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Abstract Multi-objective evolutionary algorithms (MOEAs) have been the
choice for generating a set of Pareto-optimal (PO) solutions in one run.
However, these algorithms sometimes suffer slow and poor convergence to-
ward the PO front. One of the remedies to improve their convergence is
to couple global search of MOEAs with local search. However, such cou-
pling brings other implementation challenges, such as what, when, and how
many solutions can be chosen for local search with MOEAs? In this paper,
these challenges are addressed by developing a local search module that can
choose solutions for local search using a set of reference lines. The heuristic
strategies are also developed with the module for determining the frequency
of executing local search and for terminating MOEA adaptively using a sta-
tistical performance indicator. The proposed algorithm, which is referred to
as RM2OEA, is tested on 2-objective ZDT and 3-objective DTLZ test prob-
lems. Results demonstrate faster and improved convergence of RM2OEA
over a benchmark MOEA from the literature.

Keywords Multi-Objective Optimization · Hybrid Evolutionary Algo-
rithm · Memetic Evolutionary Algorithm · Reference Lines · Adaptive
Termination Condition

1 Introduction

A multi-objective optimization problem (MOOP) can be written as

Minimize FMOOP(x) = (f1(x), f2(x), . . . , fM (x))T ,
subject to x ∈ S ⊂ Rn,
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where FMOOP(x) is the vector of conflicting objectives (fj(x),∀j = 1, . . . ,M),
x is the vector of decision variables, and S is the feasible search space. Such
MOOP can be solved efficiently by using multi-objective evolutionary al-
gorithms (MOEAs) because these algorithms can generate a set of Pareto-
optimal (PO) solutions in one run. Therefore, MOEAs have been successfully
used for theoretical [8,29] and engineering optimization problems [1,19,23,
24].

Despite of showing success in solving MOOP, MOEAs still suffer slow and
poor convergence for some problems [12,26]. It generally occurs when many
solutions of MOEA become non-dominated. In this case, the environmental
selection of MOEA cannot differentiate such solutions, thereby reducing the
selection pressure [18]. Moreover, the variation operators such as crossover
and mutation operators are also becoming ineffective. One of the remedies
to address this challenge is to develop the hybrid or memetic MOEAs [12,
15,25]. These memetic algorithms are developed by coupling global search
of MOEA with the local search techniques by converting a MOOP into a
single-objective optimization problem (SOOP).

In the literature, many attempts have been made to implement local
search with global search of MOEAs. First of all, a MOOP is converted into
a SOOP using the weighted-sum method [10,11], the ǫ−constraint method
[15,25], or the scalarizing functions [7,26]. After this conversion, a set of
solutions for performing local search is chosen. In this case, either an appro-
priate solution [26] or a set of solutions is selected. The set either consists
of the current non-dominated solutions [13,17], or offspring solutions after
crossover and mutation [2]. The selection of the appropriate non-dominated
solutions is also made heuristic when any solution can be selected with some
probability [11,12]. Moreover, the local search is executed at the beginning
on the initial population, during the generations, after finishing the fixed
number of generations, or combination of two or more such strategies [11,
12]. These memetic algorithms mostly get terminated after a fixed number
of generations [10] or function evaluations [25,15]. A little focus has been
made to terminate these algorithms adaptively such as in [6,7].

From the literature, it is found that when local search is coupled with
MOEAs, a set of implementation challenges emerges that need to be ad-
dressed for effective working of memetic MOEAs [11,26]. The first challenge
is the criterion for choosing a solution or a set of solutions for local search.
Since MOEAs work on a population, the effectiveness of memetic MOEAs
depends on this challenge. The second challenge is the number of solutions
for local search since limited local searches on few solutions may not be
effective or too much local searches on many solutions can become compu-
tationally expensive. The third challenge is when to execute local search?
Since MOEAs are generation or iteration-based algorithms, it is important to
know the right time for executing local search. Otherwise, many local search
computations can be wasted without improving the convergence. The fourth
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challenge is the termination condition for memetic MOEAs. A fixed number
of generations or function evaluations may not be needed since a memetic
MOEA might have converged earlier or more number of generations may
be needed for better convergence. Addressing all these challenges ensures
a balance between local and global searches for better convergence of any
memetic algorithm.

This papers focuses on the above challenges by developing a local search
module that can be coupled with the existing MOEAs. The following are
the contributions of the proposed local search module.

– Selection of solutions for local search using a set of reference lines: In
this procedure, a single solution closest to each reference line is chosen
for local search. The number of local search solutions is calculated using
Das and Denis method [4].

– A heuristic strategy for the frequency of executing local search using
the statistical performance indicator called modified inverse generalized
distance (IGD+) indicator.

– A heuristic strategy for an adaptive termination criterion for the pro-
posed MOEA using IGD+ indicator.

– Comparative analysis of the proposed MOEA over a set of 2- and 3-
objective test problems with the existing MOEA.

The remaining paper is organized in five sections. Section 2 presents
the relevant literature survey of hybrid or memetic MOEAs and their strat-
egy for balancing local and global searches. Section 3 presents the proposed
reference-lines-steered memetic MOEA with implementation details of the
local search module. The proposed MOEA is tested and its results are pre-
sented in Section 4. The paper is concluded in Section 5 with note on the
future work.

2 Related Literature Survey

Multi-objective genetic local search algorithm (MOGLS) [10] is one of the
earliest implementations for solving a combinatorial optimization problem.
In MOGLS, the weighted-sum method is used to convert a MOOP into
a SOOP. All new solutions after crossover and mutation are chosen, and
the local search is applied to them after assigning weights. MOGLS is then
modified to perform local search on a set of solutions by using tournament
selection operator [12]. The solutions for local search are selected using a
probability for reducing the number of computations. The algorithm is fur-
ther extended to S-MOGLS [11] in which the Pareto-ranking for MOEA and
the weighted-sum method for local search are used. The selection of solutions
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for local search is done with a probability using binary tournament selection
operator. Another variant called cellular MOGLS is also developed [17] in
which local search is applied to all non-dominated solutions in every gen-
eration. In another attempt, local search is coupled with the recombination
operators [13] in which all offspring solutions are chosen for local search.
A Pareto-local search (PLS) is developed [14] for combinatorial MOOPs,
which is coupled with MOEA/D [28]. Three population sets are stored, and
PLS is applied to one set so that other sets can be updated. During local
search, the solutions are perturbed, and a SOOP is formulated using the
weight-sum method.

Apart from the weighted-sum method, the ǫ−constraint method is also
used for converting a MOOP into a SOOP [15,25]. The non-dominated so-
lutions in every generation are selected for performing local search using
the sequential quadratic programming (SQP) method. The local search so-
lutions are mixed with the current solutions, and the best solutions are cho-
sen. The hybrid MOEAs get terminated using a fixed number of function
evaluations. Local search is also implemented by determining all promis-
ing non-dominated directions and coupled with MOEA [2]. In another at-
tempt, a local search strategy called hill-climbing sidestep is proposed [16]
for MOEAs. The direction for local search is found using the geometry of
directional cones. The sidestep is performed when the new solution is closer
to the (local) PO solution. The local search is executed on every solution of
the offspring population. A hybrid framework for MOEAs is proposed [26] in
which a local search solution in every generation is selected from the clusters
that are made after projecting the solutions on a hyperplane. A scalarizing
function is used for performing local search using the SQP method. In an-
other attempt, local search via perturbation of variables of a solution with
respect to its neighborhood is coupled with MOEA [3]. The Gaussian mu-
tation operator is used for perturbing local search solutions. The farthest-
candidate solution method is used to include better local search solution
in a population. A memetic version of MOEA/D [28] is also developed by
coupling a heuristic sequential quadratic approximation method. For each
sub-problem, local search using Tchebycheff function is executed in every
generation.

Nadir point estimation is another area in which local search is used [6,7].
Since the Nadir point needs to be estimated, only the worst points in each
objective from the current population or the extreme solutions of the current
non-dominated solutions are found, and local search is executed using the
augmented achievement scalarizing function. The SOOP is solved using the
SQP method.

The local search has also been used with MOEAs for solving engineering
optimization problems. For example, the multi-objective elastic structural
topology optimization problem is solved using hybrid or customized MOEA
[21–24]. The current non-dominated solutions are clustered, and the best
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representative solution from each cluster is chosen for local search in every
generation. A problem-specific local search is executed, and the solutions
after local search replace its parent solution in the current population. An-
other example is the optimal soil cutting by bulldozer and its blade [1] in
which local search is executed on the obtained non-dominated solutions of
MOEA after termination.

From the above literature survey, it can be seen that the studies focused
on choosing an appropriate set of local search solutions. The number of local
search solutions was decided either heuristically or deterministically. The
frequency of executing local search was determined either in every generation
or using some functions. The termination of hybrid MOEAs was mostly on a
number of generations or functional evaluations. The challenges mentioned
in Section 1 have been handled uniquely by these studies in order to make
a balance between local and global searches. In the following section, the
proposed algorithm is described, and details are given for addressing the
challenges of implementing local search with MOEA.

3 Proposed Memetic Multi-Objective Evolutionary Algorithm

The proposed memetic MOEA is developed using a commonly used frame-
work of generational MOEAs, as presented in Algo. 1. It can be seen that a
set of input parameters needs to be set at the beginning in Step 1. There-
after, a random population P0 of size N is generated in Step 2. The objective
functions and constraints are evaluated in Step 3, and the fitness is assigned
to each solution. In the standard loop of the generations, a mating pool
(Ptmp) is created in Step 5 by using a selection operator to select good and
above average solutions. The solutions in the mating are then used for cre-
ating an offspring population (Qt) in Step 6 using variation operators, such
as crossover and mutation. Both the parent and offspring populations are
combined in Step 7. The purpose of combining and evaluating the popula-
tions is to select the N best solutions, which is done in Step 8. In this step,
the fitness is given to each solution, and the best N solutions are selected for
the next generation population (Pt+1). At last, the generation counter is in-
creased by one. The loop over generation gets terminated when the counter
reaches the maximum number of generations (Tmax).

3.1 The Local Search Module

The local search module is proposed to address challenges mentioned in
Section 1 so that a balance can be made between local and global searches
for better convergence. In order to implement local search, a MOOP needs
to be converted into a SOOP. The details are given in the following section.
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Algorithm 1 Commonly used framework of MOEAs.
1: Set t = 0, Tmax: maximum number of generations, N : population size and

other parameters such as probabilities for variation operators, etc.
2: Generate initial population (Pt) of size N .
3: Evaluate and assign fitness to Pt.
4: while t ≤ Tmax do

5: Ptmp : Selection of solutions from Pt for creating a mating pool.
6: Qt : Creation of offspring population from Ptmp using variation operators

such as crossover and mutation.
7: Evaluate Qt and assign fitness to the combined population (Rt = Pt ∪Qt).
8: Pt+1 : Environmental selection for selecting the N best solutions from Rt.
9: t++;

10: end while

3.1.1 Formulation for Local Search

The ǫ−constraint method [20] is used for converting a MOOP to a SOOP,
which is given as

Minimize fM (x),
subject to g1(x) = ǫ1 − f1(x) ≥ 0,

g2(x) = ǫ2 − f2(x) ≥ 0,
...
gM−1(x) = ǫM−1 − fM−1(x) ≥ 0,
x ∈ S ⊂ Rn.

(2)

Here, the parameter, ǫj (∀j ∈ {1, . . . ,M − 1}), is the upper bound on their
respective objective value, fj. It can be seen that an unconstrained MOOP
is converted into a constrained SOOP. In order to solve equation (2), the
method of multiplier (MOM) [20] is used that converts the constraint SOOP
into an unconstrained optimization problem. Using MOM, the resulting op-
timization problem is given as

Minimize P (x, σt, τ t) = fM(x) +R×
J
∑

j=1

{

(〈

gj(x) + σ
(t)
j

〉)2
−
(

σ
(t)
j

)2
}

+R×
K
∑

k=1

{

(

hk(x) + τ
(t)
k

)2
−
(

τ
(t)
k

)2
}

.

(3)
Here, P (x, σt, τ t) is the penalty function, R is the penalty parameter, gj ’s
(∀j = 1, . . . ,M − 1) are inequality constraints, hk’s (∀k = 1, . . . ,K) are

equality constraints, and t represents iteration counter. The σ
(t)
j and τ

(t)
k

penalty parameters are calculated as

σ
(t)
j =

〈

gj(x) + σ
(t−1)
j

〉

,

τ
(t)
k = hk(x) + τ

(t−1)
k ,

(4)
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where 〈a〉 is the bracket operator, which is equal to a when a < 0. Otherwise,

it is equal to zero. The initial values of σ
(0)
j and τ

(0)
k are kept zero for all

constraints.
The unconstrained problem given in equation (3) is solved using the

steepest descent method [20] in which a unidirectional search is performed
along the unit vector of the steepest descent direction. The gradient of the
penalty function is calculated using the central difference method. The MOM
method gets terminated after (TMOM) iterations or the difference between
the new solution and the current solution is less than or equal to a user-
defined parameter (ǫMOM). In each sequence of MOM, the steepest descent
method gets terminated after (TSDM ) iterations.

3.1.2 Number and Choice for Local Search Solutions

The number and choice of solutions for local search are determined using
Das and Dennis method [4]. The number of solutions for local search (NLS)
is found by generating the structured reference points on a unit hyperplane,
which is given as

NLS =

(

p+M − 1

M − 1

)

, (5)

where M is the number of objectives, and p is the number of equal divisions
on each objective axis.

The same reference points are used for choosing local search solutions
through the reference lines. These lines are drawn from the origin and the
reference points as shown in Fig. 1.

F
1 F2

F3

Hyperplane

Reference Point

Fig. 1 A set of 15 reference points is generated using p = 4 for M = 3-objective
case. The reference lines are drawn from the origin and the reference points.

In order to select solutions for local search from the current population,
all solutions are first normalized and then, clustered. First, each objective
value fj(x) of solution (x) is translated to f̂j(x) = fj(x)−z∗j , where z

∗
j is the

j−th component of the ideal vector (z∗) found from the current population.
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This translation shifts all solutions in the first quadrant of the objective
space. Thereafter, the extreme points are found by minimizing the Achieve-
ment Scalarizing Function (ASF(x, wj)) given in equation (6).

Minimize

{

ASF(x, wj) =
M

max
k=1

(

f̂k(x)

wj,k

)}

, (6)

where wj,k(∀k ∈ {1, . . . ,M}) is a search vector for j−th objective. It is
defined as wj,k = 1 for j = k, or wj,k = 10−6, otherwise. The obtained
extreme points are then used to construct a plane to find its intercept on
each objective axis, that is, ze. Using the ideal point and the intercepts, all
solutions of the current population are normalized using equation (7).

F̂j(x) =
f̂j(x)

zej (x)
, (7)

where F̂j(x) is the j−th normalized objective value of solution (x).
After normalization, each solution is then clustered with a reference line

that is closest to it. It is done by finding the Euclidean distance (d1(x,w))
between the solution (x) and each reference line (w), which is given as

d1(x,w) = ||(x−wTxw/||w||2)||. (8)

The solution (say s), which has the least d1 value to a reference line (say r),
is included into the cluster of the reference line (r). Similarly, every solution
is clustered with one of the reference lines. If any cluster for a reference
line is empty, the nearest solution having the least PBI fitness [28] from the
clusters of neighboring lines is selected to fill this cluster. The PBI fitness is
calculated as

FPBI(x) = d2 + θd1. (9)

The distance d2 for a solution (x) along a reference line (w) is calculated as

d2(x,w) =
xTw

||w||2 . (10)

Once the clusters are made, a solution having the least PBI distance from
each cluster is selected for local search. In this way, the number of chosen
set of local search solutions is the same as the number of the reference lines.
Since local search is steered by a set of the reference lines, the proposed
memetic MOEA is referred to as Reference-Lines-Steered Memetic MOEA
(RM2OEA).

3.1.3 Frequency of Executing Local Search

Apart from the number and choice of local search solutions, the frequency
of executing local search is an important challenge to address for making a
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balance between global and local searches. This challenge can be addressed
by using the statistical indicator. There exist many indicators such as R2,
hypervolume, generalized distance, inverse generalized distance, etc. Among
them, hypervolume indicator is used in various studies, which does not need
any reference PO solutions. However, it is computationally expensive as
compared to other indicators. In this paper, a modified inverse generalized
distance (IGD+) indicator [9] is used because its performance is found similar
to hypervolume indicator but with less computational requirement. It is
calculated as

IGD+ =
1

|P ∗|

|P ∗|
∑

j=1

min d+(xi,aj), (11)

where P is the set of the obtained non-dominated solutions from MOEA
and xi is one of its solutions, P ∗ is the set of the uniformly distributed PO
solutions and aj is one of the PO solutions, |P ∗| is the cardinality of P ∗, and
d+(xi,aj) is the Euclidean distance calculated in the normalized objective
space. It is calculated as

d+(xi,aj) =

√

√

√

√

M
∑

k=1

(max{x(k)
i − a

(k)
j , 0})2, (12)

where x
(k)
i and a

(k)
j represent k−th objective value of solutions xi ∈ P

and aj ∈ P ∗. A smaller value of IGD+ represents better convergence and
distribution of P with respect to P ∗.

Using IGD+, the local search is executed after satisfying the condition
given in equation (13).

IGD+
max − IGD+

min − 2× IGD+
avg < 0.05. (13)

Here, IGD+
max, IGD+

min, and IGD+
avg represent maximum, minimum, and

average values of IGD+ from the past 20 generations of RM2OEA. From
simulations, it is found that once this condition gets satisfied in any gener-
ation, it remains the same for subsequent generations. In order to control
many local searches, the next local search is allowed after (0.1 × Tmax) of
generations.

3.2 Selection and Variation Operators

In Step 5 of Algo. 1, a random selection operator is used, which picks two
solutions randomly for performing crossover. Once a pair of solutions is con-
sidered, they are not selected again and other pair of solutions is picked. In
this way, a random selection is used for all solutions of the parent population
Pt.
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Simulated binary crossover (SBX) and polynomial mutation operators
[5] are used as variation operators. SBX is performed with a probability
of pc, which is kept high. Mutation is performed with a probability of pm,
which is kept low.

3.3 Environmental Selection

Environmental selection of θ−DEA [27] is adapted because it is found to be
efficient for a large class of MOOPs. Also, it uses reference lines for selecting
solutions from the combined population. The θ−dominance principle is used
for sorting the solutions. First, all solutions of the combined population are
divided into clusters as defined in Section 3.1.2. Thereafter, the solutions
from the same cluster are compared using the PBI distance given in equation
(9). The solutions of the same cluster are then sorted using the θ−dominance
principle. In order to select solutions for the next generation population
(Pt+1), the best rank solution from each cluster is copied.

3.4 Adaptive Termination of RM2OEA

The proposed RM2OEA gets terminated using IGD+ indicator defined in
Section 3.1.3. The IGD+ values are stored from the past few generations
and an adaptive termination condition is developed, which is given as

(

IGD+
max < ǫmax

)

&
(

IGD+
max − IGD+

min

)

< ǫ. (14)

Here, IGD+
max and IGD+

min are the maximum and minimum values of IGD+

indicator in the past 20 generations. The terms ǫ and ǫmax are used for ter-
minating RM2OEA. The values of these terms are generated using fluctua-
tions in IGD+ values. It means that an increase in IGD+ value for successive
generations considers a fluctuation. After experimenting with different sets
of values, the following values are used, which are given in equation (15).

ǫmax =











5× 10−4 if number of fluctuations = 0

1× 10−3 0 < number of fluctuations ≤ 7

5× 10−3 number of fluctuations > 7

ǫ =











5× 10−5 if number of fluctuations = 0

1× 10−4 0 < number of fluctuations ≤ 7

5× 10−4 number of fluctuations > 7

(15)

3.5 Scope of Local Searches

The local search module can be applied at various steps of RM2OEA pre-
sented in Algo. 1. Three variants of RM2OEA are presented in this paper.
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For example, when local search module is executed before Step 5 (that is,
before selection), it is referred to as RM2OEA-OP. In this implementation,
the local search solutions replace their corresponding parent solutions from
the population. The second variant is RM2OEA-OF in which local search
module is executed before Step 7 (that is, after Qt is generated). In this im-
plementation, the local search solutions replace their corresponding offspring
solutions from the population. The third variant is RM2OEA-ENV in which
local search module is executed before Step 9 (that is, after environmental
selection). In this implementation, the local search solutions replace their
corresponding solutions from the next generation population (Pt+1).

4 Results and Discussion

Three variants of RM2OEA is now tested for its performance assessment.
The details are as follows.

4.1 Test Problems

The performance of three variants is tested on 2-objective ZDT1, ZDT2,
ZDT3, and ZDT6 problems [29]. ZDT1 is a 30−variable problem, which
has the convex PO front. ZDT2 is also a 30−variable problem but the PO
front is concave. ZDT3 is also a 30−variable problem, which has several
disconnected PO fronts. ZDT6 is a 10−variable problem with a concave PO
front but the density of solutions along with the PO front changes.

RM2OEA is also tested on 3-objective problems, that is, DTLZ1, DTLZ2,
DTLZ3, and DTLZ4 problems [8]. DTLZ1 is a multi-modal MOOP, which
has the linear PO front. DTLZ2 is a simple MOOP, which has the concave
PO front. DTLZ3 is a multi-modal MOOP, which has the concave PO front.
DTLZ4 is a biased MOOP, which has the concave PO front.

4.2 Algorithm for Comparison

It can be observed from the discussion in Section 3.3 that the environmental
selection of θ−DEA is used. Therefore, three variants of RM2OEA are tested
with θ−DEA. Moreover, θ−DEA has already shown its out-performance
over other benchmark MOEAs [27], the comparison is thus made with this
algorithm only for simplicity and clarity. It is important to note that the
variants of RM2OEA are developed using various local search implemen-
tations in the literature. RM2OEA-OF is motivated by MOGLS and its
variants [10,11] in which local search is implemented on the offspring pop-
ulation. MOGLS implemented local search on newly created solutions after
crossover and mutation. The weighted-sum method was used for converting



12 Riddhiman Saikia, Deepak Sharma

the multi-objective problem into the single-objective optimization problem.
However, RM2OEA-OF chooses a few solutions as described earlier from the
offspring population, and local search is implemented using the ǫ−constraint
method.

RM2OEA-ENV is motivated by the studies [15,25] in which local search
is applied to the solutions after the environmental selection. In these studies,
all non-dominated solutions after environmental selection were selected for
performing local search using the ǫ−constraint method. The solutions af-
ter local search were then combined with the current population. However,
RM2OEA-ENV chooses few non-dominated solutions using the approach
described earlier. The solutions after local search then replace their corre-
sponding solutions in the current population.

It is noted that local search is executed after every (0.1 × Tmax) gener-
ations for RM2OEA-OP, RM2OEA-OF, and RM2OEA-ENV. The adaptive
version of any variant signifies execution of local search as per the details
given Section 3.1.3.

4.3 Performance Indicator

The statistical analysis of RM2OEA is performed using IGD+ indicator,
which is described in Section 3.1.3. A smaller value of this indicator with
respect to the PO front (P ∗) signifies better convergence and good diversity
among the obtained non-dominated solutions (P ).

It is important to note that a set of the PO solutions is needed to calcu-
late IGD+ value. Since the above problems are mathematical MOOPs, their
PO fronts are known. For example, the PO front of ZDT1 is defined by
f2 = 1−√

f1 and f1 ∈ [0, 1]. ZDT2 has the PO front defined by f2 = 1− f2
1

and f1 ∈ [0, 1]. ZDT3 has disconnected PO fronts, which are defined by the
ranges in f1 such as f1 = [0, 0.0830015349] ∪ [0.1822287280, 0.2577623634] ∪
[0.4093136748, 0.4538821041] ∪ [0.61839667944, 0.6525117038] ∪ [0.8233317983, 0.8518328654],
and f2 = 1−

√
f1 − f1 sin(10πf1). ZDT6 has the same PO front as defined

for ZDT2, however the range of f1 is defined as f1 ∈ [0.2807753191, 1]. For
DTLZ1 problem, the PO front is defined by a linear plane in the first quad-
rant and having the intercept on each objective axis at 0.5. It is defined
by
∑M

i=1 fi = 0.5,∀fi ≥ 0. DTLZ2 to DTLZ4 problems have the PO front

defined by
∑M

i=1 f
2
i = 1,∀fi ≥ 0. It is a spherical surface defined in the first

quadrant.

Since a set of the reference points is generated as described in Section
3.1.2, the reference lines drawn from the origin and the reference points are
used to find their points of the intersection with the given PO front. These
points of intersection become the PO solutions to a given problem. It can be
observed that when a set of non-dominated solutions generated by MOEA
is evolved closer to these generated PO solutions, a smaller IGD+ value will
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Table 1 Different input parameters for running RM2OEA and θ−DEA are pre-
sented. Here,N is the population size, Tmax is the maximum number of generations,
ηc is a parameter for SBX crossover operator, ηm is a parameter for polynomial
mutation operator, pc is the probability of crossover, and pm is the probability of
mutation.

MOOPs N Tmax ηc ηm pc pm
ZDT1 100 150 15 20 0.9 0.033
ZDT2 100 200 15 20 0.9 0.033
ZDT3 100 1000 15 20 0.9 0.033
ZDT6 100 1000 15 20 0.9 1
DTLZ1 92 400 30 20 1 0.1428571
DTLZ2 92 250 30 20 1 0.083
DTLZ3 92 1000 30 20 1 0.083
DTLZ4 92 600 30 20 1 0.083

be observed. It is noted that MOEAs are run for 30 times with different
initial populations for performance assessment.

4.4 Experimental Settings

In order to run RM2OEA and θ−DEA, some input parameters need to
be fixed. For example, Table 1 presents different input parameters for run-
ning the MOEAs. It is noted that RM2OEA gets terminated either by the
adaptive termination condition discussed in Section 3.4 or by the maximum
number of allowed generations (Tmax), whichever is satisfied early. The in-
put parameters for running the local search using MOM are given in Table
2. The MOM method gets terminated either by TMOM or ǫMOM, whichever
is satisfied early. The only parameters left for θ−DEA are θ = 5 and the
neighborhood size is TNB = 20. It uses PBI function for calculating the
fitness. It is also noted that all variants of RM2OEA and θ−DEA are run
with (p = N − 1) equal divisions for 2-objective MOOP and p = 12 equal
divisions for 3-objective MOOP for generating the reference points. In the
case of 3-objective problems, the number of reference points becomes 91.

Table 2 The details of input parameters for running local search using the MOM
method with the steepest descent method. The maximum number of iterations for
local search using the MOM method is denoted by TMOM, and in each iteration, the
number of sequences for running the steepest descent method is denoted by KSDM.

Parameter Value
Maximum iterations (TMOM) 5
Maximum sequences (KSDM) 10

Penalty (R) 100
Error for termination (ǫMOM) 0.001
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4.5 Comparison based on IGD+ Values

Tables 3 to 6 presents the performance assessment comparison of three vari-
ants of RM2OEA with θ−DEA on 2-objective MOOPs. The IGD+ values
are shown for different values of local search solutions (NLS). Meaning, a
smaller value of NLS suggests less number of local search solutions, and
vice-versa. Table 3 shows that RM2OEA-OP and RM2OEA-OF variants are
found to be better than θ−DEA for any number of NLS for ZDT1 problem.
Except for a few IGD+ values, RM2OEA-ENV variant is also found to be
better. An interesting observation can be seen at the median IGD+ values
of all variants RM2OEA that the local search module shows similar perfor-
mance irrespective of different NLS values. From Table 3, it can also be seen
that RM2OEA-OF is found to be the best among other variants. Therefore,
RM2OEA-OF is made adaptive using the condition described in Section
3.1.3. The last column of the same table suggests that adaptive RM2OEA-
OF shows better performance than θ−DEA but unable to generate the same
quality of solutions as RM2OEA-OF.

For ZDT2 problem, Table 4 shows that RM2OEA-OP and RM2OEA-
OF variants are found to be better than θ−DEA for any number of NLS.
RM2OEA-ENV is not found competitive as other variants. Among them,
RM2OEA-OF is found to be the best. However, its adaptive version in the
last column of the same table is not as good as RM2OEA-OF, but better
than θ−DEA. From the table, it can be seen that NLS does not show much
impact on the performance of three variants of RM2OEA.

For ZDT3 problem, Table 5 presents a comparison among MOEAs. Since
ZDT3 has disconnected PO fronts, not a single variant is found to be out-
performing θ−DEA. With NLS = 72, RM2OEA-OF is found to be better
than θ−DEA for all three statistical values of IGD+. The adaptive version
of RM2OEA-OF seems to be not helping RM2OEA. It can also be seen from
the table that RM2OEA-OP is unable to generate better IGD+ values than
θ−DEA.

For ZDT6 problem, Table 6 shows a better performance of RM2OEA-OP,
RM2OEA-OF and adaptive RM2OEA-OF variants over θ−DEA. Except for
NLS = 36, RM2OEA-ENV is unable to perform better than θ−DEA. Among
all the variants, RM2OEA-OF is found to better than others.

Tables 7 to 10 presents the performance comparison of all variants of
RM2OEA with θ−DEA for 3-objective DTLZ problems. For DTLZ1 prob-
lem, RM2OEA-ENV is found to be the best among all variants. Except for
the worst IGD+ values for all NLS, RM

2OEA-OP, RM2OEA-OF and its
adaptive version are found to be better than θ−DEA. Regarding NLS, the
performance of all variants of RM2OEA seems to be similar.

For DTLZ2 problem, Table 8 shows that RM2OEA-OF and its adaptive
version are found to be better than θ−DEA. For this problem, adaptive
RM2OEA-OF is found to be the best. RM2OEA-OP and RM2OEA-ENV



RM2OEA 15

are unable to generate good IGD+ values than θ−DEA. The performance
of RM2OEA variants seems to be quite similar for different NLS values.

For DTLZ3 problem, Table 9 shows better performance of all variants
over θ−DEA. Among the variants, RM2OEA-OF is found to be the best.
For this example as well, different NLS values show the similar performance
of variants of RM2OEA.

For DTLZ4 problem, Table 10 show that only RM2OEA-OF shows the
best performance for different values of NLS over θ−DEA. RM2OEA-ENV
is better than θ−DEA only for NLS = 91. Other variants are unable to
perform better than θ−DEA. Since this problem is biased, this could be a
probable reason for not so good performance of other variants.

From Tables 3 to 10, it can be seen that RM2OEA-OF is the best variant
and shows better IGD+ values against θ−DEA in most for the problems.
The adaptive version of RM2OEA-OF does not seem to be as effective as
RM2OEA-OF, except for DTLZ2. Moreover, it can also be observed that
NLS seems to have not much impact on the performance of any variants of
RM2OEA. It can be due to the selection of good solutions for local search
that helps global search of MOEA for better convergence.

4.6 Obtained PO Solutions

From Section 4.5, it can be seen that RM2OEA-OF is found to be the best
among three variants. In this section, the solutions corresponding to the
median value of IGD+ for both θ−DEA and RM2OEA-OF are shown. Since
the performance of all variants is similar for different values of NLS, the
obtained PO solutions for the least NLS are shown, that are, NLS = 20 for
2-objective problems and NLS = 15 for 3-objective problems.

Fig. 2 shows the obtained PO solutions of ZDT1 problem. The PO front
of this problem is non-convex. It can be seen that θ−DEA is unable to reach
the corner along the f2−axis as compared to RM2OEA-OF. This observation
is similar to the outcome of IGD+ comparison. Fig. 3 shows the obtained
PO solutions for ZDT2 problem. The PO front of this problem is convex.
For this problem as well, RM2OEA-OF generates solutions throughout the
range of both objectives, which is not visible with θ−DEA. Fig. 4 shows the
obtained PO solutions for ZDT3 problem. This problem has disconnected
PO front. The figures shows a better distribution of solutions of RM2OEA-
OF over θ−DEA. Fig. 5 shows distribution of solutions of both MOEAs
for ZDT6 problem. It is noted that this problem has convex PO front. It
can be seen from the figure that both MOEAs show similar distribution of
solutions.

Fig. 6 shows obtained PO solution for DTLZ1 problem which has lin-
ear PO front. This problem is difficult to solve because it has many local
PO fronts before reaching to the true PO front. It can be seen from the
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figure that both MOEAs show similar distribution of solutions for DTLZ1
problems. It can be observed that RM2OEA-OF shows a better performance
based on IGD+ values, however, the difference among these values is small.
Fig. 7 shows the obtained PO solutions of both MOEAs for convex DTLZ2
problem. For this problem as well, the distribution of solutions is found
similar for both MOEAs. Fig. 8 shows the obtained PO solutions for convex
DTLZ3 problem. However, this problem is difficult to solve since there exists
many local PO fronts. The distribution of solutions is again found similar
for both MOEAs. Fig. 9 shows the obtained PO solutions for convex DTLZ4
problem. The figure shows similar distribution of solutions of RM2OEA-OF
and θ−DEA.

4.7 Convergence Details

From Sections 4.5 and 4.6, it can be observed that RM2OEA was effective
and generated better PO solutions and IGD+ values. In this section, the
convergence of RM2OEA-OF is compared with θ−DEA. Fig. 10 shows the
convergence plots for ZDT problems. For ZDT1 problem, RM2OEA-OF with
different NLS values shows quicker convergence than θ−DEA. In fact, the
convergence plots of RM2OEA-OF get flatten at around 60 generations and
are converged after 100 generations as compared to the fixed number of gen-
erations, that is 150, for θ−DEA. It seems that RM2OEA-OF with NLS = 80
has the quickest convergence. For ZDT2 problem, RM2OEA-OF with differ-
ent NLS values again shows quicker convergence. The quickest convergence
is observed with NLS = 80 local search solutions, which has converged in
86 generations as compared to the fixed number of generations of θ−DEA,
that is, 200. For ZDT3 problem again, a quicker convergence of RM2OEA-
OF with different NLS values can be seen, which has converged in less than
200 generations against the maximum number of generations allotted, that
is, 1000. For ZDT6 problem, RM2OEA-OF has converged in less than 400
generations. A sharp improvement can be seen after 220 generations. For
the above 2-objective ZDT problems, RM2OEA-OF with NLS = 80 local
search solutions is found to be the best for the quickest convergence.

Fig. 11 shows the convergence plots for 3-objective DTLZ problems.
For DTLZ1 problem, local search seems to be effective after 150 genera-
tions. Therefore, RM2OEA-OF with NLS = 36, 91 values has converged in
less than 350 generations as compared to the fixed generations for θ−DEA,
that is, 400. For DTLZ2 problem, RM2OEA-OF and θ−DEA show similar
convergence. For DTLZ3 problem, RM2OEA-OF with different NLS values
shows quicker convergence than θ−DEA. The quickest convergence is ob-
served with NLS = 91, which has converged in 658 generations. For DTLZ4
problem, RM2OEA-OF and θ−DEA show a similar convergence. However,
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RM2OEA-OF gets terminated in less than 370 generations because of the
adaptive termination condition described in Section 3.4.

Table 11 presents generations required, functional evaluations, and com-
putational time of RM2OEA and θ−DEA for the convergence. For ZDT1
problem, hybridizing RM2OEA-OF with the given set of local search so-
lutions (NLS) has reduced the number of generations. RM2OEA-OF with
NLS = 80 requires the least number of generations that saves more than
50% against θ−DEA. However, since several local searches are involved
with RM2OEA-OF, it requires more number of function evaluations and
computational time than θ−DEA. For ZDT2 problem, RM2OEA-OF with
NLS = 80 requires the least number of generations that saves around 57%
of generations than θ−DEA. Although the number of function evaluations
required by RM2OEA-OF is more, computational time required by it is rel-
atively less than θ−DEA. For ZDT3 problem, RM2OEA-OF with different
NLS values requires quite fewer generations than θ−DEA that saves the com-
putational time. However, more number of function evaluations is needed
by RM2OEA-OF. For ZDT6 problem, RM2OEA-OF is needed quite a less
number of generations. Therefore, RM2OEA-OF needs fewer function evalu-
ations for convergence, and computational time is also reduced. For DTLZ1
problem, almost a saving of 50 generations can be seen for RM2OEA-OF
with NLS = 36, 91 values against θ−DEA. The number of function evalu-
ations and computation time is more than θ−DEA. For DTLZ2 problem,
RM2OEA-OF and θ−DEA need all allotted generations. The same obser-
vation can be seen in Fig. 10 in which both MOEAs have a similar trend.
In this case, RM2OEA-OF needs more number of function evaluations and
computational time than θ−DEA. For DTLZ3 problem, except for NLS = 51
case, RM2OEA-OF requires less number of generations than θ−DEA that
saves its computational time. However, the number of function evaluations
of RM2OEA-OF is more than θ−DEA. For DTLZ4 problem, a good number
of generations is saved by RM2OEA-OF against θ−DEA that reduces com-
putational time. However, RM2OEA-OF needs more function evaluations
than θ−DEA.

From the above discussion, it can be seen that a larger number of local
search solutions always helps RM2OEA-OF in quicker convergence in most
of the problems. Since the number is large, it requires many function eval-
uations. However, fewer number of local search solutions is equally good in
helping RM2OEA-OF for better convergence, which further reduces func-
tional evaluations and computational time. Although a clear and distinct
trend cannot be seen between the convergence and NLS, this study brings
out the fact that fewer number of local search solutions can be useful for
better and quicker convergence unless a good and effective set of solutions
is selected for local search.
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5 Conclusion

The local search module has been proposed, which was steered by the ref-
erence lines. It was coupled with a commonly used MOEA framework, and
three variants of RM2OEA were proposed. After solving 2-objective ZDT
problems and 3-objective DTLZ problems, it was found that the perfor-
mance of RM2OEA-OF variant generated the best values of IGD+ indica-
tor for most of the problems. Since their IGD+ values were quite close for
RM2OEA-OF and θ−DEA, the obtained PO solutions were qualitatively
found similar. However, the convergence plots suggested that RM2OEA-
OF required fewer generations than θ−DEA. Since the local search module
involved extra computations for the MOM method, the number of func-
tion evaluations and computation time were relatively more for RM2OEA-
OF than θ−DEA. In some problems, however, RM2OEA-OF outperformed
θ−DEA in terms of a number of generations required, which was even less
than 50%. One limitation observed from the results of ZDT3 problem is that
RM2OEA and its variants may not be suitable for disconnected PO fronts.
From the results, it can be concluded that a fewer local search solutions
can also be useful for better and quicker convergence unless a good and ef-
fective set of solutions is selected for local search. In future work, the local
search module can be extended for constraint MOOPs. The same module
can be tested on engineering optimization problems for better convergence.
The proposed algorithm can also be extended for solving many-objective
optimization problems when the number of objectives is more three.
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Table 3 The IGD+ values of three variants of RM2OEA and θ−DEA are presented
for ZDT1 problem. The grey colored cells show inferior IGD+ values of RM2OEA
than θ−DEA.

NLS Value type RM2OEA-OP RM2OEA-ENV RM2OEA-OF Adaptive (RM2OEA-OF)

θ−DEA
Best 5.684e-03

Median 6.513e-03
Worst 8.709e-03

20
Best 2.319e-03 5.913e-03 2.429e-03 3.120e-03

Median 2.957e-03 6.832e-03 3.037e-03 2.960e-03
Worst 3.662e-03 8.536e-03 3.909e-03 3.399e-03

40
Best 2.504e-03 5.680e-03 2.394e-03 3.051e-03

Median 3.027e-03 6.451e-03 3.072e-03 2.707e-03
Worst 3.656e-03 8.018e-03 3.561e-03 3.625e-03

60
Best 2.773e-03 5.180e-03 2.472e-03 3.176e-03

Median 3.222e-03 6.583e-03 3.080e-03 3.125e-03
Worst 3.773e-03 8.622e-03 4.004e-03 3.400e-03

80
Best 2.294e-03 5.553e-03 2.390e-03 3.413e-03

Median 2.974e-03 6.821e-03 2.909e-03 3.017e-03
Worst 3.699e-03 8.006e-03 3.551e-03 3.446e-03

100
Best 2.799e-03 5.070e-03 2.472e-03 2.861e-03

Median 3.268e-03 6.584e-03 2.997e-03 2.717e-03
Worst 3.854e-03 8.125e-03 3.504e-03 3.624e-03

Table 4 The IGD+ values of three variants of RM2OEA and θ−DEA are presented
for ZDT2 problem. The grey colored cells show inferior IGD+ values of RM2OEA
than θ−DEA.

NLS Value type RM2OEA-OP RM2OEA-ENV RM2OEA-OF Adaptive (RM2OEA-OF)

θ−DEA
Best 3.503e-03

Median 3.942e-03
Worst 5.063e-03

20
Best 2.160e-03 3.362e-03 2.172e-03 2.198e-03

Median 2.206e-03 4.043e-03 2.218e-03 2.273e-03
Worst 2.256e-03 5.152e-03 2.525e-03 4.811e-03

40
Best 2.116e-03 3.364e-03 2.179e-03 2.081e-03

Median 2.188e-03 4.195e-03 2.206e-03 2.219e-03
Worst 2.314e-03 5.651e-03 2.334e-03 4.811e-03

60
Best 2.107e-03 3.132e-03 2.156e-03 2.089e-03

Median 2.178e-03 4.064e-03 2.203e-03 2.266e-03
Worst 2.214e-03 4.948e-03 2.349e-03 4.811e-03

80
Best 2.161e-03 3.361e-03 2.130e-03 2.049e-03

Median 2.218e-03 4.021e-03 2.199e-03 2.248e-03
Worst 3.697e-03 9.520e-03 2.236e-03 4.811e-03

100
Best 2.149e-03 3.270e-03 2.186e-03 2.073e-03

Median 2.220e-03 4.055e-03 2.206e-03 2.234e-03
Worst 2.346e-03 4.587e-03 2.256e-03 4.811e-03
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Table 5 The IGD+ values of three variants of RM2OEA and θ−DEA are presented
for ZDT3 problem. The grey colored cells show inferior IGD+ values of RM2OEA
than θ−DEA.

NLS Value type RM2OEA-OP RM2OEA-ENV RM2OEA-OF Adaptive (RM2OEA-OF)

θ−DEA
Best 1.351e-03

Median 1.878e-03
Worst 2.380e-03

20
Best 1.526e-03 1.311e-03 1.349e-03 1.440e-03

Median 1.937e-03 1.795e-03 1.779e-03 1.868e-03
Worst 2.550e-03 2.355e-03 2.638e-03 3.765e-03

40
Best 1.467e-03 1.485e-03 1.326e-03 1.317e-03

Median 2.017e-03 1.855e-03 1.888e-03 1.885e-03
Worst 2.815e-03 2.317e-03 2.611e-03 2.823e-03

60
Best 1.565e-03 1.410e-03 1.166e-03 1.509e-03

Median 2.236e-03 1.728e-03 1.766e-03 1.830e-03
Worst 3.394e-03 2.524e-03 2.531e-03 3.528e-03

80
Best 1.561e-03 1.206e-03 1.430e-03 1.260e-03

Median 2.555e-03 1.776e-03 1.802e-03 1.674e-03
Worst 3.586e-03 3.193e-03 2.346e-03 2.884e-03

100
Best 1.620e-03 1.399e-03 1.359e-03 1.254e-03

Median 2.404e-03 1.805e-03 1.708e-03 1.797e-03
Worst 3.322e-03 2.644e-03 2.580e-03 2.996e-03

Table 6 The IGD+ values of three variants of RM2OEA and θ−DEA are presented
for ZDT6 problem. The grey colored cells show inferior IGD+ values of RM2OEA
than θ−DEA.

NLS Value type RM2OEA-OP RM2OEA-ENV RM2OEA-OF Adaptive (RM2OEA-OF)

θ−DEA
Best 1.763e-03

Median 1.954e-03
Worst 2.038e-03

20
Best 1.587e-03 1.741e-03 1.589e-03 1.554e-03

Median 1.600e-03 1.953e-03 1.599e-03 1.643e-03
Worst 1.614e-03 2.050e-03 1.609e-03 2.196e-03

40
Best 1.587e-03 1.752e-03 1.590e-03 1.589e-03

Median 1.596e-03 1.947e-03 1.600e-03 1.670e-03
Worst 1.628e-03 2.027e-03 1.608e-03 1.957e-03

60
Best 1.584e-03 1.864e-03 1.587e-03 1.601e-03

Median 1.598e-03 1.982e-03 1.600e-03 1.664e-03
Worst 1.622e-03 2.067e-03 1.611e-03 1.978e-03

80
Best 1.600e-03 1.834e-03 1.587e-03 1.563e-03

Median 1.631e-03 1.974e-03 1.600e-03 1.626e-03
Worst 1.687e-03 2.052e-03 1.611e-03 1.808e-03

100
Best 1.600e-03 1.848e-03 1.592e-03 1.565e-03

Median 1.627e-03 1.967e-03 1.602e-03 1.631e-03
Worst 1.679e-03 2.023e-03 1.611e-03 1.829e-03
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Table 7 The IGD+ values of three variants of RM2OEA and θ−DEA are presented
for DTLZ1 problem. The grey colored cells show inferior IGD+ values of RM2OEA
than θ−DEA.

NLS Value type RM2OEA-OP RM2OEA-ENV RM2OEA-OF Adaptive (RM2OEA-OF)

θ−DEA
Best 4.560e-04

Median 1.416e-03
Worst 3.250e-03

15
Best 2.940e-04 1.310e-04 1.770e-04 2.180e-04

Median 4.770e-04 3.910e-04 3.760e-04 4.230e-04
Worst 2.444e-03 1.569e-03 1.592e-03 2.170e-02

36
Best 3.540e-04 1.620e-04 1.710e-04 2.110e-04

Median 7.010e-04 3.400e-04 3.650e-04 3.680e-04
Worst 3.353e-02 1.357e-03 1.266e-02 1.402e-02

51
Best 2.630e-04 1.450e-04 1.320e-04 2.000e-04

Median 4.600e-04 3.070e-04 3.320e-04 3.550e-04
Worst 1.954e-02 1.183e-03 3.657e-03 4.537e-03

72
Best 2.790e-04 1.960e-04 1.540e-04 1.980e-04

Median 4.690e-04 2.890e-04 2.890e-04 3.450e-04
Worst 2.800e-03 1.053e-03 7.276e-03 1.051e-02

91
Best 3.350e-04 1.500e-04 1.370e-04 2.120e-04

Median 4.660e-04 3.680e-04 2.780e-04 3.290e-04
Worst 8.611e-02 1.508e-03 1.799e-03 9.708e-03

Table 8 The IGD+ values of three variants of RM2OEA and θ−DEA are presented
for DTLZ2 problem. The grey colored cells show inferior IGD+ values of RM2OEA
than θ−DEA.

NLS Value type RM2OEA-OP RM2OEA-ENV RM2OEA-OF Adaptive (RM2OEA-OF)

θ−DEA
Best 5.630e-04

Median 7.890e-04
Worst 2.023e-03

15
Best 4.410e-04 5.790e-04 4.570e-04 4.030e-04

Median 5.730e-04 7.760e-04 5.400e-04 5.060e-04
Worst 7.540e-04 1.644e-03 6.980e-04 6.480e-04

36
Best 1.747e-03 6.300e-04 3.900e-04 4.040e-04

Median 2.158e-03 8.150e-04 4.980e-04 4.730e-04
Worst 2.672e-03 1.844e-03 5.950e-04 9.920e-04

51
Best 2.926e-03 6.220e-04 3.790e-04 3.930e-04

Median 3.384e-03 7.670e-04 5.010e-04 4.640e-04
Worst 3.802e-03 7.061e-03 6.280e-04 1.134e-03

72
Best 4.629e-03 5.790e-04 4.130e-04 3.700e-04

Median 5.447e-03 7.910e-04 5.000e-04 4.740e-04
Worst 6.461e-03 1.248e-03 6.850e-04 6.280e-04

91
Best 5.232e-03 5.880e-04 3.960e-04 4.090e-04

Median 6.018e-03 7.840e-04 4.850e-04 4.880e-04
Worst 6.962e-03 1.242e-03 6.270e-04 6.340e-04
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Table 9 The IGD+ values of three variants of RM2OEA and θ−DEA are presented
for DTLZ3 problem. The grey colored cells show inferior IGD+ values of RM2OEA
than θ−DEA.

NLS Value type RM2OEA-OP RM2OEA-ENV RM2OEA-OF Adaptive (RM2OEA-OF)

θ−DEA
Best 8.560e-04

Median 3.708e-03
Worst 1.117e-02

15
Best 6.520e-04 7.920e-04 1.740e-04 3.200e-04

Median 1.459e-03 2.960e-03 2.430e-04 4.600e-04
Worst 4.202e-02 8.296e-03 1.207e-03 3.578e-03

36
Best 7.660e-04 7.880e-04 1.610e-04 2.450e-04

Median 1.757e-03 3.498e-03 2.350e-04 4.260e-04
Worst 9.226e-03 9.010e-03 4.626e-03 1.443e-03

51
Best 7.610e-04 6.570e-04 1.810e-04 2.670e-04

Median 1.584e-03 3.153e-03 2.170e-04 3.840e-04
Worst 2.042e-02 9.048e-03 5.490e-04 1.611e-03

72
Best 7.180e-04 8.370e-04 1.380e-04 2.460e-04

Median 1.371e-03 3.208e-03 1.980e-04 4.010e-04
Worst 8.303e-03 9.505e-03 3.850e-04 8.080e-04

91
Best 7.990e-04 5.930e-04 1.470e-04 2.930e-04

Median 1.773e-03 3.523e-03 2.040e-04 4.100e-04
Worst 2.269e-02 1.784e-02 1.052e-03 1.355e-03

Table 10 The IGD+ values of three variants of RM2OEA and θ−DEA are pre-
sented for DTLZ4 problem. The grey colored cells show inferior IGD+ values of
RM2OEA than θ−DEA.

NLS Value type RM2OEA-OP RM2OEA-ENV RM2OEA-OF Adaptive (RM2OEA-OF)

θ−DEA
Best 1.460e-04

Median 1.810e-04
Worst 2.460e-04

15
Best 1.250e-04 1.500e-04 1.440e-04 2.080e-04

Median 1.710e-04 1.860e-04 1.680e-04 3.230e-04
Worst 2.360e-04 2.420e-04 2.270e-04 8.230e-04

36
Best 2.190e-04 1.470e-04 1.400e-04 2.220e-04

Median 5.740e-04 1.880e-04 1.750e-04 2.980e-04
Worst 6.370e-04 2.350e-04 4.270e-04 1.362e-03

51
Best 1.970e-04 1.410e-04 1.390e-04 2.220e-04

Median 2.340e-04 1.900e-04 1.730e-04 3.030e-04
Worst 2.990e-04 2.340e-04 2.180e-04 6.840e-04

72
Best 3.970e-04 1.450e-04 1.280e-04 1.870e-04

Median 8.530e-04 1.840e-04 1.720e-04 3.370e-04
Worst 9.280e-04 2.340e-04 2.170e-04 2.352e-01

91
Best 8.270e-04 1.410e-04 1.400e-04 2.150e-04

Median 1.184e-03 1.790e-04 1.730e-04 3.050e-04
Worst 1.321e-03 2.460e-04 2.380e-04 5.390e-04
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Fig. 2 The obtained PO solution of ZDT1 problem using θ−DEA and RM2OEA-
OF.
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Fig. 3 The obtained PO solution of ZDT2 problem using θ−DEA and RM2OEA-
OF.
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Fig. 4 The obtained PO solution of ZDT3 problem using θ−DEA and RM2OEA-
OF.
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Fig. 5 The obtained PO solution of ZDT6 problem using θ−DEA and RM2OEA-
OF.
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Fig. 6 The obtained PO solution of DTLZ1 problem using θ−DEA and RM2OEA-
OF.
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Fig. 7 The obtained PO solution of DTLZ2 problem using θ−DEA and RM2OEA-
OF.
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Fig. 8 The obtained PO solution of DTLZ3 problem using θ−DEA and RM2OEA-
OF.
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Fig. 9 The obtained PO solution of DTLZ4 problem using θ−DEA and RM2OEA-
OF.
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Fig. 10 The convergence plots for ZDT problems are shown forNLS = 20, 40, 60, 80
and 100 values.
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Fig. 11 The convergence plots for DTLZ problems are shown for NLS =
15, 36, 51, 72 and 91 values.
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Table 11 Number of generations required (Treq), function evaluations (NLS), and
computational time of θ−DEA and RM2OEA-OF are presented.

Parameters↓/NLS → θ−DEA 20 40 60 80 100
ZDT1

Treq 150 109 107 114 103 121
NF 15600 134654 253338 321944 497256 555636

Time (s) 0.27541 0.24401 0.27851 0.30444 0.33711 0.41222
ZDT2

Treq 200 158 168 109 86 113
NF 20800 50690 83752 210772 429722 349840

Time (s) 0.39121 0.28887 0.35138 0.25822 0.28311 0.30487
ZDT3

Treq 1000 136 162 148 182 158
NF 100000 64592 136896 187596 278834 315794

Time (s) 1.80315 0.25417 0.31872 0.31262 0.40621 0.36356
ZDT6

Treq 1000 344 312 377 325 331
NF 100000 44528 39992 60684 48052 52334

Time (s) 1.49738 0.53585 0.46524 0.59838 0.51058 0.49767
Parameters↓/NLS → θ−DEA 15 36 51 72 91

DTLZ1
Treq 400 400 349 400 400 349
NF 36800 52128 55234 72414 98476 125446

Time (s) 0.74954 0.79902 0.67349 0.77894 0.81808 0.72023
DTLZ2

Treq 250 250 250 250 250 250
NF 23000 94842 226414 362314 555782 644554

Time (s) 0.53868 0.58229 0.63465 0.70363 0.81148 0.84365
DTLZ3

Treq 1000 809 814 1000 804 658
NF 92000 85778 98568 139074 137810 143622

Time (s) 1.92902 1.55781 1.56201 2.04005 1.59781 1.33415
DTLZ4

Treq 600 335 342 370 358 346
NF 55200 41742 61342 66236 90950 98486

Time (s) 1.29538 0.74872 0.76548 0.83021 0.82583 0.83276


