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ABSTRACT
The paper targets an optimal soil cutting operation by considering economic and productive
aspects. Three realistic objectives and three problem-specific constraints are developed, and
the optimization problem is solved using a hybrid evolutionary multi-objective optimization
(EMO) technique. In this technique, a set of non-dominated solutions is generated by using an
existing EMO technique, and then a few of them are selected for local search using the
ε-constraint method. These selected solutions are used for starting independent local searches
using fmincon solver of Matlab. Results demonstrate that the local searches have improved the
non-dominated solutions a little, thereby suggesting a closeness of evolved solutions from
EMO technique with true Pareto-optimal (PO) solutions. The PO solutions are further validated
using experimental data from the literature. Overall, this study offers a platform to choose an
appropriate solution from the set of PO solutions. Moreover, the post-optimal analysis demon-
strates the commonality principle of few decision variables, which is followed by all PO
solutions. The rest of the decision variables decipher important relationships that are respon-
sible for trade-off among the PO solutions. The relationships are later used for preparing
guidelines for a practitioner in selecting an appropriate solution for the optimal operation.
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1. Introduction

Real-world problems often consist of multiple objectives
that are to be optimized simultaneously (Deb, 2001).
When such problems are solved using any EMO tech-
nique, a set of PO solutions is generated that show
trade-off among the objectives. These PO solutions pro-
vide multiple choices to a practitioner which otherwise
is difficult to achieve when solving any single-objective
optimization problem. Moreover, the multiple PO solu-
tions offer a relative comparison among them so that an
appropriate solution can be chosen. Furthermore, the
post-optimal analysis (Deb & Srinivasan, 2006) can be
performed to decipher important relationships among
the objectives and decision variables. A commonality
among the decision variables can be found that is fol-
lowed by all PO solutions, which thus can be a design
principle as demonstrated by (Baishya, Sharma, & Dixit,
2014; Barakat & Sharma, 2017b; Deb & Srinivasan,
2006; Sharma, 2010; Sharma & Barakat, 2018). Also, a
set of decision variables can be found which are respon-
sible for trade-off among the objectives. The important
relationships among the objectives and decision vari-
ables can later be used for preparing guidelines for the
practitioner. With those remarks, a real-world optimiza-
tion problem is targeted in this paper from the domain
of construction equipment in which the soil cutting
operation is formulated for a bulldozer and its blade.

A bulldozer is construction equipment which has a
tractor for supplying power and a metallic blade at its
front for soil cutting. When the soil cutting operation is
modeled for a bulldozer and its blade, an emphasis is
given to make the operation economic and productive.

The operation can be made economic when its variable
cost can be reduced. The variable cost depends on the
operating conditions which involve many parameters,
such as power required from the bulldozer, the speed of
the bulldozer, depth of a blade inserted in soil, dimen-
sions of a blade, etc. The operation can be made produc-
tive when a bulldozer can finish the soil cutting operation
as early as possible. However, any productive soil cutting
operation with a large size blade operating at a larger
speed and a higher cutting depth requires more power
from the bulldozer.

In the literature, most of the earlier studies focused
on determining the cutting force on a bulldozer blade at
different cutting depths. For example, many analytical
and numerical models have been developed that can
determine the cutting force with the desired accuracy.
The numerical models were developed using finite ele-
ment methods (Abo-Elnor, Hamilton, & Boyle, 2004;
Armin, Fotouhi, & Szyszkowski, 2014; Bentaher et al.,
2013) and discrete element methods (Shmulevich, Asaf,
& Rubinstein, 2007; Tsuji et al., 2012) which were found
to be efficient by considering the effect of parameters,
such as blade dimensions, cutting depth and cutting
angle, etc. on the cutting force. However, the numerical
models always demand higher computation time. On the
other hand, the analytical models can determine the
cutting force quickly on a blade with a reasonable accu-
racy. Under the umbrella of analytical models, two types
have been developed which targeted either a two-dimen-
sional or three-dimensional soil failure zone. The two-
dimensional soil failure zone models have been used for
wide blades. Reece (1964) proposed the two-dimensional
model in which the fundamental equation of
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earthmoving mechanics was developed, which consists
of resistance forces due to shear, cohesion, adhesion,
and surcharge pressure between the blade and soil.
Later, the weight of a soil wedge and inertia force were
included into the fundamental equation of earthmoving
mechanics by McKyes (1985). Qinsen and Shuren (1994)
determined the cutting force on the wide blade by con-
structing a soil wedge. Various forces due to cohesion,
adhesion and friction were considered between the blade
and soil. Forces due to the soil pile accumulated in the
front of the bulldozer blade were also taken into
account. The three-dimensional soil failure zone models
mainly targeted the narrow blades which are mainly
used in tillage operations. Hettiaratchi and Reece
(1967) developed the three-dimensional model for the
fundamental equation of earthmoving mechanics, which
was more accurate for the narrow blades.

Although earlier studies focused on determining the
cutting force accurately, recent studies focused on mak-
ing the soil cutting operation optimal. In (Barakat &
Sharma, 2017a, 2017b, Sharma & Barakat, 2018), the
operation is modeled using a bi-objective optimization
formulation in which the cutting force was minimized,
and the capacity of the bulldozer blade was maximized
simultaneously. It was argued that minimizing the cut-
ting force reduces overall resistance on the bulldozer
that can reduce power requirement from the bulldozer.
The reduction in power requirement can benefit in
reducing the fuel consumption that can make the
operation economic. The blade capacity objective was
designed to make the operation productive so that a
larger size blade can cut more soil in one pass. When
the problem was solved using an EMO technique, it was
found that a small size blade can optimize both the
objectives. Although many interesting relationships
among the objectives and decision variables were deci-
phered, variable blade dimensions were not among
them. The present study develops more realistic objec-
tives and problem-specific constraints so that dimen-
sions of the blade and operating conditions can be
taken as the decision variables for formulating the pro-
blem. The following are the contributions of this paper:

● Formulating a multi-objective optimization problem
using three realistic objectives for a bulldozer and its
blade in soil cutting operation.

● The Pareto-optimal solutions are generated using a
hybrid evolutionary multi-objective algorithm in
which the selected non-dominated solutions are
used for starting the local searches.

● Deciphering relationships among the objectives and
decision variables for a better understanding of the
problem.

● Preparing guidelines for practitioner based on the
obtained PO solutions and their post-optimal
analysis.

The paper is organized into five sections. Section 2
presents the multi-objective optimization formulation in
which the decision variables, objective functions, and
constraints are developed for the soil cutting operation.
Section 3 presents a hybrid EMO technique in which

NSGA-II is coupled with the ε-constraint method. In
Section 4, the PO solutions are presented, and various
analyses is shown. The paper concluded in Section 5
with future work.

2. Proposed multi-objective optimization
formulation

The soil cutting operation for bulldozer and its blade is
formulated as a multi-objective optimization problem.
The first objective is designed to minimize the power
required from the bulldozer to overcome resistance and
run it at the desired speed. The resistance in this opera-
tion is generated due to soil cutting and friction
between the bulldozer and the ground. The only resis-
tance that can be reduced is the resistance due to soil
cutting in which enormous cutting force is generated
between the blade and soil. As was argued in (Barakat
& Sharma, 2017a), any reduction in power requirement
signifies less fuel consumption that can make this
operation economic. The second objective is designed
to minimize the number of passes to cut a fixed volume
of soil. The third objective is developed to minimize the
time required to cut soil in one pass such that the blade
of the bulldozer becomes filled with soil (Barakat &
Sharma, 2017c). The second and third objectives are
designed to make the operation productive. The second
objective signifies overall productivity by finishing the
operation in fewer passes, that requires large power
requirement. The third objective signifies local perspec-
tive of productivity of the operation by filling the blade
in less time. It conflicts with the overall productivity of
the operation when a small size blade is used that can
result in a greater number of passes. Also, it conflicts
with larger power requirement objective when a small
size blade is used at a higher depth of cut.

Seven decision variables are used to develop the
objective functions. The decision variables are the cut-
ting depth (D), the cutting angle (α), the velocity (v),
the blade width (B), the blade height (H), the blade
curvature radius (R), and the blade curvature angle
(θ). Three problem-specific constraints are also devel-
oped that limit the required power to overcome ()the
cutting force, limiting force generated on the blade in
order to avoid its failure, and achieving the desired
production rate. The proposed formulation is given
in (1).

Minimize P; Powerð Þ;
Minimize N; Number of passesð Þ
Minimize T; Timeð Þ;
subjectto PR � 0; Remaining powerð Þ;

F � Fmax; Blade failureð Þ;
Pd � Pdmin ; Production rateð Þ;

0:01 � D � 0:5; Decision variablesð Þ;
0:785 � α � 1:309;
0:278 � v � 1:389;

3 � B � 5;
1 � H � 2:5;
0:9 � R � 1:5;

1:047 � θ � 1:309:

(1)
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2.1. Objective function-1: power requirement (P)

The first objective function is minimizing the power
required to overcome resistance due to the cutting force
(F) (Sharma & Barakat, 2018), which is given as

P ¼ Fv (2)

The cutting force model developed by Qinsen and Shuren
(1994) is adopted in this paper for determining F. The
details of this model is given in the Appendix.

2.2. Objective function-2: number of passes (N)

The second objective function is designed to minimize the
number of passes that are required to cut a fixed volume of
soil. It can only happen when the larger size blades are used
at higher cutting depth. However, it can increase the power
requirement from the bulldozer. The number of passes (N)
is determined as

N ¼ Vmax

V
; (3)

where Vmax is the fixed volume of soil to be cut, and V is
the blade capacity that is calculated from the geometry of
the blade as shown in Figure 1. The blade capacity (Sharma
& Barakat, 2018) is determined as

V ¼ V1 þ V2 þ V3 þ V4 ; (4)

where V1 is the volume of (fde), V2 is the volume of (afg),
V3 is the volume of (abdg), andV4 is the volume of soil inside
the arc (ab). These soil pile volumes are determined as

V1 ¼ 0:5B H þ 2Dtanφo

� �2
cotφo;

V2 ¼ 2BD2 tanφo;

V3 ¼ DBH cot αþ cot βð Þ;
V4 ¼ 0:5BθR2 � 0:5R2 sin θ

� �
(5)

2.3. Objective function-3: time required to fill the
blade (T)

The third objective is to minimize the time that is required
to fill the blade in one pass (Sharma & Barakat, 2018). It can

only be done when a small-sized blade is used at higher
cutting depth. However, a smaller size blade needs many
passes to cut a fixed volume of soil. Moreover, the blade will
experience a large cutting force at higher values of (D)
which thus require more power from the bulldozer. It is
calculated as

T ¼ L
v

(6)

where L is the distance traveled by the bulldozer to fill the
blade with soil in one pass. Here, the volume cut by the
blade is equal to BDL that should be equivalent to the blade
capacity. Therefore, Lis calculated as

L ¼ V
BD

(7)

2.4. Constraints

Three problem-specific constraints are developed for the
soil cutting operation. The first constraint is designed for
the remaining power of the bulldozer (Sharma & Barakat,
2018). Since PR � 0, it signifies that the bulldozer is able to
overcome resistance due to the cutting force. The first con-
straint is given as

PR ¼ 0:85 Pbull � P � 0 (8)

Here, Pbullis the rated power of the bulldozer which is
assumed to be operated at an efficiency of 85%.

The second constraint is developed for limiting the cut-
ting force in order to avoid the blade failure. It is given as

F � Fmax (9)

Here, Fmax is the force a blade can withstand. It is set to 700kN.
The third constraint is developed to achieve a desired rate

of production. The production rate is defined as the rate of soil
cut by a blade in one pass. The production rate is given as

Pd ¼ V
T
� Pdmin (10)

where Pdmin is the minimum limit on the production rate
that is assumed to be Pdmin ¼ 0:01 m3.

3. Hybrid EMO procedure

A hybrid EMO procedure is adopted in this paper to solve
the three-objective optimization problem given in (1). In
the literature, many hybrid EMO procedures exist that
target to improve convergence of optimization algorithms
(Coello Coello, Lamont, & Veldhuizen, 2007). In general,
the local searches are coupled with the existing EMO tech-
niques. Since there are various ways these local searches can
be executed, the performance of the existing hybrid EMO
techniques is found to be different. For example, the local
search can be executed in every iteration on every solution
of EMO technique (Kumar, Sharma, & Deb, 2007; Sharma,
Kumar, Deb, & Sindhya, 2007), but it will be computation-
ally expensive. Also, the local search can be executed on
selected solutions of EMO techniques in every or after few
generations (Deb, Miettinen, & Sharma, 2009; Sindhya,
Miettinen, & Deb, 2013), but the effective guiding rules
for variety of multi-objective optimization problems need
to be devised. In this procedure, one of the benchmark

Figure 1. Blade capacity is determined from the geometry of the blade
(Sharma & Barakat, 2018).
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EMO techniques, which is as known as elitist non-domi-
nated sorting genetic algorithm (NSGA-II) (Deb, Pratap,
Agarwal, & Meyarivan, 2002), is chosen to run for a fixed
size of population and generations. Thereafter, few solutions
are chosen from the non-dominated front evolved by
NSGA-II, and the local search is applied on them. The
ε� constraint method is chosen for local search because it
is reported by Miettinen (1998) that if the primary objective
is minimization, the ε� constraint method can generate the
PO solution by altering the upper bounds of constraints
formed from other objectives.

The following definitions are used for the concept of
dominance and the Pareto-optimality.

Definition 3.1: Given two solutions x 1ð Þ; x 2ð Þ 2 Ω (fea-
sible search space), x 1ð Þ is said to dominate x 2ð Þ, denoted
by x 1ð Þ � x 2ð Þ, if fi x 1ð Þð Þ � fi x 2ð Þð Þ, for every
i 2 1; 2; :::;mf g, and fj x 1ð Þð Þ< fj x 2ð Þð Þ, for at least one
objective j 2 1; 2; :::;mf g for minimization of all objective
functions.

Definition 3.2: A solution x� is said to be a non-domi-
nated solution, iff there is no x in the given population such
thatx � x�.

Definition 3.3: A solution x�� is said to be the PO solu-
tion, iff there is no x 2 Ω such that x � x��.

NSGA-II (Deb et al., 2002) is presented in Alg. 1. NSGA-
II starts with initializing the population randomly. The solu-
tions are then evaluated by determining the objective func-
tions and constraints values. The non-dominated sorting and
crowding distance operators are then used to assign fitness/
rank to each solution of the initial population. The con-
straint-dominance definition is used for determining the
rank of a solution. In this definition, a solution i is said to
constrained-dominate a solution j, if any of the following
conditions is true. (1) Solution i is feasible and solution j is
not. (2) Solutions i and j are both infeasible, but solution i
has a smaller overall constraint violation. (3) Solutions i and j
are feasible and solution i dominates solution j. In non-
dominated sorting, the solutions are sorted in different fronts
that represent the rank of the solution. Any two solutions
lying in the same front signifies the same rank. In order to
differentiate same ranked solutions, the crowding distance is
applied in which the crowding of a solution is determined
with respect to its neighbors in the same front. The corner
solutions of every front are assigned with a higher crowding
distance value. NSGA-II then enters into the standard loop of
generation by checking the condition on maximum allowed
generation (T). Inside the loop, the constraint binary tourna-
ment selection is applied in which two randomly selected
solutions from the population, now referred to as parent
population Pt in t-th generation, are selected and their
ranks are compared. The solution with a better rank gets
selected in the mating pool. If both solutions have the same
rank, then the solution with a higher crowding distance value
is selected for the mating pool. The tie is broken arbitrarily.
The binary tournament selection operator is applied twice on
the population to make the mating pool of sizeN. The simu-
lated binary crossover operator is then applied to randomly
selected two solutions to create two offspring. The polyno-
mial mutation is then applied to both offspring. The new
population created after crossover and mutation is referred as
offspring population Qt . The non-dominated sorting opera-
tor is then applied to the combined population Pt[Qtð Þ to

sort these solutions in different fronts. In the environment
selection, one by one these fronts are copied to the next
generation population Ptþ1 until its size is equal to N. If
the last front that will be included has more solutions than
the remaining size of Ptþ1, the solutions are selected based on
crowding distance in descending order of its value. This
completes one generation of NSGA-II. After termination,
NSGA-II evolves a set of non-dominated solutions.

Algorithm 1: NSGA-II algorithm
Input: Population size (N), maximum generations (T),

crossover probability, mutation probability, generation
counter (t = 0)

Output: Pareto-optimal solutions (Ptþ1)
Initialize random population Pt ;
Evaluate Pt ;
Assign rank using non-dominated sorting operator and

diversity using crowding distance operator to Pt
while Generation counter t < T do
P

0
t : = Selection (Pt) using crowded tournament selection

operator;
Qt : = Variation ðP0

tÞ using simulated binary crossover
operator and polynomial mutation operator;
Evaluate Qt ;
Merge population Rt = (Pt [ Qt);
Assign rank using non-dominated sorting operator and
diversity using crowding distance operator to Rt;
Ptþ1: Choose best N solutions from Rt based on rank
and crowding distance;
t ¼ t þ 1;
end while

In the hybrid procedure, a few solutions from the set of
non-dominated solutions are selected, and then the local
search is applied on them using the ε� constraint method.
In this method, one objective among the three objectives
given in (1) is considered as primary objective and other
objectives are made constraints. For example, if an objective
on power Pð Þ is kept as a primary objective, then the
constraint on the number of passes is made as N � �N ,
and the constraint on the time is made as T � �T . The
objective on power and two constraints on N and T are
then added with the constraints and decision variables of
(1). The resulting single objective problem is solved using
fmincon solver of Matlab 2016b® wherein the sequential
quadratic programming (SQP) technique is chosen.

For executing the local search, values of �N and �T have to
be assigned. Since few non-dominated solutions are chosen
for the local search, their N and T values are assigned
accordingly. For example, a non-dominated solution is
evolved with values of objective as Po; No;Toð Þ and decision
variables as Do; αo; vo; Bo; Ho; Ro; θoð Þ. In this case, values
are assigned as �N ¼ No and �T ¼ To. Moreover, SQP tech-
nique starts from Do; αo; vo; Bo; Ho; Ro; θoð Þ, instead of
some random values of decision variable. This can help
SQP method to converge quickly to the true PO solution.

4. Results and discussion

For solving the multi-objective optimization problem, few
of the parameters of NSGA-II are kept constant, e.g. popu-
lation size is kept at 500, maximum generations are 500, the
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probability of crossover is 0.9, crossover operator index is
20, the probability of mutation is 0.14286 (1/no. of vari-
ables), and mutation operator index is 20. The results are
obtained for mid-stiffness clay soil, and its physical para-
meters are presented in Table 1. The bulldozer flywheel
power is taken as Pbull = 227.438 kNm/s. The fixed volume
of soil to be cut is set as Vmax = 200 m3.

4.1. Pareto-optimal solutions

Figure 2 shows the obtained PO solutions. For discussion, these
solutions are categorized into three groups. The first group of
obtained PO is referred as the surface solutions (blue color
symbols) in which most of the solutions are generated at lower
P values. The second group of solutions (black color filled
symbols) is referred as the knee-solutions that show a decent

trade-off among the objectives. The third region is referred as
the extension solutions (green color symbols) in which the
solutions do not show much trade-off between T and N, but
objective P increases to its higher value. Three extreme solutions
are also shown in the same figure wherein minimum P is
represented by solution a1, minimum T is represented by solu-
tion z1, and minimum N is represented by solution e1:

The scatter plots for three objectives are shown in
Figure 3. Since different colors for the symbols are used,
three groups of the obtained PO solutions can be distin-
guished. The surface solutions are generated with lower P
values. The same solutions show trade-off between N and T
(refer Figure 3(c)) in which these solutions are generated
over a wide range of N and T objectives. The second group
is made of the knee-solutions, which is always important for
a practitioner or decision maker. It is because the solutions
show a decent trade-off among the posed objectives in this
region. The solutions that are lying away from this region
show any gain in one objective with a higher loss in another
objective. The extension solutions are generated with lower
N and T values (refer Figure 3(a,b)). However, higher P
values can be observed.

Table 1. The mid-stiffness clay soil parameters in SI units. Units of Co,
Cand Adare in (N/m2).

γo γ CO C δ Ad β φo φ

640.74 1601.85 1019.715 2039.43 21.6 0 23◦ 30◦ 27◦

Figure 2. The obtained PO solutions from NSGA-II are presented. The solutions are categorized into three groups. Different colors are used for distinguishing the
solutions lying in three groups. The unit of P and T are kN.m/s and s, respectively.

(b)(a)

(c) 

Figure 3. The scatter plots for three objectives are presented in which the relationships among the objectives are shown for three groups of the obtained PO
solutions.
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Few non-dominated solutions are then selected that are
shown in Figure 2 for executing the local search using the
ε� constraint method. Solution ‘a1’ representing minimum
P, solution ‘z1’ representing minimum T, and solution ‘e1’
representing minimum N are selected for the local search.
Other three solutions (b1; c1; d1) are selected to get one
representation from each of the three groups of solutions,
that are surface solutions, knee-solutions, and extension
solutions. These solutions are selected at random from
their respective group. The fmincon solver using the sequen-
tial quadratic programming technique starts from the
selected non-dominated solutions as discussed in section
3. Table 2 presents NSGA-II solutions and the improved
solutions using the ε� constraint method. It can be seen
that one objective among the three objectives in (1) is
chosen as a primary objective one by one and rest of the
objectives are made constraint. A marginal difference in the
values of P and T objectives can be seen among the solu-
tions. The ε� constraint method was able to improve
NSGA-II solutions by showing a smaller difference in the
values of the decision variables from their original values
obtained from NSGA-II. Since in (3), a nearest integer value
of ratio is considered for determiningN, the smaller changes
in the decision variables values did not change the integer
value of N. Therefore, N remains same for the solutions
obtained using the ε� constraint method.

It is known that NSGA-II and ε� constraint method
generated the PO solutions in different ways. EMO techni-
ques simultaneously optimize the objectives and generated
the PO solutions in one run. On the other hand, the
ε� constraint method converted the multi-objective opti-
mization problem into the single-objective optimization
problem by considering other objectives as constraints.
The challenge is setting different values of εN and εT . This
issue has been handled by considering the solutions from
NSGA-II in this paper. Otherwise, it is difficult to set
appropriate values of εN and εT which can generate well-
distributed PO solutions. The task is even more difficult for
the given problem due to the nature of the PO front showed
in Figure 2. Moreover, fmincon solver has to run from
different starting points to generate enough solutions to
represent the PO front of the given problem. Nevertheless,

the local search using the ε� constraint method was able to
generate marginally better solutions than NSGA-II.

The statistical performance analysis is performed for
NSGA-II for which the NSGA-II is run for 30 times from
different initial populations. The performance is observed
by using the hypervolume (HV) indicator. It measures the
hypervolume of that portion of the objective space that is
weakly dominated by an approximate set A. This indicator
gives the idea of spread quality and has to be maximized.
Table 3 presents statistical HV indicator values for different
crossover probability. It can be seen that the performance of
NSGA-II remains similar.

4.2. Post-optimal analysis

The post-optimal analysis of the obtained PO solutions is now
performed. The analysis is presented to find new and innova-
tive design principles or relationships that can be used for
deeper understanding of the problem as demonstrated for
many engineering optimization problems in (Baishya et al.,
2014; Barakat & Sharma, 2017b; Deb & Srinivasan, 2006;
Sharma, 2010; Sharma & Barakat, 2018). Moreover, some
guidelines can also be made for the practitioners involved in
decision-making for the bulldozer and its blade. It is always
interesting to reveal the common design principles that are
responsible for generating the PO solutions. Also, some dis-
similar relationships can be extracted that are responsible for
trade-off among PO solutions.

The obtained PO solutions are shown in Figure 4 in
which some decision variables are responsible for trade-off
among the solutions, and others decipher the commonality
principle for generating the PO solutions. It can be seen
from D-R and D-θ plots that for all obtained solutions θ and
R decision variables are evolved at their lowest bounds. This
suggests a commonality principle that a solution can be the
PO solution when θ and R are fixed at their lowest values.

Other decision variables are responsible for trade-off
among the solutions. The surface solutions are evolved
with lowest B and v. The range of D for these solutions is
small, lying between (0.01, 0.183) m. Similarly, the range α
of lies in between (0.78, 0.95). A wide range of H can be
seen for the surface solutions which vary from 1 to 2.48 m.

Table 2. The solutions obtained from NSGA-II and ε� constraint method are presented.

Solutions NSGA-II solutions (P, N,T) ε� constraint solutions (P, εN, εT)
a1 (21.936, 67, 19999.92) (21.935, 67, 19984.01)
b1 (33.623, 27, 2849.314) (33.349, 27, 2854.859)
c1 (50.859, 11, 2907.186) (50.859, 11, 2907.186)
d1 (83.584, 9, 362.356) (83.584, 9, 362.356)
e1 (125.068, 4, 286.786) (125.068, 4, 286.786)
z1 (193.231, 11, 134.563) (193.068, 11, 134.353)

Solutions ε� constraint solutions (εP, N, εT) ε� constraint solutions (εP, εN, T)
a1 (21.935, 67, 19984.01) (21.935, 67, 19971.36)
b1 (33.605, 27, 2854.859) (33.623, 27, 2849.314)
c1 (50.822, 11, 2924.49) (50.859, 11, 2907.186)
d1 (83.585, 9, 362.414) (83.584, 9, 362.356)
e1 (125.198, 4, 286.611) (125.068, 4, 286.786)
z1 (193.322, 11, 134.2105) (193.322, 11, 134.176)

Table 3. Statistical HV indicator values for different crossover probabilities.

1 0.9 0.8 0.7

pc Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

9.67e-01 2.3e-04 9.67e-01 1.8e-04 9.67e-01 2.6e-04 9.67e-01 2.3e-04
pc 0.6 0.5 0.4 0.3

9.67e-01 2.4e-04 9.67e-01 1.3e-04 9.67e-01 1.1e-04 9.67e-01 2.1e-04
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It can be observed that the dimension of the blade changes
only for different H values and other decision variables for
blade dimension are evolved at their lower bounds. Since
these solutions are evolved with lower values of D, it can be
justified that these solutions are corresponding to lower P
values as observed in Figure 2. For the same set of solutions,
a wide range of T and N is also observed. It is because when
a small size blade, meaning H is small, is used with lower D,
it can become filled with soil quickly. However, this blade
can take many passes to cut the fixed volume of soil. In
contrast to this, a larger size blade with higher H is used; it
can take more time to become filled with soil. However, the
operation can be completed in fewer passes.

For the knee-solutions, a wide range of D from 0.07 to
0.5 m can be seen. The range of α is also widened from
0.78 to 1.3. The dimensions of the blade are also varied
which can be observed from the ranges of H and B. It
means that different blade dimensions are evolved which
are operated at different D and α values. Since D is
varying from its lower limit to upper limit, different
sized blades show trade-off among all objectives. For
example, a smaller blade at lower D takes more time to
become filled compared to larger D. In this case, N
remains the same but with larger D, the soil cutting
operation can be finished early but requires more power
from the bulldozer. Any larger blade with larger D can
finish the operation relatively early against the lower D.
However, the larger blade takes less N but higher P values
to finish the soil cutting operation. All observations are in
line with the knee-solutions of Figure 2, which showed a
decent trade-off among the objectives.

For extension solutions, the decision variables B, H, v,
and α vary from their lower to upper limits. Moreover, D
remains at its upper bound of 0.5 m. This observation
suggests that a wide range of blades is evolved for these
solutions that have been used at higher D and all ranges of v
and α. This is the reason that higher P values are observed
in Figure 2 with less T and N.

4.3. Guideline for practitioner

The obtained PO solutions and their post-optimal analy-
sis offer a platform to make guidelines for the practi-
tioner. From Figure 2, it clear that the practitioner has
three wide choices for selecting an optimal solution in
practice. For example, lower P-value solution can be
chosen from the surface solutions. On the other hand,
the extension solutions offer lower N and T values. The
knee-solutions offer a decent trade-off among the objec-
tives for selection.

In case the group of the surface solutions is chosen by
the practitioner, one PO solution has to be chosen from
many solutions having trade-off between N and T. As can
be seen from Figure 3(c), solution a1 corresponds to mini-
mum P but with very large N and T. If any solution with
lower T value is chosen, then approximately N = 30 passes
are required to finish the soil cutting operation. It is because
this solution is evolved with a lower value of H and D (refer
Figure 4(d)). Thus, a small size blade is used for soil cutting
at lower D. If a solution with lower N is chosen, then
approximately 3700 s are required to fill the blade with
soil. It means that a larger sized blade is used at lower D
to finish the soil cutting task.

The next group, which can be chosen by the practi-
tioner, is the extension solutions. These solutions corre-
spond to lower N and T objective values but with higher
P values. This is because medium to larger size blades are
used at higher D and v for soil cutting, which can be seen
from Figure 4(f). The solutions e1 and z1 belong to this
group. The range of T is from 146 to 250 s, and the range
of N is 6 to 13 for both solutions. Solution
z1 corresponds to minimum T, but P is relatively high
compared to solution e1. This is due to the larger-sized
blade with larger D and v having evolved for solution z1
against medium-sized blade at the same operating condi-
tion for solution e1. Thus, the practitioner can choose
e1 over z1. However, a solution with lowest P from the
group of extension solutions can be chosen since the
ranges of T and N are small.

The group of the knee-solutions is always preferable
to the practitioner. This is because all solutions under
this group show a decent trade-off among all objectives.
The solutions are evolved with the smaller to larger size
blades that are operated from lower to higher D values
and moderate v range. The P values are not high, and
the operation can finish in a reasonable range of N and
T. In this group, the soil cutting operation can be fin-
ished early if the larger-sized blade is used at higher D
but at the expense of higher P values. Otherwise, a
smaller blade with lower D and moderate v can be used.

From the above discussion, it is clear that once a
practitioner chooses the appropriate group of solutions,
then one PO solution can be chosen. This study offers
many choices to the practitioner for relative comparison
and final selection of an appropriate solution. In practice,
a set of bulldozer blades is available for performing the
soil cutting. An appropriate blade and the operating con-
dition can be found using the plots shown in Sections 4.1
and 4.2. For example, a suitable blade can be chosen from
the evolved dimensions of the blade of the PO solution.
The blade is then used with the evolved optimal operat-
ing conditions so that the desired objective function
values can be achieved.

4.4. Parametric analysis on constraints limits

In this section, parametric analysis of constraints limits
is performed to observe any change in the obtained PO
solutions. It can be observed that the values of Fmax and
Pdmin in (1) are set, and the PO solutions are generated.
However, these values can be altered by the practitioner
for which another set of the PO solutions can be
evolved. First, the current limit on the production rate
is changed to Pdmin = 0.2 m3/s. It can be seen in
Figure 5 that one set of PO solutions is now feasible.
For these solutions, the post-optimal analysis remains
the same as presented in Section 4.2. An interesting
observation is that any new run of NSGA-II for the
modified multi-objective optimization problem with
Pdmin = 0.2 is not required because the PO solutions
can directly be identified. A similar observation can be
seen in Figure 6 in which Fmax is set as 120 kN. In this
case also, one set of solutions becomes the PO solutions
for which NSGA-II has not been run, and the PO
solutions are identified.
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4.5. Validating solutions with experimental data

In the literature, various force models were compared with
the experimental data to determine the accuracy of the
cutting force at various cutting depths. These models were
tested for different types of soil, blades and operating con-
ditions in their respective studies. In King, Susante, and
Gefreh (2011), many force models were compared on two
types of soil and the same set of bulldozer and bulldozer
blade. For validating the multi-objective formulation,
NSGA-II is run for the given set of parameters for soil,
blade, and bulldozer, which are given in Table 4. NSGA-II
parameters are kept same. Fmaxis set as 0.05 kN and Pdmin is
set as 0.02 m3/s. It can be seen from Figure 7 that the
obtained PO solutions are closer to the experimental cutting
force of King et al. (2011). It concludes that the proposed

multi-objective formulation can be used in practice for
determining the optimal solution and condition for a bull-
dozer and its blade in soil cutting.

5. Conclusion

A multi-objective approach was adopted in this paper, and
the soil cutting operation for bulldozer and its blade was
formulated with three objectives and three problem-specific
constraints. The proposed formulation targeted an eco-
nomic and productive soil cutting operation. A hybrid
multi-objective evolutionary algorithm was used in which
the local searches were executed on few non-dominated
solutions by using the ε� constraint method. The obtained
solutions were validated with the experimental data from
the literature. The post-optimal analysis revealed that two
variables showed commonality for generating the PO solu-
tions. Other decision variables presented relationships for
trade-off among the objectives. With these results, some
guidelines were suggested for a practitioner that can be
used for making decisions in practice. With many useful
outcomes from this paper, a survey can be carried out for
adapting the proposed formulation and the post-optimal
analysis in practice in consultation with the practitioners.

(c)(b)(a)

Figure 6. The obtained PO solutions when F ≤ 120 kN is set.

(c)(b)(a)

Figure 5. The obtained PO solutions when Pd ≥ 0.2 m3/s is set.

Table 4. The parameters of King et al. (2011) for experimental validation of
solutions are presented.

γo (kg/m3) γ (kg/m3) Co (N/m2) C (N/m2) δ

700 1000 700 1400 17◦

Ad (N/m2) β ϕo ϕ B (m)
39 35◦ 30◦ 30◦ 0.0127
H (m) R (m) θ α v (m/s)
D+ 0.1 10000 0.001◦ 89◦ 0.0033

Figure 7. A close agreement between obtained PO solutions with the experimental data of King et al. (2011) is presented.
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Appendix

Cutting Force Model

Qinsen and Shuren (1994) developed the analytical model wherein the
cutting force is determined when the wide blade of the bulldozer becomes
fully loaded with soil. Various forces considered in this model are shown
in Figure 8 which are explained in the following paragraphs.

(1) The forces generated by the soil pile (fgde) moving on the ground

(a) Weight of the soil pile on the ground is given as,

m1g ¼ 1
2
γo B H þ 2Dtanφo

� �2
cotφo: (11)

where γo is the density of cut soil, and φo is the angle of accumulation
of cut soil.

Figure 8. Forces acting on the blade (Sharma & Barakat, 2018).

Figure 9. Forces acting on the soil wedge (Sharma & Barakat, 2018).
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(b) Frictional force between the soil pile and the ground is given as,

Ff1 ¼ m1g tanφ: (12)

where φ is the angle of internal friction.
(c) Cohesion force between the soil pile and the ground is given as,

Fc1 ¼ CO B H þ 2Dtanφo

� �
: (13)

where CO is the cohesion of cut soil.

(2) The forces generated by the cut soil (abdgf) sliding up between the
blade and the soil pile (fgde)

(a) Frictional force between the cut soil and soil pile is given as,

Pf 1 ¼ Ff 1 þ FC1
� �

tanφ (14)

(b) Cohesion force between the cut soil and soil pile is given as,

Pc1 ¼ COBRθ (15)

(c) Adhesion force between the cut soil and blade is given as,

Pad ¼ AdBRθ (16)

where Ad is the adhesion factor of soil-metal.
(d) Frictional force between the cut soil and blade is given as,

Pf 2 ¼ Ff 1 þ FC1
� �

tan δ (17)

where δ is the angle of soil-metal friction.
(e) Weight of the cut soil sliding upon the surface of blade is given as,

m2g ¼ 2γOBHD (18)

Other forces that are acting on the soil wedge at the failure zone are
shown in Figure 9. The following is the description of the forces.

(1) The forces generated on the sides of soil wedge

(a) Force acting normal to the faces (bcd) and (nmk) of the soil
wedge is calculated as,

G ¼ 1
6
γD3ð1� sinφÞ cot αþ cot βð Þ (19)

where γ is the density of uncut soil, αis the angle of cutting blade, and
β is the angle that the rupture makes with the horizontal
(b) Frictional force on the sides (bcd) and (nmk) of the soil wedge is

calculated as,

SF2 ¼ G tan φ (20)

where G is the force acting normal to the face (bcd) and (nmk) of soil
wedge.
(c) Cohesion force on the sides (bcd) and (nmk)of the soil wedge is

calculated as,

CF2 ¼ 1
2
CD2 cot αþ cot βð Þ (21)

(2) Other forces on the soil wedge

(a) Weight of soil wedge (bcdnmk),

m3g ¼ 1
2
γBD2 cot αþ cot βð Þ (22)

(b) Adhesion force between the soil and cutting edge of the blade is
given as,

Fad ¼ Ad

sin α
BD (23)

Thus, the force acting normal to the face (bdkn) of the soil wedge is
calculated as,

W ¼ Pf1 þ Pf2 þ Pad þ m2gþ m3g (24)

(3) Forces on the rupture plane (bdkn)

(a) Cohesion force on the rupture plane is calculated as,

CF1 ¼ C
sin β

BD (25)

(b) Frictional force on the rupture plane is calculated as,

SF1 ¼ Q tanφ (26)

The force acting on the cutting edge of the blade is given as,

Pr ¼
W sin βþ φð Þ � Fad cos αþ βþ φð Þ þ 2 SF2 cos φð Þ

þ 2 CF2 cos φð Þ þ CF1 cos φð Þ
sin αþ βþ φþ δð Þ (27)

The horizontal component of the resultant force acting on the blade is
determined as,

Fx ¼ Prsin αþ δð Þ þ F f1 þ Fc1 (28)

The vertical component of the resultant force acting on the blade is
determined as,

Fy ¼ Prcos αþ δð Þ � P f2 þ Padð Þ (29)

Therefore, the resultant cutting force on the blade is calculated as,

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2x þ F2y

2
q

(30)

which is used for determining the first objective function of power.
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