E-01 + 7.465E-02+ 4.209E-04

1.246E-03 1.323E-01 6.372E-02 6.338E+01 1.343E-01 1.069E-01 1.870E-03

8
2.175E-03 6.328E-02 1.933E-02 2.565E+01 1.344E-01 1.178E-01 1.408E-03

3.582E-03
− 1.490E-01 + 2.722E-02 − 4.972E+01+ 3.216E-01 + 1.370E-01+ 7.047E-02

6.645E-02 6.193E-01 4.981E-02 6.342E+01 7.597E+00 1.925E-01 7.767E-02

10
2.279E-03 4.146E-02 2.214E-02 2.258E+01 1.564E-01 1.249E-01 1.400E-03

2.583E-03
= 1.018E-01 + 2.939E-02 = 4.367E+01+ 5.223E-01 + 1.564E-01+ 9.153E-03

9.297E-02 2.897E-01 3.972E-02 7.083E+01 1.304E+01 1.969E-01 7.405E-02

15
1.922E-03 2.409E-01 4.884E-02 2.202E+01 3.361E-01 1.736E-01 1.825E-03

2.853E-03
− 4.356E-01 + 5.362E-02 = 4.257E+01+ 5.630E-01 + 1.959E-01+ 5.433E-02

4.324E-03 2.969E+00 5.938E-02 6.759E+01 1.778E+01 2.163E-01 2.249E-01

D
T
L
Z
2

3
1.045E-03 3.125E-03 8.292E-03 5.914E-02 7.385E-02 4.903E-02 5.017E-04

1.270E-03 + 5.074E-03 + 1.485E-02 + 6.153E-02 + 7.758E-02 + 5.543E-02+ 6.948E-04

2.870E-03 1.128E-02 2.572E-02 6.600E-02 8.210E-02 5.736E-02 8.574E-04

5
3.058E-03 9.941E-03 1.334E-02 5.562E-01 2.922E-01 1.589E-01 2.198E-03

4.481E-03 + 1.308E-02 + 1.606E-02 + 6.324E-01 + 3.624E-01 + 1.675E-01+ 2.493E-03

1.128E-02 2.120E-02 2.064E-02 6.777E-01 4.056E-01 1.891E-01 2.964E-03

8
1.152E-02 2.307E-02 2.830E-02 8.489E-01 6.857E-01 3.167E-01 6.210E-03

1.293E-02 + 2.849E-02 + 3.524E-02 + 9.295E-01 + 8.782E-01 + 3.352E-01+ 8.456E-03

1.691E-02 3.342E-02 4.904E-02 9.814E-01 1.074E+00 3.547E-01 1.213E-02

10
1.142E-02 2.455E-02 2.270E-02 9.557E-01 8.171E-01 3.652E-01 7.532E-03

1.279E-02 + 2.893E-02 + 3.838E-02 + 1.011E+00+ 1.157E+00+ 3.833E-01+ 8.563E-03

1.486E-02 3.689E-02 4.143E-02 1.073E+00 1.342E+00 3.945E-01 1.256E-02

15
1.052E-02 4.607E-02 3.692E-02 1.168E+00 1.474E+00 4.247E-01 6.598E-03

1.428E-02 + 5.477E-02 + 6.588E-02 + 1.268E+00+ 1.635E+00+ 4.592E-01+ 8.586E-03

1.758E-02 7.102E-02 1.485E-01 1.309E+00 2.134E+00 4.797E-01 8.236E-02

D
T
L
Z
3

3
8.723E-04 6.758E-03 1.955E-01 5.232E-02 7.106E-02 4.860E-02 3.125E-04

3.991E-03 + 3.334E-02 + 1.052E+00+ 5.428E-02 + 7.516E-02 + 5.646E-02+ 4.300E-04

9.847E-03 2.413E-01 4.125E+00 6.004E-02 8.325E-02 2.002E+00 4.667E-03

5
2.174E-03 7.925E-02 2.226E-02 3.504E+02 2.716E-01 1.718E-01 6.627E-04

3.675E-03 + 2.060E-01 + 1.936E-01 + 4.927E+02+ 3.844E-01 + 2.153E-01+ 8.090E-04

1.014E-02 3.801E-01 5.687E-01 5.875E+02 4.890E-01 3.813E-01 5.444E-03

8
1.256E-02 3.811E-01 8.289E-02 3.818E+02 3.710E+00 3.762E-01 8.602E-03

2.444E-02
− 2.296E+00+ 8.487E-01 + 5.636E+02+ 6.459E+01+ 4.392E-01+ 5.039E-02

5.287E-02 4.493E+00 1.145E+00 6.772E+02 1.321E+02 5.171E-01 3.975E-01

10
8.236E-03 3.882E-01 5.758E-02 3.513E+02 4.408E+01 4.699E-01 4.480E-03

1.069E-02 = 6.790E-01 + 3.287E-01 + 4.572E+02+ 7.938E+01+ 5.020E-01+ 7.291E-03

1.929E-02 4.395E+00 1.169E+00 6.132E+02 1.009E+02 5.985E-01 4.270E-01

15
1.121E-02 5.443E+00 6.600E-02 3.434E+02 1.533E+02 5.234E-01 3.936E-03

1.766E-02 + 1.207E+01+ 1.280E+00+ 5.223E+02+ 2.075E+02+ 6.156E-01+ 6.160E-03

3.671E-02 3.338E+01 1.301E+00 6.283E+02 2.247E+02 7.536E-01 2.272E-01

D
T
L
Z
4

3
3.113E-04 4.001E-04 7.698E-03 8.080E-02 6.947E-02 5.124E-02 3.153E-04

3.918E-04 = 1.837E-03 + 2.267E-01 + 1.108E-01 + 7.344E-02 + 5.555E-02+ 3.721E-04

5.314E-01 4.983E-03 9.503E-01 1.794E-01 7.985E-02 5.766E-02 9.503E-01

5
3.641E-04 2.182E-03 1.641E-02 7.434E-01 1.974E-01 1.463E-01 3.357E-04

4.334E-04 + 4.001E-03 + 1.939E-01 + 9.713E-01 + 2.325E-01 + 1.533E-01+ 3.975E-04

5.072E-04 9.661E-03 3.947E-01 1.135E+00 2.813E-01 1.578E-01 4.881E-04

8
2.541E-03 7.315E-03 3.326E-02 9.863E-01 4.266E-01 2.532E-01 2.469E-03

3.442E-03 + 9.148E-03 + 2.380E-01 + 1.137E+00+ 5.405E-01 + 2.728E-01+ 3.073E-03

5.319E-03 1.220E-02 6.228E-01 1.334E+00 6.252E-01 2.862E-01 4.012E-03

10
3.578E-03 6.907E-03 4.088E-02 8.838E-01 5.627E-01 2.813E-01 2.998E-03

4.228E-03 + 8.963E-03 + 1.843E-01 + 1.017E+00+ 6.641E-01 + 2.990E-01+ 3.659E-03

5.174E-03 1.191E-02 3.770E-01 1.145E+00 7.548E-01 3.047E-01 4.490E-03

15
5.257E-03 9.225E-03 1.226E-01 1.068E+00 1.118E+00 2.512E-01 4.961E-03

7.298E-03
= 1.115E-02 + 2.898E-01 + 1.184E+00+ 1.268E+00+ 2.773E-01+ 7.697E-03

9.578E-03 1.475E-02 9.067E-01 1.303E+00 1.486E+00 3.023E-01 1.048E-02
(+/=/-) 13/4/3 20/0/0 17/2/1 20/0/0 20/0/0 20/0/0

5 Conclusions

RMaOPSO has been developed in this paper for up-

dating the archive of global guides and assigning them

to particles using the reference-lines-based framework.
The main objective was to select an appropriate global

guide for each particle so that many-objective opti-

mization problems can be solved efficiently. Therefore,

a set of structured reference lines was used to assign

and update guides in every generation for each particle

in a swarm. In order to achieve the objective, five
modules were developed for improving convergence

and diversity of RMaOPSO. These modules included

Global Guide Assignment, Global Guide Update,

Local Guide Update, Line Assignment, and

Evolutionary Search. The proposed RMaOPSO
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Table 4 Best, median and worst HV values obtained by RMaOPSO and other algorithms on DTLZ instances with different
number of objectives. Best performances are highlighted in bold face with gray background.

M NSGA-III SPEA/R VaEA dMOPSO SMPSO MaPSO RMaOPSO

D
T
L
Z
1

3
9.73656E-01 9.73376E-01 9.70545E-01 9.70931E-01 9.68321E-01 9.72251E-01 9.73676E-01

9.73423E-01 + 9.70047E-01 + 9.57151E-01+ 9.60109E-01+ 9.66712E-01+ 9.71936E-01+ 9.73663E-01

9.72470E-01 9.44695E-01 4.78116E-01 9.40745E-01 9.65165E-01 9.71078E-01 9.73624E-01

5
9.98982E-01 9.97918E-01 9.98560E-01 9.70931E-01 9.94571E-01 9.98277E-01 9.98986E-01

9.98977E-01 + 9.97159E-01 + 9.98216E-01+ 9.60109E-01+ 9.90411E-01+ 9.97662E-01+ 9.98984E-01

9.98963E-01 9.91088E-01 9.97263E-01 9.40745E-01 9.77792E-01 9.94801E-01 9.98981E-01

8
9.99974E-01 9.99786E-01 9.99824E-01 9.70931E-01 9.94571E-01 9.99884E-01 9.99979E-01

9.99971E-01
− 9.96402E-01 + 9.99570E-01+ 9.60109E-01+ 9.90411E-01+ 9.99807E-01+ 9.99914E-01

9.99896E-01 4.83954E-01 9.98418E-01 9.40745E-01 9.77792E-01 9.99051E-01 9.99906E-01

10
9.99998E-01 9.99974E-01 9.99932E-01 9.70931E-01 9.94571E-01 9.99994E-01 9.99999E-01

9.99997E-01 = 9.99923E-01 + 9.99864E-01+ 9.60109E-01+ 9.90411E-01+ 9.99972E-01+ 9.99999E-01

9.99988E-01 9.74683E-01 9.99656E-01 9.40745E-01 9.77792E-01 9.99870E-01 9.99994E-01

D
T
L
Z
2

3
9.26692E-01 9.26671E-01 9.25552E-01 9.23564E-01 9.19128E-01 9.26472E-01 9.26729E-01

9.26640E-01 + 9.26565E-01 + 9.24474E-01+ 9.22346E-01+ 9.17490E-01+ 9.26058E-01+ 9.26704E-01

9.26584E-01 9.26319E-01 9.22430E-01 9.21754E-01 9.14333E-01 9.25503E-01 9.26684E-01

5
9.90505E-01 9.86881E-01 9.90383E-01 7.69201E-01 9.58619E-01 9.89463E-01 9.90529E-01

9.90474E-01 + 9.86822E-01 + 9.90274E-01+ 7.49667E-01+ 9.32828E-01+ 9.89135E-01+ 9.90511E-01

9.90418E-01 9.86721E-01 9.90117E-01 7.09305E-01 9.06122E-01 9.87376E-01 9.90491E-01

8
9.99337E-01 9.98713E-01 9.99325E-01 7.48924E-01 8.46623E-01 9.99055E-01 9.99347E-01

9.99328E-01 + 9.98658E-01 + 9.99312E-01+ 7.08707E-01+ 7.11107E-01+ 9.98856E-01+ 9.99340E-01

9.99315E-01 9.98475E-01 9.99286E-01 6.75727E-01 4.29473E-01 9.98726E-01 9.99325E-01

10
9.99919E-01 9.99764E-01 9.99919E-01 7.71284E-01 8.21622E-01 9.99825E-01 9.99920E-01

9.99917E-01 + 9.99744E-01 + 9.99876E-01+ 7.49630E-01+ 6.08050E-01+ 9.99801E-01+ 9.99919E-01

9.99916E-01 9.99721E-01 9.99872E-01 7.17320E-01 4.17720E-01 9.99783E-01 9.99917E-01

D
T
L
Z
3

3
9.26593E-01 9.26316E-01 3.29451E-03 9.26429E-01 9.20859E-01 9.26684E-01 9.26775E-01

9.25882E-01 + 9.24816E-01 + 6.83835E-03+ 9.25997E-01+ 9.19780E-01+ 9.26131E-01+ 9.26695E-01

9.24558E-01 8.99569E-01 1.11064E-01 9.17906E-01 9.17765E-01 4.40325E-03 9.25775E-01

5
9.90525E-01 9.86510E-01 9.90161E-01 9.26429E-01 9.59236E-01 9.88524E-01 9.90584E-01

9.90469E-01 + 9.82919E-01 + 9.80306E-01+ 9.25997E-01+ 9.21241E-01+ 9.86276E-01+ 9.90563E-01

9.90135E-01 9.72970E-01 8.19713E-01 9.17906E-01 7.24203E-01 9.78306E-01 9.90330E-01

8
9.99334E-01 9.86510E-01 9.99072E-01 9.26429E-01 9.59236E-01 9.98633E-01 9.99349E-01

9.99264E-01 = 9.82919E-01 = 6.58526E-01+ 9.25997E-01+ 9.21241E-01+ 9.98135E-01+ 9.99278E-01

9.99166E-01 9.72970E-01 5.03707E-01 9.17906E-01 7.24203E-01 9.97371E-01 9.95700E-01

10
9.99922E-01 9.86510E-01 9.99856E-01 9.26429E-01 9.59236E-01 9.99661E-01 9.99922E-01
9.99918E-01 = 9.82919E-01 = 9.96896E-01+ 9.25997E-01+ 9.21241E-01+ 9.99590E-01+ 9.99920E-01

9.99909E-01 9.72970E-01 5.07743E-01 9.17906E-01 7.24203E-01 9.99363E-01 9.99259E-01

D
T
L
Z
4

3
9.26777E-01 9.26883E-01 9.26598E-01 9.21032E-01 9.21013E-01 9.26525E-01 9.26782E-01
9.26733E-01 =

9.26823E-01
− 9.14404E-01+ 9.18264E-01+ 9.20364E-01+ 9.26163E-01+ 9.26731E-01

7.98533E-01 9.26724E-01 5.00000E-01 9.13141E-01 9.18995E-01 9.25349E-01 4.99993E-01

5
9.90593E-01 9.87093E-01 9.90628E-01 7.25329E-01 9.84946E-01 9.90341E-01 9.90592E-01

9.90578E-01 = 9.87067E-01 + 9.88983E-01+ 5.23790E-01+ 9.83696E-01+ 9.90211E-01+ 9.90580E-01

9.90571E-01 9.87043E-01 9.71855E-01 3.76585E-01 9.80806E-01 9.90066E-01 9.90570E-01

8
9.99365E-01 9.98833E-01 9.99380E-01 6.60632E-01 9.85841E-01 9.99390E-01 9.99365E-01
9.99364E-01

= 9.98828E-01 + 9.98877E-01+ 5.80339E-01+ 9.73631E-01+ 9.99339E-01+ 9.99364E-01
9.99363E-01 9.98811E-01 9.87270E-01 4.15375E-01 9.43560E-01 9.99309E-01 9.99363E-01

10
9.99924E-01 9.99793E-01 9.99925E-01 8.36730E-01 9.87990E-01 9.99924E-01 9.99924E-01

9.99923E-01
= 9.99792E-01 + 9.99918E-01+ 7.06959E-01+ 9.64856E-01+ 9.99917E-01+ 9.99923E-01

9.99923E-01 9.99790E-01 9.99454E-01 5.60297E-01 9.52353E-01 9.99913E-01 9.99923E-01
(+/=/-) 8/7/1 13/2/1 16/0/0 16/0/0 16/0/0 16/0/0

was tested on many-objective instances of DTLZ and

WFG problems and the outcome was compared with

six existing multi-objective evolutionary and MOPSO
algorithms. Based on the obtained results using the

IGD and HV indicators, and Wilcoxon test, it can be

concluded that RMaOPSO emerges as the best among

the chosen set of algorithms. Especially, RMaOPSO

outperformed all three MOPSO algorithms.

An observation can be made that RMaOPSO is still
unable to perform well in many instances for WFG

problems. The primary reason is the frequent jump-

ing of the particles out of the bound which are again

brought back to the bound. Therefore, RMaOPSO still
needs an efficient velocity update for better perfor-

mance. Moreover, the concepts like diversity over dom-

inance approaches [52], line prioritized environmental

selection [49], etc. can be brought into the parlance of

MOPSO to further improve the convergence and di-

versity among the particles and guides. Furthermore,
RMaOPSO can be hybridized with other heuristic al-

gorithms [1, 2, 3, 4] for better performance.
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Table 5 Best, median and worst IGD values obtained by RMaOPSO and other algorithms on WFG instances with different
number of objectives. Best performances are highlighted in bold face with gray background.

M NSGA-III SPEA/R VaEA dMOPSO SMPSO MaPSO RMaOPSO

W
F
G
1

3
3.555E-01 4.010E-01 1.544E-01 5.180E-01 5.357E-01 1.815E-01 3.678E-01
3.692E-01 − 4.230E-01 +

1.830E-01
− 5.235E-01 + 5.390E-01+ 2.441E-01 − 3.868E-01

3.803E-01 4.317E-01 2.345E-01 5.296E-01 5.420E-01 3.000E-01 3.976E-01

5
3.994E-01 4.304E-01 3.126E-01 1.113E+00 5.720E-01 2.557E-01 4.129E-01

4.042E-01 − 4.582E-01 + 3.803E-01 − 1.184E+00+ 5.782E-01+
3.263E-01

− 4.207E-01
4.108E-01 4.662E-01 4.301E-01 1.210E+00 5.876E-01 3.981E-01 4.291E-01

8
3.646E-01 3.464E-01 3.214E-01 1.134E+00 6.061E-01 2.464E-01 3.452E-01
4.198E-01 − 4.010E-01 − 3.332E-01 − 1.168E+00+ 6.101E-01+

3.254E-01
− 4.755E-01

4.492E-01 6.962E-01 3.507E-01 1.207E+00 6.183E-01 4.288E-01 6.149E-01

10
3.151E-01 2.934E-01 2.806E-01 1.084E+00 6.024E-01 1.998E-01 2.237E-01

3.648E-01 − 3.192E-01 = 2.924E-01 − 1.132E+00+ 6.095E-01+
2.257E-01

− 4.661E-01
4.425E-01 5.884E-01 3.066E-01 1.165E+00 6.121E-01 3.988E-01 5.610E-01

15
4.319E-01 3.326E-01 4.091E-01 1.091E+00 6.081E-01 3.260E-01 3.347E-01
4.435E-01 + 6.362E-01 + 4.141E-01 + 1.110E+00+ 6.104E-01+

3.443E-01
− 3.689E-01

4.899E-01 6.421E-01 4.187E-01 1.142E+00 6.170E-01 3.629E-01 4.390E-01

W
F
G
2

3
1.769E-02 1.745E-02 4.304E-02 7.598E-02 6.709E-02 4.398E-02 1.815E-02

2.082E-02 =
2.050E-02

= 4.989E-02 + 8.019E-02 + 7.376E-02+ 4.785E-02 + 2.187E-02
9.766E-02 9.922E-02 1.111E-01 8.788E-02 8.275E-02 5.373E-02 2.682E-02

5
5.846E-02 4.746E-02 7.106E-02 3.437E-01 1.382E-01 7.156E-02 5.813E-02

5.990E-02 =
4.972E-02

− 7.732E-02 + 3.800E-01 + 1.560E-01+ 7.499E-02 + 6.089E-02
1.629E-01 5.139E-02 1.736E-01 4.485E-01 1.673E-01 7.919E-02 6.406E-02

8
8.938E-02 6.683E-02 1.110E-01 4.258E-01 1.676E-01 1.155E-01 1.511E-01

1.452E-01 −
7.197E-02

− 1.203E-01 − 4.595E-01 + 1.988E-01= 1.216E-01 − 1.876E-01
2.313E-01 2.049E-01 2.143E-01 5.131E-01 2.449E-01 1.312E-01 2.694E-01

10
1.221E-01 6.505E-02 1.896E-01 4.590E-01 1.484E-01 1.875E-01 1.944E-01

2.017E-01 =
7.483E-02

− 2.042E-01 − 4.953E-01 + 1.952E-01− 2.066E-01 − 2.115E-01
3.199E-01 2.403E-01 2.211E-01 5.230E-01 2.262E-01 2.227E-01 3.205E-01

15
3.069E-01 3.381E-01 4.713E-01 8.832E-01 1.830E-01 1.187E-02 6.990E-01

6.278E-01 − 1.094E+00+ 5.550E-01 − 9.337E-01 + 2.091E-01− 2.191E-02
− 8.137E-01

7.115E-01 1.128E+00 7.147E-01 9.740E-01 2.424E-01 4.289E-02 1.035E+00

W
F
G
3

3
1.788E-02 3.485E-02 3.387E-02 2.770E-02 4.503E-02 2.465E-02 2.300E-02

2.271E-02
− 4.155E-02 + 4.451E-02 + 3.802E-02 + 8.472E-02+ 2.923E-02 = 3.077E-02

3.068E-02 6.476E-02 5.633E-02 5.093E-02 1.037E-01 3.721E-02 4.959E-02

5
4.575E-02 9.751E-02 6.074E-02 2.224E-01 1.274E-01 4.339E-02 3.234E-02

5.855E-02 = 1.149E-01 + 8.556E-02 + 2.515E-01 + 1.616E-01+
5.463E-02

= 6.123E-02
8.149E-02 1.386E-01 1.585E-01 2.738E-01 1.980E-01 6.321E-02 1.175E-01

8
5.078E-02 2.677E-01 7.622E-02 2.208E-01 1.164E-01 1.035E-01 7.925E-02

6.922E-02
− 4.197E-01 + 1.108E-01 = 2.761E-01 + 2.069E-01+ 1.645E-01 + 9.846E-02

1.342E-01 6.170E-01 1.882E-01 2.984E-01 2.527E-01 2.385E-01 2.635E-01

10
5.661E-02 1.056E-01 7.716E-02 2.241E-01 6.873E-02 1.206E-01 5.262E-02

7.434E-02
− 2.262E-01 + 1.723E-01 + 2.634E-01 + 1.893E-01+ 1.762E-01 + 9.190E-02

1.176E-01 5.069E-01 2.733E-01 2.934E-01 2.387E-01 2.183E-01 1.202E-01

15
2.631E-02 3.815E-01 5.268E-02 2.443E-01 1.340E-01 1.383E-01 3.088E-02

9.104E-02
− 4.350E-01 + 2.071E-01 + 2.881E-01 + 2.066E-01= 2.069E-01 + 1.356E-01

2.671E-01 5.666E-01 2.794E-01 3.233E-01 2.500E-01 2.956E-01 4.494E-01

W
F
G
4

3
4.735E-03 7.735E-03 5.244E-02 7.515E-02 9.717E-02 5.588E-02 4.478E-03

6.065E-03
= 9.383E-03 + 5.576E-02 + 7.708E-02 + 1.008E-01+ 6.121E-02 + 6.328E-03

7.093E-03 1.134E-02 6.114E-02 8.219E-02 1.082E-01 6.711E-02 8.813E-03

5
1.629E-02 1.994E-02 1.601E-01 4.639E-01 1.948E-01 1.702E-01 1.741E-02

2.119E-02 = 2.158E-02 + 1.681E-01 + 5.097E-01 + 2.117E-01+ 1.765E-01 +
1.983E-02

2.988E-02 2.502E-02 1.774E-01 5.421E-01 2.263E-01 1.840E-01 2.356E-02

8
3.175E-02 3.166E-02 2.460E-01 7.204E-01 3.287E-01 2.983E-01 2.837E-02

3.562E-02 + 3.783E-02 + 2.759E-01 + 7.757E-01 + 3.721E-01+ 3.163E-01 +
3.166E-02

4.319E-02 8.833E-02 2.961E-01 8.225E-01 4.031E-01 3.293E-01 4.467E-02

10
3.537E-02 3.083E-02 3.191E-01 8.163E-01 3.310E-01 3.301E-01 2.829E-02

4.334E-02 + 3.722E-02 + 3.355E-01 + 8.559E-01 + 3.758E-01+ 3.533E-01 +
3.115E-02

4.730E-02 4.268E-02 3.522E-01 8.849E-01 4.024E-01 3.655E-01 3.879E-02

15
4.962E-01 3.081E-02 4.893E-01 1.024E+00 5.075E-01 3.686E-01 3.937E-01

6.030E-01 +
3.180E-01

− 5.151E-01 − 1.058E+00+ 5.372E-01= 4.035E-01 − 5.717E-01
6.691E-01 6.991E-01 5.278E-01 1.076E+00 5.602E-01 4.336E-01 6.840E-01

W
F
G
5 3

2.996E-02 3.330E-02 5.927E-02 7.405E-02 8.800E-02 6.614E-02 3.096E-02
3.475E-02 =

3.457E-02
= 6.271E-02 + 7.721E-02 + 9.903E-02+ 7.025E-02 + 3.536E-02

4.383E-02 3.851E-02 6.667E-02 8.603E-02 1.191E-01 7.468E-02 4.077E-02

5
3.666E-02 4.140E-02 1.592E-01 4.353E-01 2.756E-01 1.879E-01 3.453E-02

4.005E-02 + 4.335E-02 + 1.638E-01 + 4.615E-01 + 2.996E-01+ 1.946E-01 +
3.968E-02

4.432E-02 4.474E-02 1.707E-01 4.991E-01 3.220E-01 2.081E-01 4.181E-02
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8
4.727E-02 4.904E-02 2.549E-01 6.436E-01 4.073E-01 3.410E-01 4.595E-02

5.208E-02 = 5.219E-02 = 2.823E-01+ 6.827E-01+ 4.293E-01 + 3.560E-01+
5.035E-02

7.502E-02 5.425E-02 2.953E-01 7.112E-01 4.518E-01 3.628E-01 2.228E-01

10
4.529E-02 4.961E-02 3.197E-01 7.083E-01 4.408E-01 3.941E-01 4.570E-02

5.011E-02 = 5.238E-02 = 3.323E-01+ 7.390E-01+ 4.564E-01 + 4.037E-01+
4.939E-02

6.825E-02 5.565E-02 3.480E-01 7.867E-01 4.748E-01 4.128E-01 2.130E-01

15
3.739E-02 6.776E-02 5.023E-01 9.562E-01 5.524E-01 4.691E-01 3.793E-02
4.339E-02 = 2.125E-01 + 5.228E-01+ 9.652E-01+ 5.716E-01 + 4.930E-01+

4.238E-02

1.529E-01 9.339E-01 5.380E-01 9.800E-01 5.905E-01 5.144E-01 1.776E-01

W
F
G
6

3
2.447E-02 1.904E-02 6.184E-02 6.988E-02 7.806E-02 5.568E-02 1.371E-02

2.831E-02 + 2.820E-02 + 6.474E-02+ 7.579E-02+ 8.240E-02 + 7.527E-02+
1.732E-02

3.511E-02 3.417E-02 6.728E-02 8.748E-02 8.858E-02 8.048E-02 2.215E-02

5
2.903E-02 2.855E-02 1.518E-01 4.544E-01 2.025E-01 1.667E-01 1.961E-02

3.479E-02 + 3.485E-02 + 1.598E-01+ 4.764E-01+ 2.149E-01 + 1.726E-01+
2.307E-02

4.261E-02 3.874E-02 1.665E-01 5.265E-01 2.313E-01 1.768E-01 2.520E-02

8
3.350E-02 3.854E-02 2.217E-01 6.502E-01 2.925E-01 3.032E-01 2.203E-02

3.837E-02 + 4.378E-02 + 2.472E-01+ 6.808E-01+ 3.031E-01 + 3.264E-01+
2.573E-02

4.294E-02 5.208E-02 2.730E-01 7.088E-01 3.235E-01 3.351E-01 3.048E-01

10
2.793E-02 3.624E-02 2.957E-01 7.208E-01 2.893E-01 3.523E-01 2.029E-02

3.728E-02 + 4.392E-02 + 3.189E-01+ 7.314E-01+ 3.072E-01 + 3.641E-01+
2.478E-02

4.548E-02 5.207E-02 3.290E-01 7.663E-01 3.303E-01 3.742E-01 2.962E-02

15
2.911E-02 5.071E-02 5.190E-01 9.254E-01 3.386E-01 4.146E-01 1.597E-02

3.599E-02 + 4.863E-01 + 5.275E-01+ 9.467E-01+ 3.528E-01 + 4.442E-01+
1.984E-02

4.709E-02 1.109E+00 5.425E-01 9.698E-01 3.711E-01 4.742E-01 2.384E-02

W
F
G
7

3
2.136E-03 3.927E-03 5.002E-02 8.934E-02 9.725E-02 5.180E-02 2.739E-03

2.572E-03
− 4.800E-03 + 5.353E-02+ 9.496E-02+ 1.077E-01 + 5.561E-02+ 3.575E-03

3.344E-03 6.481E-03 5.731E-02 9.885E-02 1.205E-01 5.824E-02 4.250E-03

5
6.704E-03 1.002E-02 1.407E-01 4.085E-01 2.129E-01 1.586E-01 1.184E-02
8.688E-03

− 1.162E-02 − 1.487E-01+ 4.516E-01+ 2.340E-01 + 1.638E-01+ 1.385E-02
1.727E-02 1.381E-02 1.540E-01 4.860E-01 2.436E-01 1.715E-01 2.369E-02

8
1.720E-02 3.053E-02 2.347E-01 6.595E-01 3.255E-01 3.037E-01 2.693E-02

2.039E-02
− 3.868E-02 + 2.623E-01+ 7.024E-01+ 3.384E-01 + 3.108E-01+ 3.424E-02

2.553E-02 7.388E-02 2.899E-01 7.434E-01 3.674E-01 3.255E-01 4.047E-02

10
2.167E-02 3.458E-02 3.089E-01 7.288E-01 3.138E-01 3.275E-01 2.264E-02
2.292E-02

− 4.152E-02 + 3.158E-01+ 7.656E-01+ 3.463E-01 + 3.424E-01+ 2.466E-02
2.441E-02 4.932E-02 3.350E-01 7.961E-01 3.629E-01 3.562E-01 2.634E-02

15
7.278E-02 3.375E-01 4.973E-01 9.715E-01 3.953E-01 3.683E-01 1.052E-02

1.312E-01 + 6.146E-01 + 5.163E-01+ 9.905E-01+ 4.254E-01 + 4.085E-01+
1.333E-02

4.640E-01 1.104E+00 5.233E-01 1.017E+00 4.440E-01 4.599E-01 8.189E-02

W
F
G
8

3
7.309E-02 4.154E-02 9.408E-02 1.402E-01 1.495E-01 8.379E-02 6.507E-02

7.659E-02 +
4.488E-02

− 9.869E-02+ 1.443E-01+ 1.613E-01 + 8.751E-02+ 7.534E-02
7.818E-02 5.137E-02 1.030E-01 1.547E-01 1.694E-01 9.144E-02 7.977E-02

5
1.222E-01 5.621E-02 2.044E-01 4.470E-01 2.805E-01 2.092E-01 8.486E-02

1.307E-01 +
7.042E-02

− 2.195E-01+ 5.026E-01+ 2.983E-01 + 2.170E-01+ 1.129E-01
1.408E-01 7.473E-02 2.291E-01 5.278E-01 3.156E-01 2.227E-01 1.244E-01

8
2.483E-01 1.205E-01 3.931E-01 6.844E-01 3.800E-01 3.715E-01 7.524E-02

2.577E-01 +
1.327E-01

− 4.070E-01+ 7.101E-01+ 4.036E-01 + 3.925E-01+ 1.767E-01
2.642E-01 1.409E-01 4.259E-01 7.445E-01 4.218E-01 4.047E-01 4.293E-01

10
2.813E-01 1.361E-01 3.785E-01 7.578E-01 3.851E-01 4.332E-01 5.194E-02

3.062E-01 + 1.549E-01 + 4.452E-01+ 7.831E-01+ 4.055E-01 + 4.442E-01+
6.690E-02

3.191E-01 1.618E-01 4.767E-01 8.191E-01 4.210E-01 4.511E-01 3.980E-01

15
5.435E-01 6.018E-01 5.788E-01 9.827E-01 4.629E-01 5.401E-01 5.593E-01

5.902E-01 = 9.638E-01 + 5.949E-01= 9.946E-01+ 4.827E-01
− 5.563E-01− 5.912E-01

6.306E-01 1.113E+00 6.115E-01 1.020E+00 4.913E-01 5.715E-01 6.100E-01

W
F
G
9

3
3.281E-02 2.943E-02 6.125E-02 7.135E-02 7.693E-02 6.145E-02 3.069E-02
5.194E-02 = 5.358E-02 = 7.244E-02+ 7.735E-02+ 8.423E-02 + 8.471E-02+

4.163E-02

6.727E-02 5.840E-02 8.152E-02 8.645E-02 1.088E-01 8.889E-02 6.557E-02

5
5.806E-02 5.311E-02 1.683E-01 4.213E-01 2.118E-01 1.940E-01 8.684E-02

9.513E-02 =
6.368E-02

− 1.867E-01+ 4.586E-01+ 2.597E-01 + 2.052E-01+ 8.806E-02
1.036E-01 7.271E-02 1.953E-01 4.720E-01 2.794E-01 2.095E-01 8.986E-02

8
1.182E-01 8.827E-02 2.596E-01 6.317E-01 4.075E-01 3.504E-01 9.126E-02
1.340E-01 =

1.188E-01
= 2.944E-01+ 6.853E-01+ 4.280E-01 + 3.625E-01+ 1.245E-01

2.165E-01 1.980E-01 3.239E-01 7.153E-01 4.538E-01 3.760E-01 2.342E-01

10
1.071E-01 9.076E-02 3.271E-01 7.213E-01 4.388E-01 3.983E-01 1.396E-01

1.535E-01 −
1.233E-01

− 3.489E-01+ 7.425E-01+ 4.595E-01 + 4.063E-01+ 1.902E-01
1.994E-01 1.675E-01 3.639E-01 7.687E-01 4.793E-01 4.165E-01 2.407E-01

15
1.702E-01 1.036E-01 4.975E-01 9.396E-01 5.585E-01 5.051E-01 2.120E-01
2.322E-01 −

1.688E-01
− 5.239E-01+ 9.557E-01+ 6.046E-01 + 5.221E-01+ 4.356E-01

4.239E-01 2.898E-01 5.425E-01 9.995E-01 6.397E-01 5.607E-01 5.835E-01
(+/=/-) 15/14/16 26/7/12 35/2/8 45/0/0 39/3/3 33/2/10
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Table 6 Best, median and worst HV values obtained by RMaOPSO and other algorithms on WFG instances with different
number of objectives. Best performances are highlighted in bold face with gray background.

M NSGA-III SPEA/R VaEA dMOPSO SMPSO MaPSO RMaOPSO

W
F
G
1

3
7.12840E-01 6.82790E-01 8.74760E-01 6.01700E-01 6.06790E-01 8.45320E-01 7.05130E-01
7.03900E-01 − 6.70940E-01 +

8.32610E-01
− 5.91580E-01+ 6.05430E-01+ 7.94780E-01 − 6.92700E-01

6.95820E-01 6.65730E-01 7.94030E-01 5.86330E-01 6.03010E-01 7.54300E-01 6.83840E-01

5
6.50050E-01 6.40660E-01 7.67260E-01 3.00280E-01 5.59280E-01 7.64530E-01 6.37340E-01

6.44320E-01 − 6.23950E-01 + 6.95360E-01 − 2.74170E-01+ 5.54510E-01+
7.00990E-01

− 6.33590E-01
6.40330E-01 6.19950E-01 6.51580E-01 2.64420E-01 5.52630E-01 6.47850E-01 6.26480E-01

8
6.61610E-01 6.74480E-01 8.75640E-01 2.87930E-01 5.01750E-01 8.05640E-01 6.99510E-01
6.00340E-01 = 6.34840E-01 −

8.59300E-01
− 2.75920E-01+ 4.99990E-01+ 6.95770E-01 − 5.71700E-01

5.86340E-01 4.66590E-01 8.27990E-01 2.63190E-01 4.98380E-01 6.00520E-01 4.95100E-01

10
6.93100E-01 6.93930E-01 9.32610E-01 2.98690E-01 4.85500E-01 9.61450E-01 8.31540E-01

6.51950E-01 − 6.78220E-01 =
9.20530E-01

− 2.82990E-01+ 4.76400E-01+ 9.17990E-01 − 5.67250E-01
5.66840E-01 4.51850E-01 9.08160E-01 2.72020E-01 4.74660E-01 6.20230E-01 5.04820E-01

W
F
G
2

3
9.87120E-01 9.86730E-01 9.81860E-01 9.43810E-01 9.68160E-01 9.82720E-01 9.85280E-01

9.84290E-01 =
9.84940E-01

− 9.78080E-01 + 9.39520E-01+ 9.62460E-01+ 9.80360E-01 + 9.83090E-01
8.93220E-01 8.92270E-01 8.88500E-01 9.31490E-01 9.52570E-01 9.70600E-01 9.77640E-01

5
9.96560E-01 9.96080E-01 9.94770E-01 7.44550E-01 9.74820E-01 9.98280E-01 9.93210E-01

9.95630E-01 − 9.95120E-01 − 9.90850E-01 = 6.88980E-01+ 9.65900E-01+
9.97770E-01

− 9.89420E-01
8.97790E-01 9.93820E-01 8.94370E-01 6.57400E-01 9.56030E-01 9.95190E-01 9.81090E-01

8
9.97490E-01 9.97090E-01 9.95660E-01 6.96120E-01 9.57910E-01 9.99280E-01 9.84450E-01

9.93110E-01 = 9.95430E-01 − 9.91880E-01 − 6.65430E-01+ 9.39680E-01=
9.98750E-01

− 9.64060E-01
8.94710E-01 8.97440E-01 8.92850E-01 6.42620E-01 9.18920E-01 9.97110E-01 8.55900E-01

10
9.98030E-01 9.98120E-01 9.97080E-01 7.18580E-01 9.65180E-01 9.99730E-01 9.93650E-01

9.94850E-01 = 9.97130E-01 − 9.95500E-01 − 6.66150E-01+ 9.49230E-01=
9.99500E-01

− 9.85120E-01
8.95970E-01 8.97380E-01 9.92410E-01 6.52070E-01 9.25840E-01 9.99040E-01 8.87610E-01

W
F
G
3

3
8.75020E-01 8.74280E-01 8.71150E-01 8.62320E-01 8.63000E-01 8.74740E-01 8.71650E-01

8.71570E-01
− 8.67970E-01 = 8.61310E-01 + 8.53680E-01+ 8.47220E-01+ 8.65220E-01 = 8.65570E-01

8.66020E-01 8.53310E-01 8.52490E-01 8.42350E-01 8.36440E-01 8.59630E-01 8.52050E-01

5
8.75090E-01 8.60600E-01 8.65350E-01 6.92590E-01 8.48550E-01 8.86780E-01 8.78340E-01
8.66150E-01 = 8.38480E-01 + 8.43920E-01 + 6.71660E-01+ 8.35830E-01+

8.72820E-01
− 8.66090E-01

8.60270E-01 8.20580E-01 8.28910E-01 6.47770E-01 8.25210E-01 8.63440E-01 8.49740E-01

8
8.73700E-01 7.13170E-01 8.64960E-01 6.76230E-01 8.45170E-01 8.73460E-01 8.39750E-01

8.55450E-01 − 6.62100E-01 + 8.48120E-01 − 6.49880E-01+ 8.27250E-01− 8.62380E-01
− 8.07590E-01

7.91750E-01 5.89310E-01 8.29240E-01 6.40190E-01 8.18250E-01 8.39310E-01 7.12320E-01

10
8.67930E-01 7.70670E-01 8.68470E-01 6.70530E-01 8.51050E-01 8.75170E-01 8.52380E-01
8.62790E-01 − 7.33000E-01 + 8.38090E-01 − 6.60290E-01+ 8.42760E-01− 8.63960E-01

− 8.33230E-01
8.40580E-01 6.32980E-01 8.27910E-01 6.37920E-01 8.22140E-01 8.48880E-01 7.78990E-01

W
F
G
4

3
9.23800E-01 9.22330E-01 9.20650E-01 9.06790E-01 8.82340E-01 9.18590E-01 9.23970E-01

9.22670E-01
= 9.20690E-01 + 9.18680E-01 + 8.97430E-01+ 8.79280E-01+ 9.16450E-01 + 9.22310E-01

9.21520E-01 9.17950E-01 9.14610E-01 8.89830E-01 8.74120E-01 9.11490E-01 9.21120E-01

5
9.82040E-01 9.80220E-01 9.73930E-01 6.55620E-01 9.34800E-01 9.82000E-01 9.81170E-01

9.78910E-01 = 9.78940E-01 = 9.69580E-01 + 6.36480E-01+ 9.25850E-01+ 9.78390E-01 =
9.79520E-01

9.74300E-01 9.76700E-01 9.64310E-01 6.05550E-01 9.18370E-01 9.73290E-01 9.76980E-01

8
9.87140E-01 9.92110E-01 9.88010E-01 6.49310E-01 9.27150E-01 9.87910E-01 9.86530E-01
9.82120E-01 =

9.89240E-01
− 9.80910E-01 = 6.14980E-01+ 9.10920E-01+ 9.82390E-01 = 9.83520E-01

9.77580E-01 9.85780E-01 9.74290E-01 5.85030E-01 8.85470E-01 9.73770E-01 9.77480E-01

10
9.86710E-01 9.95840E-01 9.85140E-01 6.57320E-01 9.40030E-01 9.89000E-01 9.89340E-01

9.83350E-01 +
9.94740E-01

− 9.81830E-01 + 6.31970E-01+ 9.27630E-01+ 9.83050E-01 + 9.87020E-01
9.77770E-01 9.93070E-01 9.78790E-01 6.03330E-01 9.11570E-01 9.73810E-01 9.80330E-01

W
F
G
5

3
9.03370E-01 8.98040E-01 9.02990E-01 8.82540E-01 8.72420E-01 8.92250E-01 9.02860E-01
8.99610E-01

= 8.93180E-01 + 8.98100E-01 = 8.80560E-01+ 8.65590E-01+ 8.87070E-01 + 8.97510E-01
8.95120E-01 8.89130E-01 8.93790E-01 8.70580E-01 8.54300E-01 8.82730E-01 8.91570E-01

5
9.59720E-01 9.50670E-01 9.56040E-01 6.24710E-01 8.87640E-01 9.51630E-01 9.61260E-01

9.58590E-01 + 9.47760E-01 + 9.53650E-01 + 6.09680E-01+ 8.70720E-01+ 9.40420E-01 +
9.60360E-01

9.57080E-01 9.46240E-01 9.49460E-01 5.96880E-01 8.55520E-01 9.32700E-01 9.58510E-01

8
9.62480E-01 9.58040E-01 9.62240E-01 6.01020E-01 8.77750E-01 9.45370E-01 9.63990E-01

9.60390E-01 + 9.55180E-01 + 9.60370E-01 + 5.67660E-01+ 8.56950E-01+ 9.38590E-01 +
9.62690E-01

9.56410E-01 9.51790E-01 9.58730E-01 5.40930E-01 8.42830E-01 9.26950E-01 9.59470E-01

10
9.61040E-01 9.58640E-01 9.60640E-01 6.10130E-01 8.80580E-01 9.44740E-01 9.62420E-01

9.60030E-01 + 9.56310E-01 + 9.58770E-01 + 5.86790E-01+ 8.65980E-01+ 9.40820E-01 +
9.61760E-01

9.57960E-01 9.52040E-01 9.53100E-01 5.68660E-01 8.50480E-01 9.33540E-01 9.60510E-01
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M NSGA-III SPEA/R VaEA dMOPSO SMPSO MaPSO RMaOPSO

W
F
G
6

3
9.07810E-01 9.12380E-01 9.06840E-01 9.15370E-01 9.10770E-01 9.16270E-01 9.16150E-01

9.04990E-01 + 9.04200E-01 + 9.01570E-01+ 9.08540E-01+ 9.07230E-01+ 8.82970E-01 +
9.13290E-01

8.99480E-01 9.00880E-01 8.97230E-01 8.81980E-01 8.97030E-01 8.82230E-01 9.09570E-01

5
9.65910E-01 9.68320E-01 9.62430E-01 6.03800E-01 9.38640E-01 9.36850E-01 9.74700E-01

9.61300E-01 + 9.58200E-01 + 9.56510E-01+ 5.85100E-01+ 9.31730E-01+ 9.36550E-01 +
9.71390E-01

9.54490E-01 9.54280E-01 9.51670E-01 5.55760E-01 9.28400E-01 9.36340E-01 9.69520E-01

8
9.71930E-01 9.76720E-01 9.74290E-01 5.60780E-01 9.45080E-01 9.36130E-01 9.80850E-01

9.65630E-01 + 9.65940E-01 + 9.65950E-01+ 5.44850E-01+ 9.41560E-01+ 9.36070E-01 +
9.77300E-01

9.60550E-01 9.58560E-01 9.59030E-01 5.33000E-01 9.40570E-01 9.36000E-01 9.58550E-01

10
9.76850E-01 9.80160E-01 9.73060E-01 5.79590E-01 9.49290E-01 9.32110E-01 9.83180E-01

9.65770E-01 + 9.67310E-01 + 9.64340E-01+ 5.55450E-01+ 9.44460E-01+ 9.32100E-01 +
9.78080E-01

9.55710E-01 9.56200E-01 9.50880E-01 5.40360E-01 9.42270E-01 9.32090E-01 9.71950E-01

W
F
G
7

3
9.25530E-01 9.24960E-01 9.22930E-01 8.82550E-01 8.83970E-01 9.26440E-01 9.25370E-01

9.25160E-01 − 9.24160E-01 + 9.22650E-01+ 8.75930E-01+ 8.66970E-01+ 9.26070E-01
− 9.24830E-01

9.24530E-01 9.23570E-01 9.21630E-01 8.67330E-01 8.53260E-01 9.25590E-01 9.24550E-01

5
9.87490E-01 9.84000E-01 9.83410E-01 6.85290E-01 8.84020E-01 9.89750E-01 9.85980E-01
9.86590E-01 − 9.83520E-01 + 9.80370E-01+ 6.47060E-01+ 8.75270E-01+ 9.89640E-01

− 9.84320E-01
9.85090E-01 9.81920E-01 9.77780E-01 6.17670E-01 8.67030E-01 9.89450E-01 9.82400E-01

8
9.95210E-01 9.95600E-01 9.95010E-01 6.28080E-01 8.97910E-01 9.99130E-01 9.93540E-01

9.93990E-01 − 9.94890E-01 − 9.94400E-01− 6.13800E-01+ 8.84050E-01+ 9.99050E-01
− 9.90620E-01

9.91930E-01 9.93800E-01 9.93570E-01 6.00910E-01 8.68130E-01 9.98940E-01 9.89140E-01

10
9.96800E-01 9.97810E-01 9.96620E-01 6.51580E-01 9.17520E-01 9.99840E-01 9.95780E-01
9.96000E-01 − 9.97570E-01 − 9.95440E-01− 6.28300E-01+ 8.99570E-01+ 9.99810E-01

− 9.94840E-01
9.94820E-01 9.96790E-01 9.93230E-01 6.10660E-01 8.89000E-01 9.99730E-01 9.93570E-01

W
F
G
8

3
9.07130E-01 9.12060E-01 8.93340E-01 8.35130E-01 8.45640E-01 9.01710E-01 9.05690E-01
9.04450E-01 −

9.09470E-01
− 8.90140E-01+ 8.22450E-01+ 8.29490E-01+ 8.99280E-01 + 9.03170E-01

9.03040E-01 9.05760E-01 8.86740E-01 8.14720E-01 8.13670E-01 8.97750E-01 9.01150E-01

5
9.68530E-01 9.73780E-01 9.53750E-01 6.33600E-01 8.62840E-01 9.70330E-01 9.66030E-01

9.65260E-01 −
9.70780E-01

− 9.45730E-01+ 6.07020E-01+ 8.48690E-01+ 9.69380E-01 − 9.60450E-01
9.60950E-01 9.66910E-01 9.35660E-01 5.94110E-01 8.34860E-01 9.64090E-01 9.52750E-01

8
9.75980E-01 9.89670E-01 9.62950E-01 6.12310E-01 8.77300E-01 9.87860E-01 9.68900E-01

9.67820E-01 −
9.88220E-01

− 9.52950E-01= 5.89980E-01+ 8.48820E-01+ 9.83540E-01 − 9.46650E-01
9.55860E-01 9.85050E-01 9.36220E-01 5.54250E-01 8.29400E-01 9.77240E-01 9.26980E-01

10
9.78740E-01 9.94820E-01 9.67200E-01 6.27390E-01 8.97600E-01 9.92790E-01 9.78060E-01
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9.94030E-01

− 9.56930E-01+ 6.01290E-01+ 8.70360E-01+ 9.91020E-01 − 9.67140E-01
9.64010E-01 9.92960E-01 9.39640E-01 5.81340E-01 8.51410E-01 9.81690E-01 9.33220E-01

W
F
G
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3
8.93710E-01 8.89040E-01 8.93400E-01 8.80610E-01 8.82210E-01 8.92260E-01 8.94030E-01

8.74290E-01 = 8.62340E-01 = 8.73110E-01= 8.68350E-01+ 8.73650E-01= 8.53540E-01 +
8.82850E-01

8.59390E-01 8.59100E-01 8.53690E-01 8.57600E-01 8.45330E-01 8.49270E-01 8.60660E-01

5
9.45610E-01 9.21170E-01 9.35730E-01 6.61650E-01 8.90160E-01 9.39710E-01 9.14570E-01

9.07190E-01 = 9.01670E-01 + 9.01900E-01= 6.23030E-01+ 8.72930E-01+ 8.98630E-01 +
9.09710E-01

9.03020E-01 8.96610E-01 8.97920E-01 6.06940E-01 8.64720E-01 8.93420E-01 9.07220E-01

8
9.03250E-01 9.03290E-01 9.39060E-01 6.38670E-01 8.78890E-01 8.98110E-01 9.34060E-01
8.98530E-01 + 8.91790E-01 + 8.97570E-01= 5.85210E-01+ 8.66720E-01+ 8.91610E-01 +

8.99950E-01

8.85810E-01 8.80880E-01 8.90390E-01 5.43030E-01 8.46450E-01 8.87440E-01 8.95370E-01

10
9.43600E-01 9.22390E-01 9.44250E-01 6.38010E-01 8.94820E-01 8.96880E-01 9.14540E-01

9.01710E-01
= 8.94760E-01 = 8.98490E-01= 5.97190E-01+ 8.82230E-01+ 8.91780E-01 + 9.00330E-01

8.91960E-01 8.87560E-01 8.91280E-01 5.46390E-01 8.64140E-01 8.85640E-01 8.95410E-01
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