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Topology optimization has been successful in generat-
ing optimal topologies of various structures arising in real-
world applications. Since these applications can have com-
plex and large domains, topology optimization suffers from
a high computational cost because of the use of unstructured
meshes for discretization of these domains and their finite el-
ement analysis (FEA). This paper addresses this challenge by
developing three GPU-based element-by-element strategies
targeting unstructured all-hexahedral mesh for the matrix-
free precondition conjugate gradient (PCG) finite element
solver. These strategies mainly perform sparse matrix multi-
plication (SpMV) arising with the FEA solver by allocating
more compute threads of GPU per element. Moreover, the
strategies are developed to use shared memory of GPU for
efficient memory transactions. The proposed strategies are
tested with solid isotropic material with penalization (SIMP)
method on four examples of 3D structural topology opti-
mization. Results demonstrate that the proposed strategies
achieve speedup up to 8.2× over the standard GPU-based
SpMV strategies from the literature.

Keywords: Topology optimization, GPU, Matrix-free
PCG solver, Unstructured all-hexahedral mesh.

1 Introduction
Structural topology optimization is a method of opti-

mizing the material distribution within a design domain un-
der a prescribed set of loading, and boundary conditions.
Various methods are available for topology optimization in
the literature, such as homogenization method [1], Solid
Isotropic Material with Penalization (SIMP) method [2],
level-set method [3], evolutionary computation [4], etc. Us-
ing these methods, topology optimization is used in many
applications, such as compliant mechanism design [5, 6, 7],
aerospace design [8, 9], biomedical design [10, 11], multi-
physics and micro-design [12, 13], to name a few.
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The structural topology optimization is an iterative
method that involves various computational steps. These
steps are:

∗ Meshing: the design domain is discretized into finite
elements.
∗ FEA: finite element analysis is then performed to cap-

ture the structural response under the specified loading
and boundary conditions.

∗ Sensitivity Analysis: sensitivity of the objective func-
tion with respect to design variable is computed.

∗ Mesh-Independency Filter: the sensitivities are then
filtered over a neighbourhood of finite elements. This
step eliminates the checker-board pattern in the final
topology [14].

∗ Update: based upon the filtered sensitivity, the design
variable is updated.

These steps are followed till the termination criterion is not
met.

Among the various computational steps of topology op-
timization, FEA is found to be the most computationally ex-
pensive step [15, 16]. In the last few years, graphics pro-
cessing unit (GPU) has been used for accelerating FEA that
includes elemental stiffness matrix generation [17, 18], as-
sembly [19,20,21], and the solver [22,23]. The main reason
of exploring GPU is that it offers a large number of comput-
ing cores at low cost and maintenance. The details of the ar-
chitecture of GPU are given in the supplementary sheet [See
Supplemental Figure 1]. The other steps of topology opti-
mization, such as FEA solver [24, 25], sensitivity and FEA
solver [26, 27], and FEA solver, sensitivity, filtering, and up-
date [28, 29] are also performed on GPU. It is found from
the literature that the FEA solver consumes the most of the
computation time. Therefore, some attempts have been made
for accelerating the direct and iterative solvers [30]. Iterative
solvers are preferred because of simplicity and inherent par-
allelism. Since GPU has a limited amount of memory, the
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matrix-free or assembly-free iterative solvers [31] are pre-
ferred because these solvers can perform the required com-
putations at the elemental level without assembling and stor-
ing large global stiffness matrix.

The matrix-free FEA solver involves sparse matrix-
vector multiplication (SpMV) and vector arithmetic opera-
tions. For a finite element mesh containing ‘Elem’ num-
ber of elements, and ‘n’ being the number of elemental
DoFs, the SpMV operation requires Elem×n(2n−1) num-
ber of floating-point operations, whereas a vector-vector
product requires Elem× (2n− 1) number of floating-point
operations. Furthermore, SpMV also needs the elemental
stiffness matrices and connectivity information of all ele-
ments. Hence, the amount of data-transfer in SpMV opera-
tion is much higher than that in a vector arithmetic operation,
thereby making it a computational bottleneck for the matrix-
free iterative solver [26]. In the literature, the following three
types of GPU-based SpMV strategies can be found:

1. element-by-element (eeebbbeee) [32]: One compute thread
of GPU is assigned to each element of FE mesh [24].
However, this strategy suffers with race-condition when
more than one threads try to access and modify the same
memory location, ultimately producing inconsistent re-
sults. The coloring method or atomic operation can be
used for alleviating this issue.

2. node-by-node (nnnbbbnnn) [26]: A single thread computes
the state for all degree-of-freedoms (DoF) of a node.
This strategy requires access to data of neighboring ele-
ments. Since each node performs its computation inde-
pendently, there is no race-condition observed [23].

3. DoF-by-DoF (dddbbbddd) [29]: This SpMV strategy aims to
achieve even more finer level of parallelism by assign-
ing a compute thread to a DoF of FE nodes. Similar to
nnnbbbnnn strategy, this also require the access of neighboring
element’s data. Since dddbbbddd strategy works at the level
of DoF there is no race condition among the compute
threads.

The nnnbbbnnn− and dddbbbddd− strategies have shown good
speedups for the domains discretized using structured
meshes [26, 31]. For structural topology optimization struc-
tured meshes are more popular in the literature. How-
ever, there are many applications that use unstructured all-
hexahedral meshes because of their ability to deal with arbi-
trary complex geometries [28]. Since with an unstructured
mesh each node can be associated with different number of
neighboring elements, it can result in unbalanced compu-
tational load among GPU threads for the nnnbbbnnn− and dddbbbddd−
strategies. One of the remedies is to use the eeebbbeee−strategy by
carefully dealing with race-condition. To the best of authors
knowledge, there are only two studies in the literature that
used unstructured meshes while accelerating SIMP-based
structural topology optimization on GPU. The first work is
by Zegard and Paulino [28] that investigated feasibility of
unstructured meshes for 2D structure. In this work, GPU was
used to speedup the entire topology optimization procedure.
The eeebbbeee−strategy was used to assemble the global stiffness
matrix. GPU-based Cholesky decomposition method along

with CUBLAS library [33] was used to solve the system of
linear equations. The other work is by Duarte et al. [24] that
used polygonal meshes for both 2D and 3D continuum struc-
tures. In this work, the eeebbbeee−based preconditioned conju-
gate gradient (PCG) solver was used on GPU. Both the stud-
ies used greedy graph coloring method for handling race-
condition.

From these studies, it was observed that GPU acceler-
ation of 3D topology optimization poses several challenges.
One of the primary challenges is the efficient storage and
access of elemental stiffness matrices and connectivity in-
formation on GPU especially for unstructured meshes, due
to the scattered nature of the data [32]. The second key
challenge is the development of efficient thread allocation
strategies for matrix-free SpMV in order to properly utilize
the massively parallel architecture of GPUs. This paper thus
aims to address these challenges by developing efficient ker-
nels for unstructured all-hexahedral mesh by allocating more
compute threads to the eeebbbeee−strategy for reducing the com-
putational time of topology optimization. Following are the
key contributions of this paper.

- Three eeebbbeee−SpMV strategies are developed for acceler-
ating 3D structural topology optimization using unstruc-
tured all-hexahedral meshes on GPU.
- A matrix-free PCG solver is developed using the pro-
posed SpMV strategies and it is compared with the stan-
dard eeebbbeee−strategy from the literature.

A comparative analysis of the proposed SpMV strategies is
presented using four examples of 3D structural topology op-
timization. The rest of the paper is organized as follows. Sec-
tion 2 presents the relevant literature on density-based topol-
ogy optimization methods using GPU. Section 3 presents the
basics of SIMP-based topology optimization and its imple-
mentation on GPU. The proposed eeebbbeee−strategies are pre-
sented in Section 4. The numerical experiments are per-
formed in Section 5 and the results are presented. Section 6
presents the conclusions with a note on future work.

2 Literature Survey
The density-based topology optimization method is one

of the popular methods in the literature [34]. In this section,
the relevant studies accelerating the same method on GPU
are discussed.

The earliest implementation of density-based topol-
ogy optimization on GPU was presented by Wadbro and
Berggren [35]. The design domain was discretized using
structured mesh, and a GPU-based matrix-free PCG solver
was used. The SpMV computations in PCG solver were
performed using the eeebbbeee−strategy, and CUBLAS [33] was
used for linear algebraic operations of vectors. A maximum
speedup of 20× was shown over the CPU implementation
for the 2D heat conduction problem.

Schmidt and Schulz [26] accelerated topology opti-
mization of 3D linear elastic structures by employing the
nnnbbbnnn−SpMV strategy for the matrix-free conjugate gradient
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(CG) solver. The data of three successive slices of nodes
was stored into shared memory. A custom data-type was de-
veloped for storing nodal displacements and elemental den-
sity. An extruded 3D cantilever beam with 2 million nodes
was considered. The double precision GPU implementation
showed speedup of 1.7× over the shared memory system
with 48 CPU cores for one CG iteration.

Zegard and Paulino [28] presented a GPU-based
framework considering 2D unstructured meshes. The
eeebbbeee−strategy was used to assemble global stiffness ma-
trix on GPU. A greedy-graph coloring algorithm was
implemented to avoid race-condition. The Cholesky
decomposition-based solver was used by assigning one
thread per row of global stiffness matrix. CUBLAS library
of CUDA toolkit was used for vector operations. The global
stiffness matrix was stored using a packed lower triangular
banded scheme. The GPU-based solver showed speedups
between 15×−20× over the CPU for three linear elasticity
examples.

Duarte et al. [24] developed a polygonal mesh-based
framework called ‘PolyTop++’ for 2D and 3D structures on
GPU. The framework used two direct solvers and a matrix-
free PCG iterative solver. SpMV was performed by fol-
lowing the eeebbbeee−strategy with a greedy-graph coloring algo-
rithm. Only half of the elemental stiffness matrix was stored,
which finally transferred to 1D array. For a problem size of
10 million polygonal elements, the GPU-based PCG solver
showed 13× speedup over the CPU counterpart and outper-
formed the direct solver by 1.5× for a mesh with 1 million
elements.

Frutos and Perez [27] presented topology optimization
of large-scale linear elastic structures on multi-GPU sys-
tems. Multiple GPUs were used to perform FEA, sensitiv-
ity analysis, and mesh filtering. This study used structured
mesh for domain discretization and thus, used a single stiff-
ness matrix for the entire mesh. A GPU-based matrix-free
PCG solver was designed using the dddbbbddd−strategy, and sen-
sitivity analysis and mesh filtering were performed using the
eeebbbeee−strategy. The GPU solver showed maximum speedups
of 8× and 14× for the double hook design problem [27] and
the heat sink design problem [27] , respectively, for a mesh
having 1.7 million DoFs.

Frutoz et al. [29] proposed a multilevel granularity-
based implementation on GPU. The matrix-free PCG solver
was implemented using the dddbbbddd−strategy. Sensitivity anal-
ysis, mesh filtering, and density update were computed us-
ing the eeebbbeee−strategy. The GPU-based PCG solver showed
speedups of 19.9×, 19.4×, and 22.5× on the tied-arch
bridge design [29], the 3D gripper design [29], and the heat
sink design problem [29], respectively.

Ratnakar et al. [36] dealt with unstructured mesh for
3D structure on GPU. A matrix-free PCG solver was used
with the eeebbbeee−strategy. Thrust library [37] of CUDA toolkit
was used for linear algebraic operations of vectors. A 3D
L-beam problem was considered and a speedup of 4× was
observed over the CPU implementation for a mesh with
103,680 elements. Furthermore, Ratnakar et al. [38] used
the nnnbbbnnn−strategy and a customized nodal connectivity strat-

egy was proposed to reduce memory transactions between
the thread and GPU global memory. In this work also, the
matrix-free PCG solver and CUDA Thrust library were used.
A 3D cantilever beam problem having 250,000 nodes was
considered that showed a speedup of 3× over the CPU im-
plementation.

From these studies, it is observed that the majority of
the articles considered the structured mesh for topology op-
timization. However, many applications with complex do-
mains, loading, and boundary conditions need unstructured
meshing for discretization of a design domain. Some handful
studies attempted to use unstructured mesh in topology opti-
mization. However, the implementation poses various chal-
lenges such as efficient computing, storage and access of el-
emental matrices, thread allocation strategies for matrix-free
SpMV, and optimal use of GPU memories to fully leverage
GPU resources. This paper presents novel SpMV-strategies
to accelerate topology optimization by developing kernels
for unstructured all-hexahedral mesh.

3 SIMP-based Topology Optimization and its GPU Im-
plementation

3.1 Problem Formulation
The structural topology optimization problem is formu-

lated as compliance minimization problem with volume con-
straint [2] that is shown in equation (1).

min
ρρρ

C(ρρρ,u),

subject to : K(ρρρ)u = fff ,

V (ρρρ)≤V ∗,

0≤ ρe ≤ 1, e ∈Ω,

(1)

where C denotes the compliance of a structure, ρρρ is the vector
of density variable, uuu is the nodal displacement vector, K is
the global stiffness matrix, and fff is the global load vector.
The final volume of the structure, V (ρρρ), should not exceed
the user-defined volume fraction (V ∗). To avoid singularity
in K, a minimum value for ρe is taken as a small non-zero
number (ρmin) during implementation, that is, 0 < ρmin ≤
ρe ≤ 1.

The SIMP method [2] thus penalizes the intermediate
material densities using a penalty parameter (p). The rela-
tionship between the elemental densities and material prop-
erties are given by the power-law as given in equation (2).

{Ei jkl}e = ρe
p E0

i jkl , p > 1,

Ei jkl =

{
0 if ρe = 0,
E0

i jkl if ρe = 1,

(2)

where E0
i jkl is the material property of a solid material.

The displacement vector (uuu) is computed by solving
K(ρρρ)u = fff using FEA. Once the nodal displacements are
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calculated, the sensitivity of objective function with respect
to ρe is found as given in equation (3).

C(ρρρ) = ∑
Nelem
e=1 ρe

puuue
T Keuuue,

∂C(ρρρ)
∂ρe

= −pρe
p−1uuue

T Keuuue,

(3)

where uuue is the elemental displacement vector of element ‘e’,
Ke is the elemental stiffness matrix of element ‘e’, Nelem is
the total number of elements, and ρe is the elemental density.
Topology optimization must ensure that the solution is mesh-
independent and there is no checker-board pattern. A filter
over the derivatives of the objective function is applied as
given in equation (4). This step is called mesh-independency
filter or density filter.

̂∂C(ρρρ)

∂ρe
=

∑i∈ξ

∂C(ρρρ)
∂ρi
·ρi ·Hei

ρe ∑i∈ξ
Hei

, (4)

where ξ is the set of neighboring elements of ‘e’ that is found
by a user-defined filter radius ‘R’. Hei is calculated using
equation (5), where dei is the Euclidean distance between the
centroid of element ‘e’ and element ‘i’.

Hei =

{
R−dei, if ||dei|| ≤ R,
0, otherwise.

(5)

The design variables are updated in every iteration by
following the optimality criterion update scheme shown in
equation (6). Here, m is the positive move limit, and η is the
numerical damping coefficient that is considered as 0.5. Be is
computed using equation (7), where λ is the Lagrange mul-
tiplier that can be computed using the bi-section algorithm.

ρ̂e =


max(ρmin,ρe−m), if ρeBη

e ≤ max(ρmin,ρe−m),

min(1,ρe +m), if min(1,ρe +m)≤ ρeBη
e ,

ρeBη
e , otherwise,

(6)

Be =
− ∂C(ρρρ)

∂ρe

λ
∂V (ρρρ)

∂ρe

. (7)

3.2 Computational Implementation
Figure 1 shows the flowchart of the various computa-

tional steps involved in topology optimization. Since FEA
is the most time-consuming step [16], it is performed on the
GPU. Other steps are performed on the CPU because they

require serial computation and are less computationally ex-
pensive. SIMP-based topology optimization requires a va-
riety of inputs, including the design domain, boundary and
loading conditions, maximum number of iterations, volume
fraction, etc. The design domain is then discretized using fi-
nite elements. In this paper, ANSYS R16.1 FE package is
used to mesh the domain from which the nodal connectiv-
ity data is generated. Thereafter, pre-processing is done that
includes preparing the connectivity matrix (C), computing
the elemental stiffness matrix (Ke), and pre-processing data
for mesh filtering. The design variables (ρρρ) and nodal dis-
placements (uuu) are then initialized. The host (CPU) allocates
space for Ke, C, and ρρρ and copies data in the device (GPU)
global memory. Thereafter, kernels are launched by the host
to perform FEA in parallel in which the size of thread blocks
and grid are specified. The execution of FEA computations
on GPU is discussed in the following subsections. After FEA
computes the nodal displacements, uuu and ρρρ are copied back
to the host. The next step is to compute and filter the sen-
sitivities using the expressions given in equations (3). The
elemental densities are updated based on the filtered sensi-
tivities, and a convergence check is performed. This com-
pletes one iteration of topology optimization. These steps
are repeated till the convergence criterion is not met.
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Fig. 1. Computational steps of SIMP-based topology optimization

3.3 Matrix-free PCG Solver
The steps of the matrix-free PCG FE solver are shown

in Algorithm 1. The inputs required by the solver include
initial guess (uuu0), preconditioner (MMM−1), connectivity ma-
trix (C), elemental densities (ρρρ), penalization parameter (p),
global stiffness matrix (K), and load vector fff . Here, K and fff
are not explicitly generated but rather constructed on-the-fly
using the elemental stiffness matrices. These elemental stiff-
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ness matrices are stored in the array K. In Algorithm 1, the
penalized form of K is represented by K. The Jacobi precon-
ditioner (MMM−1) is computed on the CPU and is copied to the
GPU.

The PCG solver starts by computing the residual (rrri) in
line 2. It can be seen that this step requires SpMV oper-
ation between the penalized stiffness matrix ‘K’ and initial
guess vector ‘uuu0’. SpMV operation is performed locally at
the elemental level. The vector product of the residual with
the preconditioner (MMM−1) is performed in line 3. In line 4,
the output is copied to a new vector dddi. Line 5 performs in-
ner product of rrri and zzzi to compute δnew. In line 7, there
is a loop over the maximum number of CG iterations and
the minimum value of residual. One more SpMV operation
is performed between K and vector dddi in line 8. Algorithm
computes αi in line 9 using the output of SpMV. The param-
eter αi is then used to update uuui and rrri in lines 10 and 11,
respectively. The updated residual vector rrri is then multi-
plied with MMM−1, and the resulting vector is stored in zzzi. The
inner product of rrri and zzzi is computed in line 14, and the re-
sult is stored in variable δnew. In line 15, the value of βi is
calculated using δnew and δold . The parameter βi is used to
update the values in vector dddi, as shown in line 16. This com-
pletes one iteration of the PCG solver. This iterative process
continues until the termination conditions given in line 7 are
met.

The PCG algorithm requires two SpMV operations and
several vector-vector product operations. SpMV operation
is known to be the most computationally expensive step of
a matrix-free FEA solver [26]. Two SpMV kernels using
the nnnbbbnnn− and eeebbbeee−strategies are discussed in the following
subsection. The vector-vector operations are performed on
GPU by using the thrust library [37] of CUDA toolkit.

3.4 Matrix-free SpMV Kernels on GPU
In this section, two SpMV strategies are discussed

through algorithmic representation that are used in the lit-
erature.

3.4.1 Node-by-Node (nbn) Kernel
The nnnbbbnnn−kernel is developed for unstructured all-

hexahedral mesh created using 8-noded hexahedral elements.
The data required by the kernel are the elemental stiffness
matrices (Ke), connectivity matrix (C), nodal displacements
(uuu), and elemental density vector (ρρρ). A custom data storage
is adopted [38] that rearranges the connectivity matrix so that
the data needed by a thread can be accessed with fewer num-
ber of memory transactions. The new rearranged connectiv-
ity matrix is called as reverse-connectivity matrix (Crev), and
is created by performing one-time exhaustive search at the
beginning. The kernel output is stored in an array ‘rrr’.

The nnnbbbnnn−kernel is shown in Algorithm 2 that starts by
assigning a global index to a compute thread that represents
a node in the mesh. Line 2 shows a loop over the total num-
ber of nodes in the mesh (Node). A temporary variable val
is declared in line 3 for storing the SpMV result for thread
‘t’. Line 4 reads the global indices of the neighbourhood el-

Algorithm 1: Matrix-free PCG FE solver for
SIMP-based topology optimization

Data: K, fff , C, MMM−1, uuu0, ρρρ, p, imax, ε

Output: uuu
1 i← 0
2 rrri← fff −Kuuui // SpMV kernel

3 zzzi←MMM−1 rrri // CUDA Thrust

4 dddi← zzzi // CUDA Thrust

5 δnew← rrrT
i zzzi // CUDA Thrust

6 δi← δnew // CUDA Thrust

7 while i < imax and δnew > ε do
8 qqqi← Kdddi // SpMV kernel

9 αi← δnew/dddi
T qqqi // CUDA Thrust

10 uuui← uuui +αidddi // CUDA Thrust

11 rrri← rrri−αiqqqi // CUDA Thrust

12 zzzi← MMM−1 rrri // CUDA Thrust

13 δold ← δnew

14 δnew← rrrT zzzi // CUDA Thrust

15 βi← δnew/δold

16 dddi← zzzi +βidddi // CUDA Thrust

17 i← i+1

18 end

ements of thread ‘t’ from Crev and stores them in ξξξt . The
thread then loops over these neighborhood elements in line
5. For each neighborhood element ‘e’, thread ‘t’ reads in-
dex ‘id1’ from Crev in line 6. The index id1 represents local
position of node ‘t’ inside an element ‘e’. The elemental
density of element ‘e’ is read from ρρρ and is penalised using
SIMP parameter ‘p’ in line 7. In line 8, the thread loops over
the nodes of element ‘e’. Since the kernel is developed for
8−noded hexahedral element, the loop runs over 8 nodes. In
line 10, an index id2 is read from C for each node of an ele-
ment ‘e’. The index id2 represents the global index of node
‘ j’. Finally, the matrix-vector multiplication (mat-vec) be-
tween Ke and uuue is performed in line 11 and the result is
stored in the variable val. The expression in line 11 is an im-
plicit representation for the computation of all three DoFs of
a node. The cumulative result is written to output vector rrr in
line 12.

It can be observed that each thread needs multiple ac-
cesses to Crev and C for reading the connectivity indices. In
addition, each thread must read Ke of each element in ξξξt .
Since the number of elements in ξξξt can be different for each
node, it creates a load imbalance among the compute threads.
This is one of the major limitations of the nnnbbbnnn−strategy in
which the overall performance of the kernel may deteriorate.

3.4.2 Element-by-Element (ebe) Kernel
Figure 2 shows the elemental stiffness matrix (Ke) and

nodal displacement vector (uuue) of an element. Since 8-noded
hexahedral element with 3 DoF per node is considered, the
size of Ke and uuue is 24×24 and 24×1, respectively. All en-
tries of Ke and uuue are multiplied by a single compute thread
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Algorithm 2: nnnbbbnnn−SpMV Kernel
Data: K, C, Crev, uuu, ρρρ, p, Node
Output: rrr

1 t = blockIdx.x×blockDim.x+ threadIdx.x;
2 if t < Node then
3 val = 0.0;
4 ξξξt ← read from Crev; // neighborhood

elements

5 foreach e ∈ ξξξt do
6 id1← read from Crev;
7 ρe = ρ[e]p;
8 for j← 0 to 7 // nodes of ‘e’

9 do
10 id2← read from C;
11 val += ρe × {Ke[id1][ j]×ue[id2]};

// matrix-vector product

12 r[t] = val;

13 end

in the standard eeebbbeee−strategy [36] that is represented by the
outermost red box. This thread is responsible for reading the
required data, performing computations, and writing the re-
sults.

Algorithm 3 presents the kernel for the standard
eeebbbeee−strategy. The data requirement of the kernel is simi-
lar to the nnnbbbnnn−kernel, except for Crev. The thread index ‘t’
is allocated to an element ‘e’ of the mesh in line 1. In line 3,
a vector CCC` is allocated in local memory of GPU for reduc-
ing transactions between a thread and global memory. The
global indices of eight nodes of an element ‘e’ are stored in
the vector CCC` in line 4. The elemental density is read and pe-
nalized in line 5. A loop over the nodes of an element ‘e’ can
be seen in line 6. The total entries multiplied in one itera-
tion of this loop are represented by the green boxes in Figure
2. In line 8, the global index ‘id1’ of node ‘i’ is read from
local memory. Index id1 represents the write position in the
output vector rrr. The variable val, which stores the mat-vec
value for node ‘i’, is initialized in line 9. The second loop
over the nodes of an element ‘e’ can be seen in line 10. In
line 11, the global index ‘id2’ of node ‘ j’ is read from CCC`.
The same index also represents the location in uuue which is
multiplied with entry of Ke. Finally, in line 12, the thread
performs the mat-vec operation between Ke and uuue. The to-
tal entries multiplied in one iteration of loop in line 10 are
shown in the innermost blue boxes in Figure 2. In line 13,
the product of mat-vec is stored in an array rrr. During writ-
ing of the result to the output array, a race condition can be
observed. This issue is resolved in line 13 by using CUDA’s
atomic operation.

It can be observed from Algorithm 3 that there are two
nested loops in this kernel with the most common data trans-
action being the retrieval of the global indices of the nodes ‘i’
and ‘ j’. Each thread requires (64+8) = 72 memory transac-
tions to read these indices, and these data are not shared with
other threads in the thread block. Hence, the local mem-

ory is used for temporary storage of connectivity data since
it reduces transactions between the thread and the device’s
global memory. Although each thread has the same compu-
tational load, Algorithm 3 shows that a single thread has to
perform several computations. However, the multiplication
of entries from the red boxes in Figure 2 is independent of
each other. This observation motivates us to improve the ker-
nel by distributing the computational load across more num-
ber of threads.

Ke ue Keue
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te
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Fig. 2. Matrix-vector multiplication by the eeebbbeee−strategy

Algorithm 3: eeebbbeee−SpMV Kernel
Data: K, C, uuu, ρρρ, p, Elem
Output: rrr

1 t = blockIdx.x×blockDim.x+ threadIdx.x;
2 if t < Elem then
3 CCC` [8]; // local memory space

4 CCC`← copy from C;
5 ρe = ρ[t]p;
6 for i← 0 to 7 // nodes of ‘t’

7 do
8 id1←CCC`[i];
9 val = 0.0;

10 for j← 0 to 7 do
11 id2←CCC`[ j];
12 val += ρe × {Ke[i][ j]×ue[id2]}; //

matrix-vector product

13 r[id1] + = val; // Atomic add

14 end

4 Proposed EbE Kernels
In this section, we discuss three fine-grained kernels us-

ing the eeebbbeee−strategy for performing SpMV on GPU. The
idea is to share a single thread’s computational load over
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more number of threads. The detailed discussion are pre-
sented in the following subsections.

4.1 8−Thread per Element (ebe8) Kernel
In the proposed kernel, eight threads are assigned to an

element for the eeebbbeee−strategy. Since 8−noded hexahedral
element is used for meshing, this kernel thus divides the
workload of the standard eeebbbeee−strategy among eight com-
pute threads of GPU. The mat-vec operation between Ke and
uuue of one finite element ‘e’ is shown in Figure 3. It can be
seen that the red boxes divide 24 rows of Ke into eight groups
and each group contains three rows. In this kernel, one thread
is assigned to each of the eight groups and thus, reduces com-
putational load on a single GPU thread. It is referred to as
the eeebbbeee888−kernel.

The computational steps of the eeebbbeee888−kernel are given
in Algorithm 4. The data requirement is similar to the stan-
dard eeebbbeee−kernel. The thread is assigned to a global index in
line 1. In line 2, a vector ‘CCCs’ is allocated in shared memory
to store the elemental connectivity data. Here, the size of CCCs
is determined by the size of thread block. A thread is then
assigned to an element ‘e’ in line 4. Every thread allocated to
an element ‘e’ copies one entry from C to a vector CCCs in line
5. A synchronization barrier is applied in line 6. Line 7 reads
the elemental density and penalizes it. In line 8, the row in-
dex of thread ‘t’ is computed, and in line 9 the index ‘id1’ is
read from CCCs. Index id1 represents the global position in the
output array rrr. In line 10, the thread loops over the columns
of Ke. In line 12, thread reads another index ‘id2’ within the
loop, which is the global location of uuue for multiplying with
the corresponding Ke entries. The mat-vec operation is per-
formed in line 14 and the result is stored in the variable ‘val’.
The cumulative result of the loop is then stored in an array
rrr. Atomic operation of CUDA is used in line 15 to avoid the
race-condition. The innermost blue boxes in Figure 3 show
the elements that are multiplied in one iteration of for-loop
in line 10.
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Fig. 3. Matrix-vector multiplication by the eeebbbeee888−strategy

Algorithm 4: eeebbbeee 8−thread per element SpMV
(eeebbbeee888) Kernel

Data: K, C, uuu, ρρρ, p, Elem
Output: rrr

1 t = blockIdx.x×blockDim.x+ threadIdx.x;
2 shared CCCs[size]; // shared memory space

3 if t < (Elem∗8) then
4 e = (int) (t/8); // global element index

5 CCCs← copy from C;
6 syncthreads( );
7 ρe = ρ[e]p;
8 row = t− (e×8); // row number

9 id1←CCCs;
10 for col← 0 to 7 // columns of Ke

11 do
12 id2←CCCs;
13 val = 0.0;
14 val += ρe × {Ke[row][col]×ue[id2]}; //

matrix-vector product

15 r[id1] + = val; // Atomic add

16 syncthreads( );
17 end

4.2 24−Thread per Element (ebe24) Kernel
The computational load is further divided in this kernel

by assigning one row of Ke to a thread. The kernel thus allo-
cates 24 threads to each 8−noded hexahedral finite element
in the mesh. Figure 4 shows grouping of Ke entries among
GPU threads. The Ke entries inside the red boxes belong to
one thread that multiply with the corresponding entries of uuue.
This strategy is referred to as the eeebbbeee222444−kernel.

The computational steps of the eeebbbeee222444−strategy is
shown in Algorithm 5. The steps up to line 5 are identical
with Algorithm 4. The thread ‘t’ is assigned to an element
‘e’ in line 7. The elemental density is penalized in line 8 and
is stored in ρe. The row index of Ke, which is allocated to
this thread, is shown in line 9. In line 10, the index ‘id1’
is read from CCCs in shared memory, and the temporary vari-
able val is initialized in line 11. There is a loop over the
columns of Ke in line 12. Index id2 is read from CCCs for each
value of col. Finally, in line 15, the thread computes Ke×uuue,
and the penalized density (ρe) is multiplied by the product.
By using the CUDA’s atomic operation, the output of mat-
vec operation is written to an array rrr in line 16 without any
race-condition. Mat-vec operation in line 15 represents mul-
tiplication for the entries inside the innermost blue boxes in
Figure 4. Mat-vec operation for the entire row is done by
looping over these boxes.

4.3 64−Thread per Element (ebe64) Kernel
This kernel is proposed for further reducing the compu-

tational load of the standard eeebbbeee888−strategy by assigning 64
threads to an element. As shown in Figure 5, the entries of
Ke are now grouped into 3×3 tiles shown in different colors.
Each tile is then assigned to a compute thread that multiplies
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Fig. 4. Matrix-vector multiplication by the eeebbbeee222444−strategy

Algorithm 5: eeebbbeee 24−thread per element
(eeebbbeee222444) SpMV Kernel

Data: K, C, uuu, ρρρ, p, Elem
Output: rrr

1 t = blockIdx.x∗blockDim.x+ threadIdx.x;
2 shared CCCs[size]; // shared memory space

3 if threadIdx.x < size then
4 Cs[threadIdx.x]← copy form C;

5 syncthreads( );
6 if t < (Elem∗24) then
7 e = (int) (t/24); // global element index

8 ρe = ρ[e]p;
9 row = t− (e∗24); // row index

10 id1←CCCs;
11 val = 0.0;
12 for col← 0 to 7 // columns of Ke

13 do
14 id2←CCCs;
15 val += ρe ∗ {Ke[row][col]∗ue[id2]}; //

matrix-vector product

16 r[id1] + = val; // Atomic add

17 syncthreads( );
18 end

each entries of this tile with the corresponding three entries
of uuue. Since 24× 24 entries are grouped into 64 tiles, the
same number of threads are used in this kernel. This strategy
is referred to as the eeebbbeee666444−kernel.

The computational steps of the eeebbbeee666444−kernel are
shown in Algorithm 6. The initial steps up to line 5 are sim-
ilar to Algorithm 4. The temporary variable ‘val’ is declared
in line 7 to store the result. Line 8 shows the global index
of an element ‘e’ assigned to a thread. Line 9 computes the
penalized elemental density of the element ‘e’. The row and
column indices for thread ‘t’ are computed in lines 10, and
11, respectively. Indices id1 and id2 are read form shared
memory in lines 12 and 13, respectively. The mat-vec oper-
ation is performed in line 14. Finally, thread ‘t’ writes result
in the output array rrr using the atomic operation in line 15.

It can be seen from Algorithms 4, 5, and 6 that both
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Fig. 5. Matrix-vector multiplication by the eeebbbeee666444−strategy

Algorithm 6: eeebbbeee 64−thread per element
(eeebbbeee666444) SpMV Kernel

Data: K, C, uuu, ρρρ, p, Elem
Output: rrr

1 t = blockIdx.x∗blockDim.x+ threadIdx.x;
2 shared CCCs[size]; // shared memory space

3 if threadIdx.x < size then
4 CCCs[threadIdx.x]← copy from C

5 syncthreads( );
6 if t < (Elem∗64) then
7 val = 0.0;
8 e = (int) (t/64);
9 ρe = ρ[e]p;

10 row = (t− e∗64)/8; // row index

11 col = t− (8∗ (t/8)); // column index

12 id1←CCCs;
13 id2←CCCs;
14 val += ρe ∗ {Ke[row][col]∗ue[id2]}; //

matrix-vector product

15 r[id1] + = val; // Atomic add

16 syncthreads( );
17 end

the eeebbbeee888− and eeebbbeee222444− kernels have one for-loop, while the
eeebbbeee666444−kernel has none. In addition, shared memory is used
in all three fine-grained SpMV kernels to store the connectiv-
ity data required by a finite element for reducing the global
memory transactions.

5 Numerical Experiments
Four structural topology optimization examples are used

to test the performance of the proposed SpMV strategies. For
each example, five different mesh sizes are used to evalu-
ate the scalability of the proposed strategies. The first two
examples are the 3D cantilever beam and the 3D L-beam.
These examples have regular domain geometries. The third
and fourth examples are the Michell cantilever and the con-
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necting rod of an automobile engine. These examples have
complex domain geometries and boundary conditions. All
four examples are meshed using 8−noded hexahedral ele-
ments. The computational performance for each example is
compared with the standard eeebbbeee−kernel [36] presented in
Section 3.4.2.

The simulations are performed on a CPU with Intel
Xeon E5− 2650 v4 processor equipped with 12 cores and
24 threads. It has clock speed of 2.2 GHz and offers band-
width of 76.8 GB/s. The GPU instances are run on NVIDIA
Tesla K40c card that has 2880 cores and 12 GB of mem-
ory with bandwidth of 288 GB/s. For topology optimiza-
tion, an artificial material with the following properties are
considered: Young’s modulus (E) = 1 and Poisson’s ratio
(ν) = 0.3. The implementations presented in this paper are
unit-less and the topology is unaffected by changes in ma-
terial properties. The design domains are discretized using
ANSYS R16.1 APDL module, and the discretized domains
for all four examples are shown in the supplementary sheet
[See Supplemental Material]. The SIMP penalty parameter
(p) is set to 3.0 for all examples, and the residual error value
for PCG (ε) is set to 10−5. All numerical experiments are
run for 50 iterations of optimization.

5.1 3D Cantilever beam
The domain and boundary conditions of a 3D cantilever

beam are shown in Figure 6(a). The L : B : H ratio of the
cantilever beam is 2 : 1 : 1. Each node of the left face is sub-
jected to the Dirichlet boundary condition, while each node
at the lower edge of the right face is subjected to the Neu-
mann boundary condition.

L

H

B

F

(a) (b)

Fig. 6. (a) Domain, loading and boundary conditions, and (b) ob-
tained topology of 3D cantilever beam.

A limit on the final volume of the optimal structure (Vf )
is imposed that is 30% of the original volume. The mini-
mum value of elemental density (ρmin) is kept as 0.1. The
total number of elements for all five mesh sizes are listed in
Table 1.

The obtained topology after 50 iterations is shown in
Figure 6(b). The topology is obtained for the largest mesh
size (CB5) of 3D cantilever beam using the eeebbbeee666444−kernel.
For CB5 mesh, the other four GPU SpMV kernels produce
the same topology. In Figure 6(b), the lower element den-
sities are filtered out and only ρe > 0.9 are shown. For this

example, a similar topology was reported by Schmidt and
Schulz [26]. The structural compliance value of the final
topology for all mesh sizes of 3D cantilever beam using the
eeebbbeee666444−kernel is given in Table 2. For a given mesh size, all
SpMV kernels generate the same value of compliance.

Table 1. Total number of elements in the respective mesh sizes of
all four examples.

Mesh 1 2 3 4 5

CB 31,250 85,750 182,250 432,000 1,024,000

LB 32,768 85,184 188,384 438,976 1,000,000

MC 38,148 85,674 183,432 453,175 1,170,894

CR 33,178 85,376 182,637 465,708 1,033,820

Table 2. Structural compliance values of the final topology for all
mesh sizes using the eeebbbeee666444−kernel.

Mesh 1 2 3 4 5

CB 4945 6380 7864 10051 12718

LB 2107 2690 2975 4219 5278

MC 149 152 160 168 176

CR 436,350 439,732 441,549 448,162 452,735

5.2 3D L-beam
The second example is a 3D L-beam that is shown in

Figure 7(a). The figure shows the design domain, loading,
and boundary conditions of the example. The face ‘C’ is
subjected to the Dirichlet boundary condition, while the edge
‘AB’ is subjected to the Neumann boundary condition. The
beam thickness is taken as 0.25× (2L/5). During optimiza-
tion, a unit load is applied at each node of the edge ‘AB’.
For optimization, Vf = 45% and ρmin = 0.001 are used. The
details of the mesh sizes used for 3D L-beam example are
given in Table 1.

The obtained topology obtained after 50 iterations is
shown in Figure 7(b). The topology corresponds to LB5 mesh
using the eeebbbeee666444−kernel. The lower element densities are fil-
tered out, and the figure shows for ρe > 0.9.

Table 2 shows the structural compliance values obtained
after 50 iterations for all mesh sizes of 3D L-beam. The given
values in the table correspond to the eeebbbeee666444−kernel.

5.3 Michell Cantilever
In topology optimization, the Michell cantilever is a

well-known benchmark example [39]. Since Michell can-
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Fig. 7. (a) Domain, loading, and boundary conditions, and (b) ob-
tained topology of 3D L-beam.

tilever is a 2D example, it is converted into a 3D struc-
ture by taking a few elements in the third direction. This
example has a semi-circular boundary that is supported as
shown in Figure 8(a). The supported semi-circular bound-
ary is subjected to the Dirichlet boundary condition, whereas
the loaded points in the figure are subjected to the Neumann
boundary condition. The L : H ratio is taken as 5 : 4. For
topology optimization, Vf = 45% and ρmin = 0.001 are used.
Table 1 presents the different mesh sizes considered for this
example. The number of elements in the third direction for
each mesh size are 3, 3, 4, 5, and 6, respectively.
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Fig. 8. (a) Domain, loading, and boundary conditions, and (b) ob-
tained topology of Michell cantilever.

The obtained topology for MC5 mesh is shown in Figure
8(b). The densities are filtered and only ρe > 0.9 are shown
in the figure. Table 2 presents the structural compliance val-
ues for all mesh sizes. These values are obtained using the
eeebbbeee666444−kernel after 50 iterations.

5.4 Connecting rod of an Automobile Engine
The last example of a connecting rod of an automobile

engine is considered for topology optimization. This exam-
ple is adopted from the work of Nana et al. [40]. The ini-
tial domain geometry, loading, and boundary conditions of
the connecting rod are shown in Figure 9(a). The follow-
ing dimensions are considered; height = 350 units, length
= 150 units, inner and outer diameters of the upper bore =
60 units and 80 units, and inner and outer diameters of the

lower bore = 35 units and 50 units. Both bores are consid-
ered non-design material, and during optimization, no mate-
rial is removed from these bores. As shown in Figure 9(a),
the lower half of the bottom bore is subjected to the Dirichlet
boundary condition, while the upper half of the top bore is
subjected to the Neumann boundary condition. The values
Vf = 30% and ρmin = 0.001 are considered for optimization.
Table 1 presents the details of the different mesh sizes for the
connecting rod.

(a) (b)

Fig. 9. (a) Domain, loading, and boundary conditions, and (b) ob-
tained topology of connecting rod of an automobile engine.

The obtained topology after 50 iterations is shown in
Figure 9(b) corresponding to ρe > 0.9. Since the bores are
considered as the non-design material, no material is re-
moved from them. The obtained topology shows that the
non-design parts of the original design domain are connected
by two symmetric links. The obtained topology matches with
the one reported by Nana et al. [40].

The values of structural compliance for all mesh sizes
of the connecting rod example are listed in Table 2. These
values are obtained using the eeebbbeee666444−kernel.

These results show that the proposed GPU kernels can
solve a wide variety of structural topology optimization ex-
amples. Simple and complex domain geometries, loading,
and boundary conditions in the four examples are used in this
paper. For both structured and unstructured all-hexahedral
meshes, the proposed kernels generated the known topolo-
gies from the literature. The performance of the proposed
GPU implementations is analyzed in the following section.

5.5 Convergence
The convergence plots of all examples are shown in Fig-

ure 10. The plots show the change in the structural compli-
ance value corresponding to the largest mesh size of each
example with respect to the number of iterations of opti-
mization. All four examples show smooth convergence of
the objective function values with respect to number of it-
erations. In the first few iterations (5− 10), the compliance

10 Copyright © by ASME



value reduces significantly, and thereafter, a minor change is
observed.

Fig. 10. Convergence plots for the largest mesh size of all examples
using the eeebbbeee666444−kernel.

5.6 Computational Performance
Computational performance of various strategies dis-

cussed in Section 3.4 and Section 4 is discussed for differ-
ent mesh sizes. The wall-clock time of the PCG solver for
each of the five GPU SpMV kernels is measured. This PCG
wall-clock time represents the total wall-clock time taken by
the solver in one iteration of optimization. The speedup is
computed with respect to the standard eeebbbeee−kernel discussed
in Section 3.4.2. For the GPU instances, one dimensional
grid of thread blocks were launched with 512 threads per
block. For the eeebbbeee222444−kernel, 504 threads per block were
launched since 512 is not a multiple of 24. This block dimen-
sion for the eeebbbeee222444−kernel can help transferring data from
global memory to shared memory on GPU.

The PCG wall-clock time of all five GPU kernels for five
mesh sizes is shown in Figure 11 for the 3D cantilever beam
example. It can be seen that the nnnbbbnnn−kernel consumes the
most time for all mesh sizes, followed by the eeebbbeee−kernel.
The eeebbbeee666444−kernel, on the other hand, requires the least
amount of time. As a result, the eeebbbeee666444−kernel shows the
highest speedup, followed by the eeebbbeee888−kernel. For the
eeebbbeee888− and eeebbbeee666444− kernels, there is an increase in speedup
with increasing mesh size. In addition, the eeebbbeee222444−kernel
outperforms the eeebbbeee−kernel by nearly 3×−4.5× times for
various mesh sizes. Despite the fact that the eeebbbeee222444−kernel
assigns more threads per element, it is still outperformed by
the eeebbbeee888−kernel for all mesh sizes. The mesh CB5 with the
eeebbbeee666444−kernel shows the highest speedup of 8.2×.

Figure 12 shows the PCG wall-clock time and speedup
for the 3D L-beam example. Similar to the previous ex-
ample, the nnnbbbnnn−kernel consumes the most time, followed
by the eeebbbeee−kernel. It is clear from the figure that the
eeebbbeee888−kernel outperforms all other kernels. A linear trend
in speedup can be seen with respect to different mesh sizes.
The eeebbbeee666444−kernel is the second best performing kernel, but
its speedup is nearly constant as the mesh size increases. The
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Fig. 11. PCG wall clock time, and speedup with respect to the
eeebbbeee−kernel for the 3D cantilever beam example.

eeebbbeee888− and eeebbbeee666444− kernels outperform the eeebbbeee222444−kernel
here as well. The eeebbbeee888−kernel for LB5 mesh shows the max-
imum speedup of 8.2× for the 3D L-beam example.

The PCG wall-clock time and speedup for the Michell
cantilever example are shown in Figure 13. The nnnbbbnnn−kernel
has the highest wall-clock time. Over different mesh sizes,
the speedup of eeebbbeee222444−kernel ranges from 3×−3.6×. It can
be seen that the eeebbbeee666444−kernel performs slightly better than
the eeebbbeee888−kernel for smaller mesh sizes (MC1 and MC2).
However, the performance of the eeebbbeee888−kernel is better for
larger meshes. For the largest mesh MC5, the eeebbbeee888−kernel
achieves the highest speedup of 7.2×.

The PCG wall-clock time and speedup for the connect-
ing rod example are shown in Figure 14. The PCG wall-
clock time follows the similar trend with the previous exam-
ples. For smaller meshes, the eeebbbeee666444−kernel outperforms the
eeebbbeee888−kernel. However, the eeebbbeee888−kernel outperforms the
eeebbbeee666444−kernel for CR4 and CR5 meshes. The speedup of the
eeebbbeee222444−kernel ranges between 3.3×−3.7×. In the connect-
ing rod example, the highest speedup of 7.4× is observed
with the eeebbbeee888−kernel. This speedup, however, corresponds
to the second largest CR4 mesh. The same kernel shows a
speedup of 7.1× for the largest mesh size CR5.

With the exception of the 3D cantilever beam example,
it can be observed that the eeebbbeee888−is the best performing ker-
nel in terms of speedup and scaling. The eeebbbeee222444−kernel is
outperformed by both the eeebbbeee888− and eeebbbeee666444− kernels in
all examples. Since the eeebbbeee222444−kernel allocates 24 threads
to each element that is not a multiple of the CUDA warp
size (32), it causes thread divergence within a thread block
leading to inferior performance. It is also worth noting that
the eeebbbeee888−kernel outperforms the eeebbbeee666444−kernel for larger
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Fig. 12. PCG wall clock time, and speedup with respect to the
eeebbbeee−kernel of 3D L-beam example.

0

2

4

6

8

MC
1

MC
2

MC
3

MC
4

MC
5

10
1

10
2

10
3

10
4

Fig. 13. PCG wall clock time, and speedup with respect to the
eeebbbeee−kernel of the Michell cantilever example.
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Fig. 14. PCG wall clock time, and speedup with respect to the
eeebbbeee−kernel of the connecting rod example.

unstructured all-hexahedral meshes. The eeebbbeee888−kernel allo-
cates 8 threads for reading 24×24 entries of Ke from global
memory. However, the eeebbbeee666444−kernel allocates 64 threads
that increases load of accessing the same amount of data by
more number of threads from global memory resulting its
inferior performance than the eeebbbeee888−kernel.

The computational steps within the PCG solver include
SpMV and many vector arithmetic (VeA) operations. Ta-
ble 3 presents the percentage share of these two operations
out of the total PCG wall-clock time for the largest mesh
sizes of all four examples. The percentage of time listed in
Table 3 is measured for the base implementation (eeebbbeee), and
the best performing kernel (eeebbbeee888). It can be observed that for
eeebbbeee− kernel the SpMV takes 97.5%− 99.4% of total PCG
time, which makes it the bottleneck for the solver. However,
for eeebbbeee888− kernel the percentage share of SpMV decreases
to 82.36%− 85.32% while the percentage share of VeA in-
creases to 14.68%−17.64%.

The various computational steps of topology optimiza-
tion were shown earlier in Figure 1. The percentage of the
total wall-clock time (%WC) of these computational steps
is shown in Figure 15. The percentages are calculated with
respect to the total wall-clock time of the entire topology op-
timization using the largest mesh size of the corresponding
example. The step ‘pre-comp.’ includes all preliminary com-
putations, such as reading the mesh and connectivity data
from files, allocating and initializing memories on GPU, and
computing Ke. The step ‘PCG’ includes the total %WC taken
by the PCG solver on GPU. ‘Comp.’ includes the computa-
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Table 3. Percentage of time taken by SpMV and vector arithmetic
operations in the PCG solver.

Mesh eeebbbeee eeebbbeee888

SpMV VeA SpMV VeA

CB5 99.4% 0.6% 84.76% 15.24%

LB5 97.8% 2.2% 82.36% 17.64%

MC5 97.46% 2.54% 85.32% 14.68%

CR5 97.89% 2.11% 83.17% 16.83%

tion of structural compliance and its sensitivities. ‘Filter’ in-
cludes the time taken by mesh-independency filter. ‘Update’
represents the update design variables and ‘Output’ repre-
sents the writing of results into files.

It can be observed from Figure 15 that even when the
PCG solver is run on the GPU, it still consumes the most
time of topology optimization. The PCG solver consumes
92%− 99% of the total wall-clock time with the nnnbbbnnn−
and eeebbbeee−kernels. The %WC of other steps is insignificant
in comparison to ‘PCG’. When the proposed SpMV ker-
nels are used, the %WC of ‘PCG’ is significantly reduced.
For the eeebbbeee888−kernel, the %WC of ‘PCG’ ranges between
55%−77%, while ‘pre-comp.’ has the second highest %WC
ranging between 13%− 33%. For the eeebbbeee222444−kernel, the
%WC of ‘PCG’ varies between 68%− 87%. The %WC of
‘PCG’ corresponding to the eeebbbeee666444−kernel ranges between
53%−79% for various examples.

6 Conclusion
This paper presented three eeebbbeee−strategies for topol-

ogy optimization of 3D structures using unstructured all-
hexahedral mesh. These strategies were developed for per-
forming SpMV computations in parallel on GPU with the
matrix-free PCG solver of FEA. Since unstructured all-
hexahedral mesh was used for descritizing the design do-
main, various computational challenges were addressed us-
ing the proposed strategies. SIMP method was used for
testing the proposed strategies with the standard eeebbbeee− and
nnnbbbnnn− strategies on four examples of three-dimensional
design domains. Among the proposed strategies, the
eeebbbeee888−strategy was found the best and outperformed the
standard eeebbbeee− and nnnbbbnnn− strategies with 7.2×−8.2× of
speedup. It was found that the thread divergence and mul-
tiple transactions with global memory issues were encoun-
tered by the eeebbbeee222444− and the eeebbbeee666444− strategies, respec-
tively. These issues led to an inferior performance with
respect to the eeebbbeee888−strategy, even though more compute
threads was assigned to these strategies. However, the
eeebbbeee222444− and eeebbbeee666444− strategies were found better than the
standard eeebbbeee− and nnnbbbnnn− strategies. As a note on future
work, these strategies can be further improved by dealing
with the issues of thread divergence and large memory trans-
actions. Moreover, the proposed strategies can be used for

solving compliant mechanism examples, compliance mini-
mization with volume and stress constraints, to name a few.
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7 Supplemental Material
GPU Architecture

GPU device was originally designed to address the need
of faster 3D visualization in various applications. Now, it can
be used for scientific computing since it offers high compute
density, high throughput, and high latency tolerance for large
computations in parallel. GPU devices are portable, low-
cost, and need low maintenance compared to the traditional
HPC setups. The modern day programming paradigms such
as CUDA, OpenCL, etc. allow the user to use GPU as a
general-purpose computing device and to take advantage of
the data-level parallelism of the program by using multiple
cores in parallel.

The architecture of GPU is vastly different from CPU as
shown in Supp. Figure 1. The CPU is generally optimized
for sequential code performance. It has high-capacity sophis-
ticated control unit, which is connected to a small number
of arithmetic logic units (ALUs). A large cache memory is
provided in the CPU to reduce the latency in accessing data
and instructions. In GPU, most of the chip area is dedicated
to a large number of parallel compute threads. The individ-
ual processors on GPU are called streaming processors (SP)
and they have their own register memory. A group of SPs
together forms a streaming multiprocessor (SM). A control
unit and cache are shared among SPs within SM.

DRAM DRAM

CACHE

CONTROL

ALU ALU

ALUALU

CPU GPU

Supp. Fig. 1. Architectures of CPU and GPU devices

GPU device consists of several types of memories. The
performance of any application greatly depends upon the ef-
ficient usage of these memories. The types of memory, their
location on the device, and their scope of access are listed in
Supp. Table 1.

Supp. Table 1. Different types of memories available on a GPU
device

Memory Location Scope of access

Register On-chip Thread

Local On-chip Thread

Shared On-chip Block

Global Off-chip Grid

Constant Off-chip Grid

The register and local memories are private to each
thread. The shared memory is used by threads to communi-
cate and share data. Individual threads can also access global
memory, however, transactions between threads and global
memory is slower than on-chip memories. Global memory
is generally used to share and copy data from the host (CPU).
The constant memory is read-only type, which remains un-
changed throughout the program.

The parallel program that runs on GPU is defined by
a function called kernel. The kernel is invoked by the host
after specifying the number of threads. These threads are or-
ganized into batches known as thread blocks. The threads
within a thread block can cooperate and share data with each
other. However, the threads from one block cannot directly
communicate with threads from another block. The total
number of threads specified during the kernel launch is di-
vided into these thread blocks, and this group of blocks is
called a grid.

Various programming paradigms such as CUDA,
OpenCL, and OpenACC are available to develop kernels
for GPU. OpenCL and OpenGL are API-based program-
ming models that work over GPU devices. CUDA is a pro-
gramming model developed by NVIDIA to run on GPUs
manufactured by them. CUDA works as an extension of
C/C++/Fortran languages and is the most popular tool for
writing GPU kernels. It provides flexibility and control to the
programmer for building parallel applications using GPUs.

Discretized Domains of the Numerical Examples
In this section, the discretized domains of the numeri-

cal examples used in this paper are discussed. The design
domains of all four examples are meshed on ANSYS R16.1
APDL module, using 8−noded hexahedral elements.

Supp. Figure 2 shows the discretized domain of 3D can-
tilever beam example. It can be observed that the mesh is
structured and composed of identical 8−noded hexahedral
elements.

Supp. Fig. 2. Discretized domain of 3D cantilever beam with 8−
noded hexahedral elements.

The discretized design domain of 3D L-beam example
is shown in Supp. Figure 3. As can be seen, this example is
also meshed using a structured mesh of 8−noded hexahedral
elements.
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Supp. Fig. 3. Discretized domain of 3D L-beam with 8− noded
hexahedral elements.

Supp. Figure 4 shows the discretized domain of the
Michell cantilever example. It can be seen from the fig-
ure that there are unstructured hexahedral elements near the
curved boundary due to its geometry.

Supp. Fig. 4. Discretized domain of Michell cantilever with 8−
noded hexahedral elements.

In Supp. Figure 5, the discretized domain of the con-
necting rod is shown, and it can be seen that the mesh is
unstructured in and around the area of both bores.

Supp. Fig. 5. Discretized domain of connecting rod with 8− noded
hexahedral elements.
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