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Abstract

The Pareto-dominance-based multi-objective evolutionary algorithms (MOEAs)
have been successful in solving many test problems and other engineering op-
timization problems. However, their performance gets affected when solving
more than 3-objective optimization problems due to lack of sufficient selection
pressure. Many attempts have been made by the researchers toward improving
the environmental selection of those MOEAs. One such attempt is selecting
solutions using the reference-lines-based framework. In this paper, an efficient
environmental selection and normalization scheme are proposed for this frame-
work. The environmental selection operator is developed to equally prioritize
solutions associated with different lines drawn from the origin and the reference
points. A normalization scheme is also suggested in which the extreme point is
used which gets updated on the designed rules. The framework is referred to as
LEAF, and it is tested on 3-, 5-, 10-, and 15-objective DTLZ and WFG test in-
stances. LEAF demonstrates its outperformance on almost all DTLZ instances
and shows better performance on most of WFG instances over six MOEAs from
the literature.
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1. Introduction

A multi-objective optimization problem (MOP) is defined as

min f(x) = (f1(x), f2(x), . . . , fM (x)),
s.t. x ∈ Ω,

(1)

where M is the number of conflicting objectives, fi(x) is the i-th objective
function, x is the vector of decision variables, and Ω is the search space. Solving
a MOP generates a set of the optimal solutions which are known as the Pareto-
optimal (PO) solutions. Evolutionary algorithms (EAs) have been a choice5

for solving such MOPs because EAs can generate the PO solutions in a single
run. Therefore, EAs targeting MOPs, which is referred as MOEAs, are getting
attention world-wide from more than two decades. Moreover, the real world
problems, such as space trajectory [1], crash worthiness of vehicle [2], water
resource management [3], scheduling [4], bulldozer blade in soil cutting [5] etc.,10

have been modeled using multiple objectives that demand efficient MOEAs.
Existing MOEAs can be broadly categorized into three groups, such as

Pareto-dominance-based MOEAs, decomposition-based MOEAs, and indicator-
based MOEAs [6]. The decomposition-based MOEAs decompose a MOP into
a set of single-objective optimization subproblems using aggregate functions.15

These subproblems are solved simultaneously to evolve a population of solu-
tions. MOEA/D [7] is one such algorithm. Many variants of MOEA/D exist in
the literature, such as θ−DEA [8], improved decomposition-based evolutionary
algorithm (I-DBEA) [9], use of vector angle distance scaling scheme in multi-
ple single objective Pareto sampling (MSOPS) [10] to name a few. Similar to20

MOEA/D, the hyperdistance was calculated for each solution and the knee-
points were found for each subpopulation, which were classified using the uni-
form weight vector [11]. The reported limitations of the decomposition-based
MOEAs are the generation of uniformly distributed weight vectors for uniformly
dividing the objective space and criterion for each sub-problem that can ensure25

convergence of solutions to the PO front.
The indicator-basedMOEAs use performance indicator to assign a composite

fitness to solutions ensuring their convergence and diversity on the PO front
simultaneously [12]. The hypervolume (HV) indicator is found to be the most
successful indicator, but its computation requirement increases exponentially30

with an increase in the number of objectives. Later, the Monte-Carlo technique
was used to quantify HV [13]. Nevertheless, such algorithms need a higher
computational effort as compared to other types of MOEAs, which increases
with the number of objectives.

Unlike decomposition-based and indicator-basedMOEAs, Pareto-dominance-35

based MOEAs have been successfully used for solving many two- to three-
objective optimization problems [14]. However, for more than three objec-
tive problems, which are referred to as many-objective optimization problems
(MaOPs), such algorithms fail to generate the well converged and diverse solu-
tions over the entire PO front. The main reason is lack of generating enough40

selection pressure via Pareto-dominance ranking, which drives solutions toward
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the PO front. The selection pressure gets reduced because almost all solutions
become non-dominated for a high-dimensional objective space [15]. Another rea-
son behind reduced selection pressure is the diversity preserving operator, which
is either not efficient for MaOPs, like crowding distance operator of NSGA-II45

[16], or computationally expensive, like k−th nearest neighborhood operator of
SPEA2 [17]. It is noted that MOEAs for solving MaOPs are now referred to as
MaOEAs in this paper.

In the literature, the Pareto-dominance-based MaOEAs have been improved
either by modifying or relaxing the Pareto-dominance relation and/or by modi-50

fying the diversity preserving operator for a better environmental selection. The
aim is to maintain enough selection pressure during the evolution process so that
solutions can converge to the PO front. Kukkonen and Lampine [18] proposed
a ranking-dominance relation as an alternative to the Pareto-dominance rank-
ing. Many authors have explored a fuzzy dominance [19] in which the fuzzy55

numbers and arithmetic for k−optimality condition have been used [20]. Later,
the fuzzy-dominance relation has been developed for comparing a pair of two
solutions [21]. The fuzzy fitness is then used to sort solutions in different fronts
similar to NSGA-II [16]. Similarly, L−dominance relation [22], α−dominance
relation [23], and angle-dominance criterion [24] have been developed to re-60

place Pareto-dominance relation. From the above literature, it was observed
that such modified or relaxed approaches could drive the search toward the PO
front. However, the solutions can poorly represent the entire PF for MaOP.

Another approach for maintaining a sufficient environmental selection for
the Pareto-dominance-based MOEAs is to enhance diversity. Adra and Flem-65

ing [25] proposed two diversity management mechanisms that were coupled with
NSGA-II. Li et al. [26] proposed the shift-based density estimation (SDE) to
pull the poorly converged solutions into the crowded regions for elimination.
Deb and Jain [27] proposed NSGA-III in which a niching technique based on
the structured reference points [28] on a unit hyperplane was proposed. Solu-70

tions are first normalized and then, associated with the closest reference line,
which is drawn from the origin and one of the reference points. Thereafter, a
niche count for each reference line is counted, which signifies the number of solu-
tions associated with it. Solutions are then selected according to the ascending
order of the niche count of the reference lines. Yang et al. [29] introduced a75

grid-based EA in which the fitness of each solution is determined by incorpo-
rating the grid ranking, the grid crowding distance, and the grid coordinate
point distance criteria. Zhang and Li [30] used grids to eliminate dominance
resistance solutions. Thereafter, the entropy-based reference distance is used to
rank and select non-dominated solutions for the next generation. Chen et al.80

[31] introduced the dominant solution in the environmental selection in which a
hyperplane was created for each solution by its neighboring solutions. After se-
lecting prominent solutions, other non-dominated solutions were selected using
the angle-based diversity operator.

Li et al. [32] incorporated decomposition and dominance at the environmen-85

tal selection. The weight vectors are constructed with the help of structured ref-
erence points. A neighborhood for each weight vector is formed, which consists
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of T closest weight vectors. A restricted mating is then employed for creating
an offspring in which a pair of two solutions is chosen from the common neigh-
borhood. A unique subregion is also defined for each weight vector. When an90

offspring is added to the population, a solution from the most crowded region
is removed. Jiang and Yang [33] proposed a composite fitness function which is
determined using the local and global fitness functions. The local fitness func-
tion consists of a local row fitness and an angle-based density estimation. The
reference directions similar to NSGA-III are used and subregions are defined for95

each reference direction. The local fitness is calculated among the solutions of
the same subregion. The global fitness, similar to the raw fitness of SPEA2 [17],
is assigned to each solution. Solutions based on the composite fitness are then
selected from each subregion to fill the next generation population.

Xiang et al. [34] proposed a vector-angle based MaOEA in which the diver-100

sity is maintained through a maximum vector angle between the solutions. After
non-dominated sorting the solutions in different fronts, the extreme solutions
that have the minimum vector angle with the unit direction of each objective
axis are selected to the population P . Thereafter, the first M solutions are
copied to P based on the fitness. Rest of the solutions from the last front are105

copied one by one according to the maximum vector angle between the solution
and the solutions in P . Zhang et al. [35] proposed the knee-solutions-based
diversity preserving mechanism in which a hyperplane is constructed from the
extreme solutions of the non-dominated front. The knee-solutions are identified
by determining the maximum distance of these solutions in their neighborhood110

from the hyperplane. The k− nearest neighbors approach is adopted for calcu-
lating the weighted distance of a solution.

Ibrahim et al. [36] proposed to keep an archive of elite solutions which may
get eliminated using NSGA-III’s environmental selection. The elite solution
having the minimum distance from the ideal point for each reference line is se-115

lected to update the archive. Bi and Wang [37] improved NSGA-III by diving
the objective space into M−subspaces. First, the M−clusters are created from
the N−weight vectors using the k−means clustering algorithm. The central
vector for each subspace is then found. A restricted mating in each subspace is
performed to generate offspring. Each offspring solution is then assigned to a120

subregion by finding the minimum angle between a solution vector and the cen-
tral weight vector. The niching technique is same as NSGA-III; however, PBI
distance of MOEA/D is used, instead of association of NSGA-III. Recently,
Chen and Li [38] proposed a diversity ranking method, and a reference vector
adaptation method for environmental selection using NSGA-III framework. Liu125

et al. [39] implemented two strategies at the environmental selection in which
the angle-based selection is used to find a pair of solutions with minimum an-
gle between them. The worst solution is deleted using the shift-based density
estimation. Liu et al. [40] proposed to generate reference points using the cur-
rent population. The solutions, which were closest to the reference points, got130

selected for the next generation. Zhang et al. [41] proposed a dominance-based
archiving approach in which a solution got selected from each subspace defined
by the weight vectors. Using normalized distance method, redundant solutions
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from each subspace were deleted. Bai et al. [42] also followed the similar ap-
proach of selecting one solution a subspace. The angle-based truncation was135

also included to remove solutions gradually from the critical layer.
In the above studies, the diversity for selecting solutions has been maintained

using the reference lines or vector framework. However, many times solutions
are not associated with each reference line that leads to diversity loss. Since
the Pareto-dominance ranking is not sufficient when many solutions are non-140

dominated, the environmental selection needs attention to select at least one
solution from each reference line or vector. Some attempts have been made
in the literature to focus on the selection of a diverse set of solutions from
each reference line. NAEMO [43] is the recent attempt in which sub-archive
for each reference line is maintained. Even if a single solution in any archive145

is dominated by another solution, it is retained to keep diversity. Restricted
mating and various mutation strategies are also attempted. Periodic filtering
is used to keep the archive size constant. On a similar line, the DoD approach
[44] has been proposed in which diversity is given emphasis over dominance.
For diversity, clusters of solutions for each reference lines are made using the150

association operator of NSGA-III and the best solution based on non-dominated
sorting and distance to the line gets selected. In case there is no cluster for any
reference line, then the solution closest to this line gets selected and makes a
cluster. In the previous attempts like θ−DEA [8], MOEA/DD [32] to name
a few, the diversity has been given the priority over dominance. However,155

proper attention has not been given when some lines have no associated solution.
Moreover, it has been reported in [8, 44, 45] that normalization is crucial to
the reference-lines-based MaOEAs, like NSGA-III in which the population is
normalized using the intercepts. However, the degenerate cases are evolved
when a unique intercept on each axis cannot be found. Moreover, the negative160

intercept is also unacceptable. These issues have not been clearly described
in NSGA-III. However, many MaOEAs handle this issue by considering the
ideal and worst points of the non-dominated set to normalize the population
[33, 34, 46], or worst objective value of the population [9, 37, 47, 48].

This paper targets two issues of MaOEAs that are developed using the165

reference-lines-based framework. The first issue is selecting a diverse set of
solutions when some lines have no associated solution, and another issue is nor-
malization of the population. Therefore, the paper has the following contribu-
tions. (1) A novel environmental selection is proposed, which equally prioritizes
the reference lines and makes clusters of solutions by using association oper-170

ator of NSGA-III. This selection operator then selects only one solution from
each cluster. (2) When some lines have no cluster of solutions, re-association
is introduced among the remaining solutions and clusters are made for further
selection. The re-association is repeated till all lines have a cluster of at least
one solution. (3) Moreover, a normalization scheme is also suggested in which175

an extreme point is used which gets updated under certain rules. (4) The pro-
posed algorithm is tested on a wide range of DTLZ and WFG test instances up
to 15 objectives and the results are compared with the outcome of six MaOEAs
from the literature.
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The paper is organized into five sections. In Section 2, the framework for180

MaOEA is described with the proposed environmental selection and normal-
ization scheme. Section 3 presents details of simulation experiments for DTLZ
and WFG test problems. The various parameters required to execute a set of
MaOEAs are also presented. Section 4 presents a detailed analysis of the pro-
posed algorithm with the existing MaOEAs by solving DTLZ and WFG test185

problems. Section 5 concludes the paper with some future work.

2. Proposed Algorithm

2.1. General Framework and Overview

The proposed algorithm is developed using the reference-lines-based frame-
work similar to NSGA-III framework, which is shown in Algo. 1. The major190

inputs required by the framework are M , N , and H . A set of reference points
(H) is generated using Das and Dennis approach [28], which is described later
in Section 2.2.2. In this framework, a population with N solutions is initialized
randomly. The global extreme point (e) is used which is constructed from the
maximum objective function values as shown at step 2 of Algo. 1. This extreme195

point will be utilized later in the proposed normalization scheme. In a typical
generation t, a pair of solutions is selected randomly from the parent population
(Pt) for performing crossover and mutation. Similarly, other pairs of solutions
are selected randomly one by one without repetition for creating a mating pool.
An offspring population (Qt) is then created by using the simulated binary200

crossover and polynomial mutation operators [49] on the mating pool. In the
present form of generational MaOEAs, the parent and offspring populations
are combined to create Rt, which is (Pt ∪ Qt) of size 2N . The combined
population Rt is then sorted into the non-dominated fronts (F1, F2, . . . ) using
the non-dominated sorting operator of NSGA-II. The fronts are then copied to205

a temporary population St until the size of St is equal to or less than N as
shown at step 10. The population Pt+1 is return, if the size of St is equal to
N . Otherwise, solutions of Fl is included into St as shown at step 16. The
proposed line-prioritized environmental selection then selects solutions from St

to fill the next generation population Pt+1 at step 17. In the following subsec-210

tions, the environmental selection, normalization scheme and other operators
are described.

2.2. Environmental Selection

Environmental selection is crucial for MaOEAs because it can maintain
enough selection pressure when almost all solutions are non-dominated. For215

the proposed environmental selection, various inputs are required as shown in
Algo. 2. The environmental selection involves normalization, association, and
line-prioritized selection, which are described in the following sub-sections.
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Algorithm 1 Framework for proposed algorithm

Input: Parameters, t = 1, M : objectives, N : population size, H : set of
reference points

Output: A set of non-dominated solutions

1: Initialize random population (Pt)
2: Compute extreme point: e = (e1, e2, . . . , eM )T such that ej = max

x∈Pt

fj(x)

3: while t ≤ T do

4: P
′

t = Random selection (Pt)
5: Qt = Recombination + Mutation (P

′

t ) % Offspring population
6: Rt = Pt ∪Qt

7: (F1, F2, . . . ) = Non-dominated sorting (Rt)
8: St = ∅, i = 1
9: while |St ∪ Fi| ≤ N do

10: St = St ∪ Fi

11: i = i+ 1
12: end while

13: if |St| = N then

14: Pt+1 = St and return Pt+1

15: else

16: St = St ∪ Fl %Fl is the last front to be included.
17: Pt+1 = Environmental selection (St, H, e)
18: end if

19: t = t+ 1
20: end while

Algorithm 2 Environmental selection (St, H, e)

Input: St, H, e
Output: Pt+1 of size N

1: S̄t = Normalization (St, e)
2: (π, d) = Associate (S̄t, H, ρ)% Initializing ρ = {0, . . . , 0}T , where ρ ∈ R|H|

3: Pt+1 of size N = Line-Prioritized-Selection (S̄t, π, d)
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2.2.1. Proposed Normalization Scheme

The normalization scheme uses the extreme point (e) which gets updated
as presented in Algo. 3. First, the ideal point of population St is calculation
at step 1. Thereafter, St gets translated by subtracting it from the ideal point
(step 2). This translation makes the ideal point of translated population at
the origin. A set of extreme solutions Z is created by using the augmented
scalarizing function using (2) at step 3.

zej = f
′

(s), s : min
s∈St

(

M
max
i=1

f
′

i (s)/wi

)

, (2)

where zej is the extreme solution corresponding to j−th objective, f
′

(s) is the220

translated objective vector of solution s, f
′

i (s) is the i−th component of f
′

(s),
and wi’s are the weights for each objective. In order to calculate j− component,
that is, zej , wj = 1 and the rest of weights are kept 10−6.

This set constructs a hyperplane for which intercepts are found to normalize
the objectives (step 8). It is worth mentioning that the extreme solutions of Z225

create a system of linear equations which has to be solved for finding intercepts
on each objective axis. But due to negative intercept or duplicate solutions in
Z, it cannot be utilized for normalization. Therefore, the rules have been made
when duplicate solutions in Z are identified. For example, if any duplicate is
found, the Nadir point is found from the set of non-dominated solutions of St at230

step 6. Similarly, any intercept is negative as shown at step 11, the Nadir point
is found. In the absence of duplicates or negative intercepts, the extreme point
e is updated with the current intercepts as shown at step 14. Otherwise, a rule
has been made to check at step 18 in which a component of the extreme point e
gets updated, if the corresponding Nadir point component is smaller (step 19).235

Lastly, each translated objective function value is normalized by diving it by the
extreme point e at step 22. This normalization scheme keeps the best intercept
in each objective axis and gets updated for only two conditions as explained
earlier. It is noted that a zero-pivot scenario can arise at step 8, while solving
the system of linear equations. In that case, the extreme point e is calculated240

the same as mentioned at step 2 of Algo. 1.

2.2.2. Association

The purpose of the association is to assign the closest solution from S̄t to
each of the reference lines. First, a set of reference points (H) is created on
a unit hyperplane using Das and Dennis approach [28]. In this approach, the
structured points are created which are equally inclined to all objectives. The
total number of reference points (|H |) that is created by dividing each objective
axis into p divisions is given by

|H | =

(

M + p− 1
p

)

(3)

A three-objective case with p = 5 divisions is shown in Fig. 1 in which

|H | =

(

3 + 5− 1
5

)

or 21 reference points are created. It has been mentioned
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Algorithm 3 Normalization (St, e)

Input: St, e
Output: S̄t

1: Compute ideal point, zI = (zI1 , z
I
2 , . . . , z

I
M )T such that zIj = min

s∈St

fj(s)

2: Translate objectives, f
′

(s) = (f
′

1(s), f
′

2(s), . . . , f
′

M (s))T such that f
′

j(s) =

fj(s)− zIj , ∀s ∈ St

3: Compute extreme solutions, Z = (ze
1
, ze

2
, . . . , ze

M
) such that zej = f

′

(s), s :

min
s∈St

(

M
max
i=1

f
′

i (s)/wi

)

4: Compute number of duplicate solutions (d) in Z
5: if d > 0 then

6: Compute Nadir point, zN = (zN1 , zN2 , . . . , zNM )T such that zNj = max
s∈S∗

t

fj(s)

and S∗
t ∈ St is the set of the non-dominated solutions.

7: else

8: Compute intercept a = (a1, a2, . . . , aM )T from (Z)
9: flag=0

10: if ai < 0 then

11: Compute Nadir point, zN = (zN1 , zN2 , . . . , zNM )T such that zNj =
max
s∈S∗

t

fj(s) and S∗
t ∈ St is the set of the non-dominated solutions.

12: flag = 1
13: else

14: ej = aj , ∀j ∈ {1, . . . ,M}
15: end if

16: end if

17: if d > 0 or flag==1 then

18: if zNj < ej , where j ∈ {1, . . . ,M} then

19: ej = zNj
20: end if

21: end if

22: f̄j(s) = f
′

j(s)/ej, ∀s ∈ St, ∀j ∈ {1, . . . ,M}
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in [27] that when the number of objectives is higher, Das and Dennis approach245

[28] will create many reference points, which otherwise are not required. The
limited number of reference points are then created using the two-layer approach
in which the inner layer is half of the outer layer as shown in Fig. 2. Although
the figure shows for the 3-objective case, it has been used for more than 5-
objective optimization problems. In the two-layer approach, the reference points250

are created on those layers only with a relatively small number of divisions. In
the figure, the outer layer has p1 = 3 divisions and the inner layer has p2 = 1
division that is creating 13 reference points.

Unit
hyperplane

Reference
point

 0

 0.5

 1  1

 0

 1

 0

f3

f1

 0

 0.5
f2

Figure 1: The structured reference points are shown on the unit hyperplane for a three-
objective case when the number of divisions is p = 5.

Outer layer

Inner
layer

 0

 0

 0

 1  1

 0.5

f3
 1

f1
 0.5

f2

Figure 2: The structured reference points on the outer and inner layers are shown on the unit
hyperplane for a three-objective case for understanding and visualization. The outer layer has
p1 = 3 divisions and the inner layer has p2 = 1 division. The two-layer approach is used for
more than 5-objective optimization problems.

In Algo. 4, a set of reference lines (W ) is created such that each reference
line passes through the origin and the corresponding reference point at step 2.255

Thereafter, the solution from S̄t are associated with those lines which have
zero niche count (ρr = 0) as shown at step 6 of Algo. 4. The niche count of a line
is referred to as the number of solutions associated with it. For each solution
s ∈ S̄t, the closest reference line is identified using steps 7 and 10. Thereafter,
the nearest reference line to solution s is stored in π(s) and its distance is stored260

in d(s). It can be observed that this association is the same as NSGA-III’s
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association when the niche count of every reference line is zero. However, a line
having any associated solution is not considered further for the association. This
is referred to as re-association, which is used in the line-prioritized environmental
selection in the following subsection.265

Algorithm 4 Associate (S̄t, H, ρ)

Input: S̄t, H , ρ = (ρ1, ρ2, . . . , ρH)T , initialize W = ∅.
Output: π, d

1: for (i = 0, i ≤ H, i ++) do
2: Compute reference line r and W = W ∪ r

3: end for

4: for all s ∈ S̄t do

5: for all r ∈ W do

6: if ρr == 0 then

7: Compute dist(s, r) = ||(s− rT sr/||r||2)||
8: end if

9: end for

10: π(s) = r : argmindist(s, r) %Associates s to line π(s)
11: d(s) = dist(s, π(s)) %Stores minimum distance of s to d(s)
12: end for

2.2.3. Line-Prioritized Environmental Selection

The line-prioritized environmental selection is proposed to select at least
one solution (s ∈ St) representing each reference line to the next generation
population Pt+1. It is developed in three stages which are shown at steps 1, 12,
and 22 of Algo. 5. The purpose of the stage - 1 is to select the best ranked270

closest solution for every reference line. At the beginning of this stage, Pt+1 is
kept empty and the niche count (ρ) for every reference line is zero. The solutions
of S̄t are now associated with the reference lines as shown at step 3. The front-
wise selection of solutions is initiated at step 4 in which the solutions of F1 are
considered first. Since these solutions can be associated with some reference275

lines, the solutions which are closest to those reference lines r ∈ H are selected.
The niche count of those reference lines is increased by one. A condition is
included at step 6 which ensures that only one solution for every reference line
is selected into Pt+1. It is noted that solutions of F1 may not be associated
with some of the reference lines. In order to select one solution for those lines,280

the solutions from F2 followed by other fronts (F3, . . . , Fl) are considered. The
solutions closest to the reference lines having zero niche count are selected into
Pt+1 and the niche count is updated. It can be observed that the selected best
ranked closest solution to the reference lines may or may not belong to the front
1. However, diversity is preserved among the selected solutions of Pt+1.285

The stage - 2 is then initiated at step 12, which has a purpose of selecting
remaining solutions for those reference lines which has no associated solution in
the stage - 1. Therefore, the remaining solutions from S̄t are re-associated at

11



step 14. It is important to note that these remaining solutions will be associated
with those lines, which have zero niche count after the stage - 1 as shown at step290

6 of Algo. 4. After re-association, the solutions closest to the reference lines
having zero niche count are selected to Pt+1 and the niche count is updated by
one. In this stage also, only one solution is selected for the reference lines. It
is important to note that the closest solution to the reference line is selected
irrespective of its rank.295

At last, the stage - 3 is initiated at step 22 which only has the purpose to fill
the Pt+1 up to its maximum size when |H | < N . As per the last re-association
of the stage - 2, the closest solutions to any reference line is selected to Pt+1.

Algorithm 5 Line-Prioritized-Selection (S̄t, π, d)

Input: S̄t, π, d
Output: Pt+1 of size N

1: % Stage 1: Selecting the best ranked closest solution to each line
2: Pt+1 = ∅, ρ = {0, . . . , 0}T , where |ρ| = |H |
3: (π, d) = Associate (S̄t, H, ρ)
4: for i = 1 → l do {% l refers to the index of the last front Fl}
5: for all r ∈ W do

6: if ρr == 0 then

7: Pt+1 = Pt+1 ∪ s : argmindist(s, r), s ∈ Fi

8: ρr = ρr + 1, S̄t = S̄t/s
9: end if

10: end for

11: end for

12: % Stage 2: Re-associating and selecting solution to the remaining lines
13: while |Pt+1| < N do

14: (π, d) = Associate (S̄t, H, ρ) % Re-associate the solutions which are not
selected yet to the references lines which have zero niche count

15: for all r ∈ W do

16: if ρr == 0 then

17: Pt+1 = Pt+1 ∪ s : argmindist(s, r)
18: ρr = ρr + 1, S̄t = S̄t/s
19: end if

20: end for

21: end while

22: % Stage 3: Filling Pt+1 when |H | < N
23: while |Pt+1| < N do

24: for all r ∈ W do

25: Pt+1 = Pt+1 ∪ s : argmindist(s, r)
26: ρr = ρr + 1, S̄t = S̄t/s
27: end for

28: end while

The graphical illustration of environmental selection of NSGA-III and LEAF
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for different cases is shown in Fig. 3. A combined population of |P ∪ Q| = 14300

solutions are shown in the figure from which N = 7 solutions will be selected
using seven reference lines (L1, L2, . . . , L7). In case - 1, the solutions are sorted
in different fronts, such as F1 = 3, F2 = 3, F3 = 7, F4 = 1. Here, NSGA-III
selects {1, 2, 3, 4, 5, 6} from F1 and F2, and one random solution ({12}) from
F3. LEAF in this case selects {1, 3} from lines L1 and L7. Now, the solutions305

from other lines are selected, such as {5} from L2 and {11, 12} from lines L4

and L5 respectively. The stage-1 of Algo. 5 is over now. As of now, there is no
solution selected from lines L3 and L6. LEAF then re-associates the remaining
solutions with these lines and selects {9, 2} as discussed in the stage-2 of Algo.
5.310

In case - 2, the solutions are sorted in F1 = 10, F2 = 4 fronts. NSGA-III se-
lects solutions {1, 3, 6, 8, 10} and randomly selects solutions {4, 5}. For this case,
LEAF selects solutions {1, 3, 6, 8, 13, 10} from lines L1, L2, L4, L5, L6, L7 using
the stage-1 of Algo. 5. Using re-association at stage-2 of the same algorithm, it
selects {11} for the remaining line L3.315

In case - 3, all solutions are non-dominated, that is, F1 = 14. NSGA-III
selects solutions {1, 4, 7, 10, 14} and can randomly select {3, 9}. LEAF in this
case selects solutions {1, 4, 7, 10, 14} from lines L1, L3, L4, L5, L7. For selecting
solutions for the remaining lines L2 and L6, LEAF re-associates the remaining
solutions with these two lines and selects {2, 12}. In all of the above cases,320

LEAF gives priority to select a diverse set of solutions from each reference line
by associating and re-associating them.

2.3. Computational Complexity

The worst computational complexity is determined by considering popula-
tion of 2N or St = F1 = 2N. The environmental selection of LEAF involves325

normalization, association, and line-based selection. The worst complexity of
normalization is O(MN). The worst complexity of association is O(MNH).
The worst complexity of line-based selection is O(N2M). Therefore, the worst
computational complexity of LEAF for one generation is either O(N2logM−2N)
(non-dominated sorting) or O(N2M) (association), whichever is larger.330

3. Details for Simulation Experiment

In this section, the details of various experiments performed for analyzing
the performance of LEAF are presented. First, the test problems used for
performance evaluation are discussed. Thereafter, the performance metrics are
described. We also present a brief discussion on MaOEAs which have been335

taken for comparison. The settings for experiments are provided thereafter.

3.1. Test Problems

For comparison, two well-known test suits, DTLZ [50] and WFG [51], are
used. Since both the test suits are scalable, the number of objectives considering
in this paper is M ∈ {3, 5, 8, 10, 15} for DTLZ problems andM ∈ {3, 5, 8, 10} for340
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Figure 3: Different cases for comparing NSGA-III and LEAF. (1) Case - 1: F1 = 3, F2 =
3, F3 = 7, F4 = 1, (2) Case - 2: F1 = 10, F2 = 4, (3) Case - 3: F1 = 14.
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WFG problems. For DTLZ problems, the number of decision variables is given
as n = M + k − 1, where k = 5 for DTLZ1, and k = 10 for DTLZ2-4 problems.
For WFG1-9 problems, the number of decision variables is set to n = k + l
in which the position-related variable is k = 2 × (M − 1), and the distance-
related variable is l = 20. The above test problems pose various challenges for345

MaOEAs in generating a well-converge and well-diverse set of solutions on the
Pareto-optimal front. The characteristics of these problems are listed in Table
1.

Table 1: Characteristics of test problems

Test problems Characteristics
DTLZ1 linear, multi-modal
DTLZ2 concave
DTLZ3 concave, multi-modal
DTLZ4 concave, biased
WFG1 mixed, biased
WFG2 convex, disconnected, multi-modal, non-separable
WFG3 linear, degenerate, non-separable
WFG4 concave, multi-modal
WFG5 concave, deceptive
WFG6 concave, non-separable
WFG7 concave, biased
WFG8 concave, biased, non-separable
WFG9 concave, biased, multi-modal, deceptive, non-separable

3.2. Performance Indicators

Two performance indicators are used to examine the performance of the350

proposed algorithm with the existing MaOEAs. The inverse generalized distance
(IGD) indicator [7, 52] and hypervolume (HV) indicator [53] are used which
can measure convergence, diversity, and spread of the obtained non-dominated
solutions.

IGD indicator is calculated as,

IGD(Q,P∗) =

|P∗|
∑

i=1

|Q|

min
j=1

d(pi, qj)

|P ∗|
, (4)

where P ∗ is the set of PO solutions, Q is the set of obtained non-dominated so-355

lutions, |P ∗| is the cardinality of P ∗, |Q| is the cardinality of Q, and d(pi, qj) =
||pi − qj ||2. IGD indicator can measure convergence and diversity of the ob-
tained non-dominated solutions with respect to the PO solutions. It has been
a common choice for many recent studies presented in Section 1.
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Another indicator is HV which measures the size of the objective space
dominated by the solutions in Q and bounded by zr. It is determined as

HV (Q) = V OL

(

⋃

x∈Ω

[f1((x), z
r
i ]× . . . [fM ((x), zrM ]

)

, (5)

where V OL(.) indicates the Lebesgue measure, and zr = (zr1 , . . . , z
r
M )T is the360

reference point in the objective space that is dominated by all Pareto-optimal
solutions. The large is the HV value, the better is the quality of Q for ap-
proximating the PO front. For DTLZ1, zr = (1, . . . , 1)T is chosen. For other
problems DTLZ and WFG problems, zr = (2, . . . , 2)T is considered. The HV

values presented in this paper are normalized to [0, 1] by dividing z =

M
∏

i=1

zri .365

Both the indicators are determined by normalizing Q, except for DTLZ1.
For IGD indicator, a set of the PO solutions P ∗ is required, which is cal-

culated with the help of the reference lines created at step 2 of Algo. 4. The
reference lines pass through the origin and their respective reference points. The
points of intersection of these reference lines with the PO front is then evalu-370

ated which constitutes a set of the PO solutions, P ∗. For DTLZ1 problem, the
Pareto-optimal front is the hyperplane having intercepts at 0.5 in each objective
in the first quadrant, that is,

∑M

i=1 fi = 0.5, ∀fi ≥ 0. DTLZ2-4 problems have
the hypersphere of radius one as the PO front in the first quadrant, that is,
∑M

i=1 f
2
i = 1, ∀fi ≥ 0. WFG4-9 problems have the same PO front as of DTLZ2.375

3.3. Significance Test

A difference for statistical significance is tested using the Wilcoxon signed-
rank test [54] at 5% significance level for the assessment of obtained results from
two competing MaOEAs.

3.4. Algorithms for Comparison380

Six algorithms from the literature have been chosen for the comparison with
LEAF, that are, NSGA-III [27], MOEA/D [7], SPEA2+SDE [26], SPEA/R [33],
VaEA [34], and GrEA [29].

Since LEAF is using a similar framework of NSGA-III, the non-dominated
sorting and association are the same. However, the environmental selection and385

normalization are different. The environmental selection of NSGA-III involves
niche preservation in which the niche count for every reference line is determined
for St population. Thereafter, the solutions from Fl are selected based on the
least niche count of the reference lines. In LEAF, the environmental selection is
performed by equally prioritizing the reference lines and selecting one solution390

for each line. Association and re-association are performed in three stages so
that a diverse set of solutions gets selected. In normalization, determining inter-
cept on each objective axis is same in both MaOEAs. However, for degenerate
cases LEAF proposes a set of rules for updating the extreme point.
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MOEA/D is a decomposition-based MaOEA in which MaOP is decomposed395

into many single-objective optimization subproblems using the aggregate func-
tion (penalty-based boundary interaction, PBI). All subproblems are solved si-
multaneously for predefined weight vectors. For performing crossover and local
environmental selection, a neighborhood is defined for subproblem. MOEA/D
and NSGA-III are the common choices for comparing the new algorithm in the400

literature [55].
SPEA2+SDE employs the shift-based density estimation as described in

Section 1 for diversity and uses SPEA2 fitness for the environmental selection.
SPEA/R uses the k−layer reference direction generation approach, instead

of [28]’s approach. It is developed on the diversity-first and convergence-second405

strategy. Therefore, solutions are associated with the reference direction first
and then, the fitness, as described in Section 1, is used in the environmental
selection. SPEA/R uses normalization using the ideal and Nadir points from
the non-dominated front. It also allows restricted mating for crossover.

VaEA uses a similar framework of NSGA-III in which the worst solutions410

from the combined population of parent and offspring populations are used for
normalization. The association is performed using the vector angle. Therefore,
the environmental selection is done based on the maximum-vector-angle and
worse-elimination principles.

GrEA uses the grid-based criteria for the fitness assignment in which the415

grid ranking, the grid crowding distance, and the grid coordinate point distance
are used. In the environmental selection, the Pareto-ranking is used and the
solutions of Fl is chosen based on the grid-based fitness.

3.5. Experiment Settings

3.5.1. Population Size420

The population sizes, divisions and reference points for all MaOEAs are
given in Table 2.

Table 2: Number of reference points and corresponding population sizes for MaOEAs

No. of divisions No. of ref. Population
obj. (M) p or (p1, p2) points (H) (N)

3 12 91 92
5 6 210 210
8 (3, 2) 156 156
10 (3, 2) 275 276
15 (2, 1) 135 136

3.5.2. Runs and Termination Criterion

All MaOEAs are run for 20 times with different initial population. The
outcomes of 20 runs are stored for evaluating the performance indicators. The425

termination criterion is set for the maximum number of generation, which is the
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same as mentioned in [27]. Table 3 summarizes termination conditions for all
problems.

Table 3: Maximum number of generations for terminating MaOEAs.

No. of DTLZ1 DTLZ2 DTLZ3 DTLZ4 WFG (all)
objectives

3 400 250 1000 600 1000
5 600 350 1000 1000 1250
8 750 500 1000 1250 1500
10 1000 750 1500 2000 2000
15 1500 1000 2000 3000 3000

3.5.3. Other Parameters

In all MaOEAs, the SBX and polynomial mutation operators [49] are used430

for generating offspring. The probability of crossover is set to 1.0, and the prob-
ability of mutation is 1/n, where n is the number of variables. The distribution
index for SBX operator is ηc = 30, and the distribution index for polynomial
mutation operator is ηm = 20.

The number of division is set to 10 for GrEA. The archive size is set same435

as the population size for SPEA/R, and the number of k−layers for 3, 5, 8,
10 and 15 objectives for all problems is k =7, 8, 5, 6 and 3 respectively. The
population size is determined as N = 4× ceil(((M ×k× (k+3)/2)+1)/4). The
PBI approach is used in MOEA/D for which T is set to 20 and θ =5.

4. Results and Discussion440

In this section, LEAF is compared with the existing MaOEAs and its perfor-
mance is evaluated using IGD and HV indicators on DTLZ and WFG problems.
First, the proposed normalization is implemented with NSGA-III code devel-
oped by the authors and the results are compared with the results of [27]. Later,
the LEAF is compared with the set of MaOEAs.445

4.1. Comparison with NSGA-III

We develop NSGA-III code1 using the c-programming framework of NSGA-
II2. The operators as defined in [27] are implemented, except normalization
because it is not defined clearly for the degenerate cases. Therefore, the nor-
malization proposed in this paper is used and referred to as NNSGA-III in450

which an extra ‘N’ stands for normalization. The same set of test problem in-
stances is solved, which is reported in [27] with the same set of parameters for

1Source codes of LEAF and NNSGA-III at https://www.iitg.ac.in/dsharma/pub.html.
2http://www.egr.msu.edu/∼kdeb/codes.shtml, Version: NSGA-II in C with gnuplot (Real

+ Binary + Constraint Handling), Revision 1.1
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algorithm and test problems. Table 4 presents IGD values obtained from [27]
study and from NNSGA-III. It can be seen that NNSGA-III is able to generate
equivalent results reported in [27]. NNSGA-III shows better IGD values for 88455

instances, and NSGA-III shows better IGD values for 47 instances. During the
implementation of NNSGA-III, it was observed that the performance of the al-
gorithm is sensitive toward the normalization technique. Since the source code
of NSGA-III is not made available by its authors, many versions of NSGA-III
codes are available made by other researchers and the results are compared in460

[8, 33, 34] and those results are not similar to the original NSGA-III results. In
that scenario, NNSGA-III source can be used for a relative comparison.

4.2. Performance on DTLZ problems

Table 5 presents the statistical IGD values obtained from MaOEAs. It can
be seen that LEAF shows better IGD values in 54 instances of DTLZ problems.465

In the remaining six instances, NSGA-III is the winner by showing better IGD
values. Other MaOEAs fail to generate better IGD value for any instance. The
table also shows a comparison of results based on the outcome of the Wilcoxon
signed-rank test in which ‘+’ indicates significantly better performance of LEAF
over the corresponding MaOEA. Similarly, ‘−’ and ‘=’ signs indicate signifi-470

cantly bad performance and equivalent performance of LEAF over the corre-
sponding MaOEA, respectively. A relative performance of LEAF is also found
based on the Wilcoxon signed-rank test in which if LEAF is significantly better
than MaOEA (i) (‘+’ sign in Table 5), then the score of MaOEA (i) is incre-
mented by one. If MaOEA (i) is significantly better than LEAF (‘−’ sign in475

the same table), then the score of LEAF is incremented by one. In the case
of equivalent performance (‘=’ sign in the table), the score is unchanged. This
relative performance is similar to the performance score used in [8]. Table 9
presents a relative performance of MaOEAs based on IGD values in which the
ratio indicates win/loss of LEAF over the corresponding MaOEA. It can be480

clearly seen that LEAF outperforms all MaOEAs in each objective dimension
of all DTLZ problems.

Table 6 presents the statistical values of HV obtained from MaOEAs on
DTLZ problems. SPEA2+SDE shows better HV values for 23 instances, mainly
in 8- and 10-objective DTLZ2 and all objectives of DTLZ3 problems. LEAF485

shows better HV values for 21 instances, mainly in all objectives of DTLZ1, 3-
and 5- objective of DTLZ2, and 5-objective DTLZ4 problems. NSGA-III and
MOEA/D show better HV value for only one instance. The Wilcoxon signed-
rank test is again used to compare results of MaOEAs, which is shown in the
same table. A relative performance of MaOEAs using the same test is shown490

in Table 10 in which LEAF outperforms MOEA/D, VaEA and GrEA in each
objective dimension of all DTLZ problems. Except for one instance, LEAF
outperforms SPEA/R also. SPEA2+SDE shows better performance for 8- and
10-objective DTLZ2 and DTLZ3 problems over LEAF.

The parallel coordinates of 10-objective DTLZ1 obtained from MaOEAs are495

shown in Fig. 4. The non-dominated solutions shown in this figure is associated
with the run of median IGD value. It can be seen that LEAF and VaEA are
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converged to the true PO front, whereas the rest of MaOEAs fail. For 10-
objective DTLZ3 problem, the parallel coordinates are shown in Fig. 5 in which
LEAF and SPEA2+SDE are converged to the true PO front. For 10-objective500

DTLZ4 problem, the parallel coordinates are shown in Fig. 6 in which all
MaOEAs are converged to the true PO front.

4.3. Performance on WFG problems

Table 7 presents the statistical values of IGD obtained from MaOEAs for
WFG problems. LEAF shows better IGD values for 58 instances, mainly505

in 5-objective WFG3, 3-, 5- and 8-objective WFG4, and complete WFG5,
WFG6 and WFG7 problem instances. SPEA/R then shows better IGD val-
ues for 45 instances, mainly in 3-, 5-, 8- and 10-objective WFG2, 10- and
15-objective WFG4, 3-, 5-, 8- and 10-objective WFG8, and complete WFG9
problem. VaEA shows better IGD values for 20 instances, mainly in 3-, 8-, 10-,510

and 15-objective WFG1, 15-objective WFG2, and 8- and 15-objective WFG3
problems. SPEA2+SDE shows better IGD values for 12 instances, mainly in
5-objective WFG1, 3-objective WFG3, and 15-objective WFG8 problems.

The table also shows results from the Wilcoxon signed-rank test. A rel-
ative performance of MaOEAs based on the same test is presented in Table515

11. LEAF performs significantly better than MOEA/D and GrEA in all ob-
jective dimensions. In comparison to SPEA2+SDE and VaEA, LEAF shows
more wins in all objective dimensions. SPEA/R performs better than LEAF
in 10-objective dimension and equivalent in 8-objective. LEAF performs sig-
nificantly better than SPEA/R in 3-, 5- and 15-objective dimensions. In the520

problem-wise comparison, LEAF outperforms MOEA/D and GrEA in all WFG
problems. SPEA2+SDE is better than LEAF in only WFG1 and WFG3 prob-
lems, otherwise it is outperformed by LEAF in rest of WFG problems. LEAF
is better than SPEA/R in WFG1, WFG3, WFG5, WFG6 and WFG7 problems
and shows equivalent performance in WFG4 problem. For WFG2, WFG8 and525

WFG9 problems, SPEA/R performs better than LEAF. VaEA performs better
than LEAF in WFG1 problem and equivalent in WFG2 and WFG3 problems.
For the rest of WFG problems, LEAF performs better than VaEA.

Table 8 presents the statistical HV values obtained from MaOEAs. LEAF
shows better HV value for 52 instances, mainly in 10-objective WFG1, 5-530

objective WFG2, 3- and 5-objective WFG3 and WFG4, 3-, 5- and 10-objective
WFG5, 3- and 5-objective WFG7, 10-objective WFG9 problems. SPEA/R then
shows better HV values for 34 instances, mainly in 3- and 8-objective WFG2, 8-
and 10-objective WFG4, 3- and 10-objective WFG6, 8- and 10-objective WFG7,
and complete WFG8 problems. VaEA shows better HV values for 17 instances,535

mainly in 3- and 8-objective WFG1, 8- and 10-objective WFG3, and 8-objective
WFG5. SPEA2+SDE show better HV values for 14 instances, in 5-objective
WFG1 and WFG6, and 5- and 8-objective WFG9 problems. GrEA shows better
HV value for 1 instance in WFG1.

The same table also shows the Wilcoxon signed-rank test results. A relative540

performance of MaOEAs based on the same test is presented in Table 12. For
3- and 5-objective dimensions, LEAF performs better than other MaOEAs.
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For 8-objective, LEAF is unable to perform better than SPEA/R and VaEA.
However, LEAF performs significantly better than MOEA/D, SPEA2+SDE
and GrEA. For 10-objective dimension, LEAF performs better than MOEA/D,545

SPEA2+SDE, VaEA and GrEA, whereas SPEA/R performs equivalently. A
relative comparison based on WFG problems is also shown in the table. LEAF
performs significantly better than MOEA/D and GrEA in all WFG problems.
In comparison with SPEA2+SDE, LEAF is better in WFG4 to WFG8 problems,
and it is equivalent in WFG2 problem. LEAF is outperformed by SPEA2+SDE550

in WFG1, WFG3 and WFG9 problems. LEAF performs better than SPEA/R
in WFG1, WFG3, WFG5, WFG6 and WFG9 problems. It is outperformed by
SPEA/R in WFG2, WFG4 and WFG8 problems. Both of them are equivalent
in WFG7 problem. LEAF is better than VaEA in WFG4 to WFG9 problems.
LEAF is not better in WFG1 problem and equivalent in WFG2 and WFG3555

problems against VaEA.

5. Conclusion

The line-prioritized environmental selection and normalization have been
proposed and coupled with NSGA-III framework. The environmental selection
operator selected a diverse set of solutions representing each reference line by560

associating and re-associating solutions. The external point was introduced,
which got updated with the rules proposed in normalization. Based on IGD
values, it can be concluded that LEAF outperformed all MaOEAs on all DTLZ
problems’ instances. For WFG problems, LEAF showed better performance
in almost all instances. Based on HV values, LEAF again showed better per-565

formance over MaOEAs for most of the DTLZ and WFG problems’ instances.
Overall, it can be concluded that LEAF is emerged as one of the competitive
algorithms and can be an alternative for preserving a diverse set of solutions
for many-objective optimization. In the future, the concept of SPEA/R can be
used with LEAF for better performance in which the diversity is preserved first570

over the dominance. Moreover, LEAF can be extended for solving constraint
multi-objective optimization problems. Also, a parametric study can be done
with LEAF.
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Figure 4: Parallel coordinates of non-dominated front obtained from MaOEAs for 10-objective
DTLZ1 problem.
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Figure 5: Parallel coordinates of non-dominated front obtained from MaOEAs for 10-objective
DTLZ3 problem.
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Figure 6: Parallel coordinates of non-dominated front obtained from MaOEAs for 10-objective
DTLZ4 problem.
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Table 4: Best, median and worst IGD values obtained for each objective from original NSGA-
III and NNSGA-III on DTLZ1-4, WFG6-7, SDTLZ1-2 and CDTLZ1 instances with different
number of objectives are presented. The best performances are highlighted in bold face with
gray background.

M NSGA-III NNSGA-III

D
T
L
Z
1

3
4.880E-04 3.510E-04

1.308E-03 1.536E-03
4.880E-03 5.787E-03

5
5.116E-04 4.962E-04

9.799E-04 7.431E-04

1.979E-03 1.246E-03

8
2.044E-03 2.175E-03
3.979E-03 3.582E-03

8.721E-03 6.645E-02

10
2.215E-03 2.279E-03
3.462E-03 2.583E-03

6.869E-03 9.297E-02

15
2.649E-03 1.922E-03

5.063E-03 2.853E-03

1.123E-02 4.324E-03

M NSGA-III NNSGA-III

D
T
L
Z
2

3
1.262E-03 1.045E-03

1.357E-03 1.270E-03

2.114E-03 2.870E-03

5
4.254E-03 3.058E-03

4.982E-03 4.481E-03

5.862E-03 1.128E-02

8
1.371E-02 1.152E-02

1.571E-02 1.293E-02

1.811E-02 1.691E-02

10
1.350E-02 1.142E-02

1.528E-02 1.279E-02

1.697E-02 1.486E-02

15
1.360E-02 1.052E-02

1.726E-02 1.428E-02

2.114E-02 1.758E-02

M NSGA-III NNSGA-III

D
T
L
Z
3

3
9.751E-04 8.723E-04

4.007E-03 3.991E-03

6.665E-03 9.847E-03

5
3.086E-03 2.174E-03

5.960E-03 3.675E-03

1.196E-02 1.014E-02

8
1.244E-02 1.256E-02
2.375E-02 2.444E-02
9.649E-02 5.287E-02

10
8.849E-03 8.236E-03

1.188E-02 1.069E-02

2.083E-02 1.929E-02

15
1.401E-02 1.121E-02

2.145E-02 1.766E-02

4.195E-02 3.671E-02

M NSGA-III NNSGA-III

D
T
L
Z
4

3
2.915E-04 3.113E-04
5.970E-04 3.918E-04

4.286E-01 5.314E-01

5
9.849E-04 3.641E-04

1.255E-03 4.334E-04

1.721E-03 5.072E-04

8
5.079E-03 2.541E-03

7.054E-03 3.442E-03

6.051E-01 5.319E-03

10
5.694E-03 3.578E-03

6.337E-03 4.228E-03

1.076E-01 5.174E-03

15
7.110E-03 5.257E-03

3.431E-01 7.298E-03

1.073E+00 9.578E-03

M NSGA-III NNSGA-III

S
D
T
L
Z
1

3
3.853E-04 5.146E-04
1.214E-03 1.293E-03
1.103E-02 4.572E-03

5
1.099E-03 7.883E-04

2.500E-03 1.753E-03

3.921E-02 2.572E-02

8
4.659E-03 2.472E-03

1.051E-02 6.086E-03

1.167E-01 2.792E-02

10
3.403E-03 2.562E-03

5.577E-03 4.341E-03

3.617E-02 3.136E-02

15
3.450E-03 2.860E-03

6.183E-03 3.786E-03

1.367E-02 5.115E-03

M NSGA-III NNSGA-III

S
D
T
L
Z
2

3
1.347E-03 1.102E-03

2.069E-03 1.790E-03

5.284E-03 2.395E-03

5
1.005E-02 1.447E-02
2.564E-02 5.579E-02
8.430E-02 1.134E-01

8
1.582E-02 1.733E-02
1.788E-02 4.704E-02
2.089E-02 2.256E-01

10
2.113E-02 2.382E-02
3.334E-02 4.699E-02
2.095E-01 1.756E-01

15
2.165E-02 2.520E-02
2.531E-02 8.814E-02
4.450E-02 3.780E-01
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M NSGA-III NNSGA-III

W
F
G
6

3
4.828E-03 2.447E-02
1.224E-02 2.831E-02
5.486E-02 3.511E-02

5
5.065E-03 2.903E-02
1.965E-02 3.479E-02
4.475E-02 4.261E-02

8
1.009E-02 3.350E-02
2.922E-02 3.837E-02
7.098E-02 4.294E-02

10
1.060E-02 2.793E-02
2.491E-02 3.728E-02
6.129E-02 4.548E-02

15
1.368E-02 2.911E-02
2.877E-02 3.599E-02
6.970E-02 4.709E-02

M NSGA-III NNSGA-III

W
F
G
7

3
2.789E-03 2.136E-03

3.692E-03 2.572E-03

4.787E-03 3.344E-03

5
8.249E-03 6.704E-03

9.111E-03 8.688E-03

1.050E-02 1.727E-02

8
2.452E-02 1.720E-02

2.911E-02 2.039E-02

6.198E-02 2.553E-02

10
3.228E-02 2.167E-02

4.292E-02 2.292E-02

9.071E-02 2.441E-02

15
3.457E-02 7.278E-02
5.450E-02 1.312E-01
8.826E-02 4.640E-01

M NSGA-III NNSGA-III

C
D
T
L
Z
2

3
2.603E-03 5.045E-03
4.404E-03 5.512E-03
8.055E-03 1.998E-02

5
7.950E-03 7.964E-03
1.341E-02 9.757E-03

1.917E-02 1.613E-02

8
2.225E-02 1.789E-02

2.986E-02 2.557E-02

4.234E-02 3.336E-02

10
7.389E-02 1.552E-02

9.126E-02 1.962E-02

1.051E-01 2.711E-02

15
2.169E-03 3.063E-02
2.769E-02 3.880E-02
4.985E-02 2.369E-01
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Table 5: Best, median and worst IGD values obtained for each objective by LEAF and other
algorithms on DTLZ instances with different number of objectives. Best performances are
highlighted in bold face with gray background.

M NSGA-III MOEA-D SPEA2+SDE SPEA/R VaEA GrEA LEAF

D
T
L
Z
1

3
4.880E-04 3.013E-02 2.133E-02 4.447E-03 1.280E-02 3.025E-02 5.286E-04

1.308E-03 3.068E-02 + 2.251E-02 + 2.138E-02 + 4.899E-02 + 5.267E-02 +
1.249E-03

4.880E-03 3.503E-02 2.431E-02 9.910E-02 4.039E-01 3.284E-01 2.867E-03

5
5.116E-04 2.073E-01 4.919E-02 1.517E-02 1.898E-02 2.554E-01 4.148E-04

9.799E-04 2.240E-01 + 5.154E-02 + 4.038E-02 + 3.401E-02 + 4.083E-01 +
6.975E-04

1.979E-03 2.304E-01 5.266E-02 1.323E-01 6.372E-02 6.990E-01 1.170E-03

8
2.044E-03 1.881E-01 8.934E-02 6.328E-02 1.933E-02 1.051E-01 2.030E-03

3.979E-03 2.087E-01 + 9.485E-02 + 1.490E-01 + 2.722E-02 + 2.390E-01 +
2.638E-03

8.721E-03 2.207E-01 9.838E-02 6.193E-01 4.981E-02 5.160E-01 4.431E-03

10
2.215E-03 2.168E-01 9.308E-02 4.146E-02 2.214E-02 3.440E-01 1.784E-03

3.462E-03 2.573E-01 + 9.772E-02 + 1.018E-01 + 2.939E-02 + 4.116E-01 +
2.280E-03

6.869E-03 2.591E-01 1.058E-01 2.897E-01 3.972E-02 5.173E-01 4.756E-03

15
2.649E-03 2.858E-01 1.487E-01 2.409E-01 4.884E-02 1.062E+02 2.015E-03

5.063E-03 2.885E-01 + 1.571E-01 + 4.356E-01 + 5.362E-02 + 1.550E+02+ 3.019E-03

1.123E-02 2.887E-01 1.633E-01 2.969E+00 5.938E-02 3.746E+02 4.356E-03

D
T
L
Z
2

3
1.262E-03 7.068E-02 6.924E-02 3.125E-03 8.292E-03 6.904E-02 1.029E-03

1.357E-03 7.199E-02 + 7.506E-02 + 5.074E-03 + 1.485E-02 + 7.355E-02 +
1.308E-03

2.114E-03 7.366E-02 8.007E-02 1.128E-02 2.572E-02 7.626E-02 1.912E-03

5
4.254E-03 7.321E-01 1.682E-01 9.941E-03 1.334E-02 1.362E-01 3.265E-03

4.982E-03 7.323E-01 + 1.740E-01 + 1.308E-02 + 1.606E-02 + 1.439E-01 +
4.359E-03

5.862E-03 7.324E-01 1.925E-01 2.120E-02 2.064E-02 1.520E-01 6.989E-03

8
1.371E-02 6.267E-01 2.597E-01 2.307E-02 2.830E-02 2.931E-01 1.065E-02

1.571E-02 6.754E-01 + 2.706E-01 + 2.849E-02 + 3.524E-02 + 3.015E-01 +
1.326E-02

1.811E-02 7.166E-01 3.158E-01 3.342E-02 4.904E-02 3.116E-01 1.474E-02

10
1.350E-02 9.178E-01 2.612E-01 2.455E-02 2.270E-02 3.379E-01 1.030E-02

1.528E-02 9.183E-01 + 2.808E-01 + 2.893E-02 + 3.838E-02 + 3.459E-01 +
1.195E-02

1.697E-02 9.184E-01 2.922E-01 3.689E-02 4.143E-02 3.511E-01 2.006E-02

15
1.360E-02 1.026E+00 3.094E-01 4.607E-02 3.692E-02 4.701E-01 1.055E-02

1.726E-02 1.029E+00+ 3.340E-01 + 5.477E-02 + 6.588E-02 + 4.777E-01 +
1.207E-02

2.114E-02 1.076E+00 3.529E-01 7.102E-02 1.485E-01 4.883E-01 1.731E-02

D
T
L
Z
3

3
9.751E-04 7.145E-02 6.824E-02 6.758E-03 1.955E-01 6.646E-02 1.600E-03

4.007E-03 7.247E-02 + 7.413E-02 + 3.334E-02 + 1.052E+00+ 7.371E-02 +
3.049E-03

6.665E-03 7.983E-02 8.052E-02 2.413E-01 4.125E+00 4.205E-01 9.425E-03

5
3.086E-03 6.892E-01 1.661E-01 7.925E-02 2.226E-02 5.402E-01 1.447E-03

5.960E-03 7.323E-01 + 1.734E-01 + 2.060E-01 + 1.936E-01 + 7.693E-01 +
3.637E-03

1.196E-02 2.435E+00 1.890E-01 3.801E-01 5.687E-01 1.123E+00 7.537E-03

8
1.244E-02 6.348E-01 2.610E-01 3.811E-01 8.289E-02 3.100E-01 1.405E-02

2.375E-02 6.792E-01 + 2.805E-01 + 2.296E+00+ 8.487E-01 + 1.022E+00+ 2.236E-02

9.649E-02 8.422E-01 3.035E-01 4.493E+00 1.145E+00 1.229E+00 5.302E-02

10
8.849E-03 8.950E-01 2.663E-01 3.882E-01 5.758E-02 9.290E-01 7.087E-03

1.188E-02 9.174E-01 + 2.791E-01 + 6.790E-01 + 3.287E-01 + 1.219E+00+ 9.583E-03

2.083E-02 9.192E-01 3.065E-01 4.395E+00 1.169E+00 1.267E+00 1.601E-02

15
1.401E-02 1.019E+00 3.295E-01 5.443E+00 6.600E-02 9.488E+01 9.958E-03

2.145E-02 1.033E+00+ 3.536E-01 + 1.207E+01+ 1.280E+00+ 2.027E+02+ 1.387E-02

4.195E-02 1.037E+00 3.755E-01 3.338E+01 1.301E+00 3.000E+02 2.184E-02

D
T
L
Z
4

3
2.915E-04 7.075E-02 7.268E-02 4.001E-04 7.698E-03 6.875E-02 2.668E-04

5.970E-04 7.360E-02 + 7.525E-02 + 1.837E-03 + 2.267E-01 + 7.399E-02 +
3.907E-04

4.286E-01 2.584E-01 5.399E-01 4.983E-03 9.503E-01 9.503E-01 5.306E-01

5
9.849E-04 6.900E-01 1.596E-01 2.182E-03 1.641E-02 1.385E-01 3.641E-04

1.255E-03 7.325E-01 + 1.747E-01 + 4.001E-03 + 1.939E-01 + 1.441E-01 +
4.391E-04

1.721E-03 8.265E-01 3.967E-01 9.661E-03 3.947E-01 1.496E-01 6.257E-04

8
5.079E-03 7.037E-01 2.553E-01 7.315E-03 3.326E-02 1.385E-01 2.963E-03

7.054E-03 7.360E-01 + 2.741E-01 + 9.148E-03 + 2.380E-01 + 1.441E-01 +
3.434E-03

6.051E-01 7.971E-01 3.815E-01 1.220E-02 6.228E-01 1.496E-01 4.451E-03

10
5.694E-03 8.954E-01 2.641E-01 6.907E-03 4.088E-02 3.406E-01 3.333E-03

6.337E-03 9.369E-01 + 2.780E-01 + 8.963E-03 + 1.843E-01 + 3.460E-01 +
3.951E-03

1.076E-01 1.015E+00 2.944E-01 1.191E-02 3.770E-01 3.519E-01 4.637E-03

15
7.110E-03 1.036E+00 2.974E-01 9.225E-03 1.226E-01 4.513E-01 5.613E-03

3.431E-01 1.077E+00+ 3.171E-01 + 1.115E-02 + 2.898E-01 + 4.613E-01 +
8.156E-03

1.073E+00 1.142E+00 3.647E-01 1.475E-02 9.067E-01 4.741E-01 1.319E-02
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Table 6: Best, median and worst HV values obtained for each objective by LEAF and other
algorithms on DTLZ instances with different number of objectives. Best performances are
highlighted in bold face with gray background.

M NSGA-III MOEA-D SPEA2+SDE SPEA/R VaEA GrEA LEAF

D
T
L
Z
1

3
9.73519E-01 9.67358E-01 9.67749E-01 9.73376E-01 9.70545E-01 9.64834E-01 9.73583E-01

9.73217E-01 9.66735E-01+ 9.63163E-01 + 9.70047E-01 + 9.57151E-01+ 9.42057E-01+ 9.73434E-01

9.71931E-01 9.63765E-01 9.56540E-01 9.44695E-01 4.78116E-01 6.78237E-01 9.72982E-01

5
9.98971E-01 6.96282E-01 9.95495E-01 9.97918E-01 9.98560E-01 9.59152E-01 9.98982E-01

9.98963E-01 6.12610E-01+ 9.93187E-01 + 9.97159E-01 + 9.98216E-01+ 6.00213E-01+ 9.98975E-01

9.98673E-01 5.81437E-01 9.90103E-01 9.91088E-01 9.97263E-01 2.59548E-01 9.98963E-01

8
9.99975E-01 9.96381E-01 9.95808E-01 9.99786E-01 9.99824E-01 9.98724E-01 9.99977E-01

9.93549E-01 9.95112E-01+ 9.94518E-01 + 9.96402E-01 + 9.99570E-01+ 9.40772E-01+ 9.99972E-01

9.66432E-01 9.92048E-01 9.90652E-01 4.83954E-01 9.98418E-01 5.12831E-01 9.99966E-01

10
9.99991E-01 8.50548E-01 9.98305E-01 9.99974E-01 9.99932E-01 9.51489E-01 9.99998E-01

9.99985E-01 6.23685E-01+ 9.96976E-01 + 9.99923E-01 + 9.99864E-01+ 8.47343E-01+ 9.99997E-01

9.99969E-01 6.01849E-01 9.95322E-01 9.74683E-01 9.99656E-01 5.19166E-01 9.99996E-01

D
T
L
Z
2

3
9.26626E-01 9.21545E-01 9.26943E-01 9.26671E-01 9.25552E-01 9.24230E-01 9.26662E-01

9.26536E-01 9.21144E-01+ 9.26518E-01 + 9.26565E-01 + 9.24474E-01+ 9.24030E-01+ 9.26636E-01

9.26395E-01 9.20489E-01 9.26104E-01 9.26319E-01 9.22430E-01 9.23636E-01 9.26577E-01

5
9.90459E-01 2.82518E-01 9.90577E-01 9.86881E-01 9.90383E-01 9.90335E-01 9.90492E-01

9.90400E-01 2.82326E-01+ 9.90376E-01 + 9.86822E-01 + 9.90274E-01+ 9.90202E-01+ 9.90462E-01

9.90328E-01 2.82203E-01 9.90158E-01 9.86721E-01 9.90117E-01 9.89796E-01 9.90443E-01

8
9.99320E-01 9.44133E-01 9.99410E-01 9.98713E-01 9.99325E-01 9.99297E-01 9.99339E-01

9.78936E-01 9.23437E-01+ 9.99383E-01
− 9.98658E-01 + 9.99312E-01+ 9.99237E-01+ 9.99329E-01

9.19680E-01 9.05961E-01 9.99339E-01 9.98475E-01 9.99286E-01 9.99092E-01 9.99316E-01

10
9.99918E-01 1.80323E-01 9.99927E-01 9.99764E-01 9.99919E-01 9.99581E-01 9.99920E-01

9.99916E-01 1.79345E-01+ 9.99925E-01
− 9.99744E-01 + 9.99876E-01+ 9.99473E-01+ 9.99919E-01

9.99915E-01 1.79030E-01 9.99918E-01 9.99721E-01 9.99872E-01 9.99195E-01 9.99915E-01

D
T
L
Z
3

3
9.26480E-01 9.21508E-01 9.26988E-01 9.26316E-01 3.29451E-03 9.23958E-01 9.26466E-01

9.25805E-01 9.20488E-01+ 9.26390E-01
− 9.24816E-01 + 6.83835E-03+ 9.23162E-01+ 9.26084E-01

9.24234E-01 9.17104E-01 9.25501E-01 8.99569E-01 1.11064E-01 6.23475E-01 9.24700E-01

5
9.90453E-01 3.37452E-01 9.90585E-01 9.86510E-01 9.90161E-01 9.58108E-01 9.90536E-01

9.90344E-01 2.82245E-01+ 9.90477E-01
= 9.82919E-01 + 9.80306E-01+ 8.33530E-01+ 9.90425E-01

9.89510E-01 3.31567E-03 9.90278E-01 9.72970E-01 8.19713E-01 4.99916E-01 9.90252E-01

8
9.99300E-01 9.43275E-01 9.99409E-01 9.86510E-01 9.99072E-01 9.95604E-01 9.99323E-01

9.24059E-01 9.27554E-01+ 9.99351E-01
− 9.82919E-01 + 6.58526E-01+ 7.82551E-01+ 9.99281E-01

9.04182E-01 8.68136E-01 9.99263E-01 9.72970E-01 5.03707E-01 4.99999E-01 9.99162E-01

10
9.99921E-01 2.91770E-01 9.99929E-01 9.86510E-01 9.99856E-01 9.40403E-01 9.99922E-01

9.99918E-01 1.82485E-01+ 9.99925E-01
− 9.82919E-01 + 9.96896E-01+ 5.62597E-01+ 9.99919E-01

9.99910E-01 1.78772E-01 9.99911E-01 9.72970E-01 5.07743E-01 4.97573E-01 9.99914E-01

D
T
L
Z
4

3
9.26659E-01 9.22481E-01 9.26963E-01 9.26883E-01 9.26598E-01 9.24353E-01 9.26730E-01

9.26705E-01 9.21754E-01+ 9.26495E-01 +
9.26823E-01

− 9.14404E-01+ 9.23974E-01+ 9.26729E-01
7.99572E-01 9.12762E-01 8.02347E-01 9.26724E-01 5.00000E-01 5.00000E-01 8.01492E-01

5
9.91102E-01 4.58744E-01 9.90628E-01 9.87093E-01 9.90628E-01 9.90614E-01 9.90571E-01

9.90413E-01 2.85835E-01+ 9.90513E-01 + 9.87067E-01 + 9.88983E-01+ 9.90547E-01+ 9.90570E-01

9.90156E-01 2.82104E-01 9.74519E-01 9.87043E-01 9.71855E-01 9.90429E-01 9.90568E-01

8
9.99363E-01 9.52367E-01 9.99405E-01 9.98833E-01 9.99380E-01 9.90614E-01 9.99365E-01

9.99361E-01 9.38329E-01+ 9.99388E-01
− 9.98828E-01 + 9.98877E-01+ 9.90547E-01+ 9.99364E-01

9.94784E-01 9.26924E-01 9.98479E-01 9.98811E-01 9.87270E-01 9.90429E-01 9.99363E-01

10
9.99915E-01 3.20842E-01 9.99926E-01 9.99793E-01 9.99925E-01 9.99908E-01 9.99923E-01

9.99910E-01 2.37897E-01+ 9.99923E-01
= 9.99792E-01 + 9.99918E-01+ 9.99903E-01+ 9.99923E-01

9.99827E-01 2.11147E-01 9.99919E-01 9.99790E-01 9.99454E-01 9.99896E-01 9.99923E-01
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Table 7: Best, median and worst IGD values obtained for each objective by LEAF and other
algorithms on WFG instances with different number of objectives. Best performances are
highlighted in bold face with gray background.

M MOEA-D SPEA2+SDE SPEA/R VaEA GrEA LEAF

W
F
G

1

3
5.062E-01 2.316E-01 4.010E-01 1.544E-01 2.769E-01 3.385E-01

5.362E-01 + 2.895E-01 − 4.230E-01 +
1.830E-01

− 3.001E-01 − 3.674E-01
5.457E-01 3.409E-01 4.317E-01 2.345E-01 3.201E-01 3.753E-01

5
2.746E-01 2.123E-01 4.304E-01 3.126E-01 5.550E-01 3.729E-01

3.181E-01 −
2.385E-01

− 4.582E-01 + 3.803E-01 − 5.680E-01 + 3.992E-01
3.606E-01 2.866E-01 4.662E-01 4.301E-01 5.926E-01 4.053E-01

8
2.535E-01 3.032E-01 3.464E-01 3.214E-01 6.221E-01 1.940E-01

3.339E-01 + 3.382E-01 + 4.010E-01 + 3.332E-01 + 6.550E-01 +
2.203E-01

4.096E-01 3.587E-01 6.962E-01 3.507E-01 6.770E-01 3.710E-01

10
3.312E-01 3.046E-01 2.934E-01 2.806E-01 6.064E-01 1.647E-01

3.513E-01 + 3.385E-01 + 3.192E-01 + 2.924E-01 + 6.123E-01 +
1.747E-01

3.894E-01 3.615E-01 5.884E-01 3.066E-01 6.194E-01 8.374E-01

15
4.575E-01 4.809E-01 3.326E-01 4.091E-01 6.737E-01 3.211E-01

4.639E-01 + 4.988E-01 + 6.362E-01 + 4.141E-01 + 6.789E-01 +
3.390E-01

4.788E-01 5.359E-01 6.421E-01 4.187E-01 6.874E-01 3.601E-01

W
F
G

2

3
7.832E-02 4.895E-02 1.745E-02 4.304E-02 6.131E-01 1.602E-02

8.624E-02 + 5.619E-02 = 2.050E-02 = 4.989E-02 + 6.141E-01 +
2.036E-02

9.304E-02 1.108E-01 9.922E-02 1.111E-01 7.146E-01 9.824E-02

5
3.231E-01 7.183E-02 4.746E-02 7.106E-02 7.265E-01 5.673E-02

3.295E-01 + 7.670E-02 +
4.972E-02

− 7.732E-02 + 7.276E-01 + 5.928E-02
3.409E-01 1.898E-01 5.139E-02 1.736E-01 8.208E-01 1.599E-01

8
2.224E-01 1.707E-01 6.683E-02 1.110E-01 7.636E-01 8.843E-02

2.357E-01 + 1.895E-01 =
7.197E-02

− 1.203E-01 − 7.643E-01 + 1.976E-01
2.520E-01 2.983E-01 2.049E-01 2.143E-01 8.534E-01 2.397E-01

10
4.440E-01 2.480E-01 6.505E-02 1.896E-01 8.384E-01 1.731E-01

4.495E-01 + 2.844E-01 =
7.483E-02

− 2.042E-01 − 8.387E-01 + 2.619E-01
4.530E-01 3.028E-01 2.403E-01 2.211E-01 8.392E-01 3.165E-01

15
9.878E-01 8.561E-01 3.381E-01 4.713E-01 1.142E+00 5.929E-01

9.922E-01 + 9.125E-01 + 1.094E+00+ 5.550E-01
− 1.142E+00+ 6.426E-01

9.925E-01 9.189E-01 1.128E+00 7.147E-01 1.207E+00 8.046E-01

W
F
G

3

3
2.847E-02 1.084E-02 3.485E-02 3.387E-02 4.516E-01 1.567E-02

4.245E-02 +
1.440E-02

− 4.155E-02 + 4.451E-02 + 4.652E-01 + 1.901E-02
6.349E-02 1.737E-02 6.476E-02 5.633E-02 4.803E-01 2.736E-02

5
7.538E-01 5.858E-02 9.751E-02 6.074E-02 5.050E-01 3.503E-02

7.825E-01 + 7.556E-02 + 1.149E-01 + 8.556E-02 + 5.233E-01 +
4.667E-02

8.263E-01 9.310E-02 1.386E-01 1.585E-01 5.422E-01 6.037E-02

8
1.255E-01 6.986E-02 2.677E-01 7.622E-02 5.497E-01 5.955E-02

2.154E-01 − 1.446E-01 − 4.197E-01 +
1.108E-01

− 5.746E-01 + 3.004E-01
2.552E-01 4.712E-01 6.170E-01 1.882E-01 6.068E-01 5.617E-01

10
9.405E-01 7.161E-02 1.056E-01 7.716E-02 5.687E-01 4.436E-02

9.591E-01 + 1.566E-01 + 2.262E-01 + 1.723E-01 + 5.833E-01 +
8.091E-02

9.979E-01 4.316E-01 5.069E-01 2.733E-01 6.076E-01 2.346E-01

15
9.674E-01 6.070E-02 3.815E-01 5.268E-02 5.790E-01 8.268E-02

1.019E+00+ 1.076E-01
− 4.350E-01 + 2.071E-01 − 6.072E-01 + 3.211E-01

1.053E+00 7.521E-01 5.666E-01 2.794E-01 6.313E-01 5.716E-01

W
F
G

4

3
1.099E-01 6.959E-02 7.735E-03 5.244E-02 4.155E-01 4.662E-03

1.137E-01 + 7.450E-02 + 9.383E-03 + 5.576E-02 + 4.171E-01 +
6.102E-03

1.195E-01 8.100E-02 1.134E-02 6.114E-02 4.197E-01 7.890E-03

5
8.438E-01 1.644E-01 1.994E-02 1.601E-01 6.264E-01 1.697E-02

8.515E-01 + 1.723E-01 + 2.158E-02 + 1.681E-01 + 6.304E-01 +
1.981E-02

8.591E-01 1.863E-01 2.502E-02 1.774E-01 6.360E-01 2.327E-02

8
4.350E-01 2.763E-01 3.166E-02 2.460E-01 8.910E-01 2.925E-02

5.023E-01 + 2.894E-01 + 3.783E-02 + 2.759E-01 + 9.071E-01 +
3.602E-02

5.575E-01 3.112E-01 8.833E-02 2.961E-01 9.299E-01 4.398E-02

10
1.053E+00 2.856E-01 3.083E-02 3.191E-01 9.752E-01 3.345E-02

1.059E+00+ 2.988E-01 +
3.722E-02

= 3.355E-01 + 9.854E-01 + 3.833E-02
1.063E+00 3.746E-01 4.268E-02 3.522E-01 9.938E-01 4.921E-02

15
1.160E+00 4.078E-01 3.081E-02 4.893E-01 1.232E+00 5.195E-01

1.163E+00+ 5.141E-01 −
3.180E-01

− 5.151E-01 − 1.246E+00+ 5.701E-01
1.167E+00 6.745E-01 6.991E-01 5.278E-01 1.280E+00 6.860E-01

W
F
G

5 3
9.738E-02 7.614E-02 3.330E-02 5.927E-02 2.673E-01 2.956E-02

9.985E-02 + 7.969E-02 + 3.457E-02 + 6.271E-02 + 2.718E-01 +
3.158E-02

1.012E-01 8.488E-02 3.851E-02 6.667E-02 2.740E-01 3.563E-02

5
8.612E-01 1.691E-01 4.140E-02 1.592E-01 7.221E-01 3.501E-02

8.679E-01 + 1.744E-01 + 4.335E-02 + 1.638E-01 + 7.298E-01 +
3.990E-02

8.824E-01 1.952E-01 4.474E-02 1.707E-01 7.336E-01 4.426E-02
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M MOEA-D SPEA2+SDE SPEA/R VaEA GrEA LEAF

8
4.189E-01 2.899E-01 4.904E-02 2.549E-01 9.708E-01 4.612E-02

4.742E-01 + 3.109E-01 + 5.219E-02 + 2.823E-01+ 9.757E-01 +
5.127E-02

5.241E-01 3.515E-01 5.425E-02 2.953E-01 9.829E-01 5.356E-02

10
1.067E+00 2.922E-01 4.961E-02 3.197E-01 1.052E+00 4.386E-02

1.073E+00+ 3.092E-01 + 5.238E-02 + 3.323E-01+ 1.055E+00+ 4.948E-02

1.077E+00 3.182E-01 5.565E-02 3.480E-01 1.057E+00 5.475E-02

15
1.173E+00 7.259E-01 6.776E-02 5.023E-01 1.188E+00 3.685E-02

1.178E+00+ 8.256E-01 + 2.125E-01 + 5.228E-01+ 1.192E+00+ 3.872E-02

1.181E+00 9.058E-01 9.339E-01 5.380E-01 1.195E+00 4.269E-02

W
F
G

6

3
1.094E-01 7.364E-02 1.904E-02 6.184E-02 6.211E-01 2.090E-02

1.167E-01 + 7.822E-02 + 2.820E-02 = 6.474E-02+ 6.255E-01 +
2.810E-02

1.210E-01 8.457E-02 3.417E-02 6.728E-02 6.268E-01 3.307E-02

5
8.806E-01 1.594E-01 2.855E-02 1.518E-01 8.877E-01 2.719E-02

9.041E-01 + 1.759E-01 + 3.485E-02 = 1.598E-01+ 9.111E-01 +
3.419E-02

9.173E-01 1.831E-01 3.874E-02 1.665E-01 9.217E-01 4.051E-02

8
4.448E-01 2.870E-01 3.854E-02 2.217E-01 1.082E+00 3.474E-02

5.792E-01 + 3.149E-01 + 4.378E-02 + 2.472E-01+ 1.085E+00+ 3.936E-02

6.495E-01 3.668E-01 5.208E-02 2.730E-01 1.100E+00 4.964E-02

10
1.073E+00 2.995E-01 3.624E-02 2.957E-01 1.143E+00 3.043E-02

1.088E+00+ 3.178E-01 + 4.392E-02 + 3.189E-01+ 1.146E+00+ 3.719E-02

1.108E+00 3.374E-01 5.207E-02 3.290E-01 1.159E+00 4.184E-02

15
1.175E+00 7.050E-01 5.071E-02 5.190E-01 1.248E+00 3.043E-02

1.188E+00+ 8.204E-01 + 4.863E-01 + 5.275E-01+ 1.252E+00+ 3.719E-02

1.203E+00 8.431E-01 1.109E+00 5.425E-01 1.259E+00 4.184E-02

W
F
G

7

3
9.769E-02 7.056E-02 3.927E-03 5.002E-02 4.623E-01 1.679E-03

1.031E-01 + 7.465E-02 + 4.800E-03 + 5.353E-02+ 4.682E-01 +
2.606E-03

1.098E-01 8.522E-02 6.481E-03 5.731E-02 4.711E-01 3.288E-03

5
8.446E-01 1.692E-01 1.002E-02 1.407E-01 5.933E-01 6.518E-03

8.528E-01 + 1.773E-01 + 1.162E-02 + 1.487E-01+ 5.979E-01 +
7.325E-03

8.622E-01 1.869E-01 1.381E-02 1.540E-01 6.036E-01 1.424E-02

8
4.595E-01 2.882E-01 3.053E-02 2.347E-01 8.331E-01 1.721E-02

5.342E-01 + 3.128E-01 + 3.868E-02 + 2.623E-01+ 9.230E-01 +
1.953E-02

5.921E-01 3.472E-01 7.388E-02 2.899E-01 1.003E+00 2.211E-02

10
1.059E+00 2.995E-01 3.458E-02 3.089E-01 8.742E-01 1.944E-02

1.064E+00+ 3.103E-01 + 4.152E-02 + 3.158E-01+ 9.027E-01 +
2.065E-02

1.072E+00 3.221E-01 4.932E-02 3.350E-01 9.511E-01 2.310E-02

15
1.592E+00 4.102E-01 3.375E-01 4.973E-01 1.154E+00 3.739E-02

1.600E+00+ 4.643E-01 + 6.146E-01 + 5.163E-01+ 1.187E+00+ 7.754E-02

1.607E+00 5.111E-01 1.104E+00 5.233E-01 1.252E+00 4.482E-01

W
F
G

8

3
1.338E-01 9.087E-02 4.154E-02 9.408E-02 6.739E-01 6.510E-02

1.431E-01 + 9.245E-02 +
4.488E-02

− 9.869E-02+ 6.787E-01 + 7.235E-02
1.638E-01 9.598E-02 5.137E-02 1.030E-01 6.874E-01 7.515E-02

5
9.020E-01 1.862E-01 5.621E-02 2.044E-01 9.599E-01 1.203E-01

9.927E-01 + 1.913E-01 +
7.042E-02

− 2.195E-01+ 9.667E-01 + 1.302E-01
1.054E+00 2.056E-01 7.473E-02 2.291E-01 9.717E-01 1.370E-01

8
5.232E-01 3.197E-01 1.205E-01 3.931E-01 1.121E+00 2.049E-01

5.761E-01 + 3.326E-01 +
1.327E-01

− 4.070E-01+ 1.128E+00+ 2.211E-01
6.256E-01 3.402E-01 1.409E-01 4.259E-01 1.134E+00 2.413E-01

10
1.095E+00 3.544E-01 1.361E-01 3.785E-01 1.161E+00 1.174E-01

1.201E+00+ 3.837E-01 +
1.549E-01

− 4.452E-01+ 1.180E+00+ 2.025E-01
1.311E+00 3.957E-01 1.618E-01 4.767E-01 1.184E+00 2.660E-01

15
1.105E+00 5.249E-01 6.018E-01 5.788E-01 1.262E+00 5.429E-01

1.134E+00+ 5.742E-01
= 9.638E-01 + 5.949E-01= 1.271E+00+ 5.917E-01

1.359E+00 6.253E-01 1.113E+00 6.115E-01 1.276E+00 6.231E-01

W
F
G

9

3
1.029E-01 6.979E-02 2.943E-02 6.125E-02 1.204E-01 2.867E-02

1.113E-01 + 8.395E-02 +
5.358E-02

− 7.244E-02+ 1.292E-01 + 6.484E-02
1.123E-01 8.912E-02 5.840E-02 8.152E-02 1.401E-01 6.542E-02

5
8.319E-01 1.554E-01 5.311E-02 1.683E-01 2.325E-01 5.670E-02

8.532E-01 + 1.648E-01 + 6.368E-02 = 1.867E-01+ 2.400E-01 +
6.101E-02

8.979E-01 1.689E-01 7.271E-02 1.953E-01 2.478E-01 9.265E-02

8
4.179E-01 2.557E-01 8.827E-02 2.596E-01 5.830E-01 9.049E-02

4.677E-01 + 2.812E-01 + 1.188E-01 + 2.944E-01+ 6.581E-01 +
1.001E-01

5.147E-01 3.156E-01 1.980E-01 3.239E-01 6.974E-01 1.372E-01

10
1.053E+00 2.672E-01 9.076E-02 3.271E-01 6.357E-01 9.885E-02

1.079E+00+ 2.921E-01 + 1.233E-01 + 3.489E-01+ 6.515E-01 +
1.071E-01

1.168E+00 3.661E-01 1.675E-01 3.639E-01 6.717E-01 1.358E-01

15
1.074E+00 4.503E-01 1.036E-01 4.975E-01 9.371E-01 1.272E-01

1.175E+00+ 7.921E-01 + 1.688E-01 + 5.239E-01+ 9.739E-01 +
1.385E-01

1.416E+00 8.517E-01 2.898E-01 5.425E-01 9.822E-01 3.000E-01
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Table 8: Best, median and worst HV values obtained for each objective by LEAF and other
algorithms on WFG instances with different number of objectives. Best performances are
highlighted in bold face with gray background.

M MOEA-D SPEA2+SDE SPEA/R VaEA GrEA LEAF

W
F
G

1

3
6.27270E-01 8.00190E-01 6.82790E-01 8.74760E-01 8.29960E-01 7.30150E-01

6.15260E-01 + 7.48320E-01 − 6.70940E-01 +
8.32610E-01

− 8.17710E-01− 7.05510E-01
6.06940E-01 7.01480E-01 6.65730E-01 7.94030E-01 8.05710E-01 6.97660E-01

5
7.88910E-01 8.99140E-01 6.40660E-01 7.67260E-01 5.23600E-01 6.69450E-01

7.09790E-01 −
8.53140E-01

− 6.23950E-01 + 6.95360E-01 − 5.18940E-01+ 6.49440E-01
6.58270E-01 8.00680E-01 6.19950E-01 6.51580E-01 5.07860E-01 6.45800E-01

8
9.18730E-01 8.49570E-01 6.74480E-01 8.75640E-01 4.65280E-01 9.05230E-01

8.36930E-01 = 8.14900E-01 = 6.34840E-01 +
8.59300E-01

− 4.52820E-01+ 8.29650E-01
7.90200E-01 7.84130E-01 4.66590E-01 8.27990E-01 4.42950E-01 6.55680E-01

10
8.69470E-01 9.39170E-01 6.93930E-01 9.32610E-01 4.49830E-01 9.84430E-01

8.12030E-01 + 8.85890E-01 + 6.78220E-01 + 9.20530E-01 + 4.47750E-01+ 9.59740E-01

7.39700E-01 8.26950E-01 4.51850E-01 9.08160E-01 4.45970E-01 5.78980E-01

W
F
G

2

3
9.71550E-01 9.83120E-01 9.86730E-01 9.81860E-01 4.77680E-01 9.87550E-01

9.66700E-01 = 9.77650E-01 = 9.84940E-01 = 9.78080E-01 + 4.77410E-01+ 9.85110E-01

9.53690E-01 8.82680E-01 8.92270E-01 8.88500E-01 4.34210E-01 8.92750E-01

5
8.21540E-01 9.93970E-01 9.96080E-01 9.94770E-01 4.45760E-01 9.97470E-01

8.10370E-01 + 9.91120E-01 + 9.95120E-01 + 9.90850E-01 + 4.45650E-01+ 9.96330E-01

8.05090E-01 8.94440E-01 9.93820E-01 8.94370E-01 4.07370E-01 8.97050E-01

8
9.95910E-01 9.92700E-01 9.97090E-01 9.95660E-01 4.14660E-01 9.96200E-01

9.92990E-01 − 9.89940E-01 −
9.95430E-01

− 9.91880E-01 = 4.14470E-01+ 8.97450E-01
9.81730E-01 8.95060E-01 8.97440E-01 8.92850E-01 3.79710E-01 8.92770E-01

10
9.05990E-01 9.96550E-01 9.98120E-01 9.97080E-01 3.99920E-01 9.96150E-01

8.96940E-01 + 9.94460E-01 −
9.97130E-01

− 9.95500E-01 − 3.99820E-01+ 9.44820E-01
8.91430E-01 9.93090E-01 8.97380E-01 9.92410E-01 3.99720E-01 8.93820E-01

W
F
G

3

3
8.63110E-01 8.73990E-01 8.74280E-01 8.71150E-01 4.87770E-01 8.80340E-01

8.50160E-01 + 8.69330E-01 + 8.67970E-01 + 8.61310E-01 + 4.80640E-01+ 8.76760E-01

8.29680E-01 8.40140E-01 8.53310E-01 8.52490E-01 4.73490E-01 8.71800E-01

5
3.61990E-01 8.37540E-01 8.60600E-01 8.65350E-01 4.53680E-01 8.88090E-01

3.52270E-01 + 7.88680E-01 + 8.38480E-01 + 8.43920E-01 + 4.46950E-01+ 8.79870E-01

3.39140E-01 7.76590E-01 8.20580E-01 8.28910E-01 4.40490E-01 8.71050E-01

8
8.82450E-01 8.33210E-01 7.13170E-01 8.64960E-01 4.23950E-01 8.56560E-01

8.72070E-01
− 7.53380E-01 = 6.62100E-01 + 8.48120E-01 − 4.15440E-01+ 7.12880E-01

8.67080E-01 5.59410E-01 5.89310E-01 8.29240E-01 4.05210E-01 6.13980E-01

10
2.83190E-01 8.12910E-01 7.70670E-01 8.68470E-01 4.06920E-01 8.67630E-01

2.78890E-01 + 7.68010E-01 + 7.33000E-01 +
8.38090E-01

− 4.02100E-01+ 8.11510E-01
2.69330E-01 5.71020E-01 6.32980E-01 8.27910E-01 3.94690E-01 7.43330E-01

W
F
G

4

3
8.94690E-01 9.23370E-01 9.22330E-01 9.20650E-01 5.95130E-01 9.23760E-01

8.86890E-01 + 9.22290E-01 = 9.20690E-01 + 9.18680E-01 + 5.94020E-01+ 9.22510E-01

8.75160E-01 9.19470E-01 9.17950E-01 9.14610E-01 5.92100E-01 9.21010E-01

5
4.05230E-01 9.80820E-01 9.80220E-01 9.73930E-01 5.63010E-01 9.81810E-01

3.55980E-01 + 9.77770E-01 + 9.78940E-01 + 9.69580E-01 + 5.59250E-01+ 9.80020E-01

3.41010E-01 9.74470E-01 9.76700E-01 9.64310E-01 5.49340E-01 9.78700E-01

8
9.50970E-01 9.85960E-01 9.92110E-01 9.88010E-01 4.94280E-01 9.86880E-01

9.35540E-01 + 9.76560E-01 +
9.89240E-01

− 9.80910E-01 = 4.86850E-01+ 9.82270E-01
9.25210E-01 9.70260E-01 9.85780E-01 9.74290E-01 4.78290E-01 9.77270E-01

10
3.89470E-01 9.87590E-01 9.95840E-01 9.85140E-01 4.70830E-01 9.89800E-01

3.36420E-01 + 9.84020E-01 +
9.94740E-01

− 9.81830E-01 + 4.62710E-01+ 9.86470E-01
2.93030E-01 9.73940E-01 9.93070E-01 9.78790E-01 4.52510E-01 9.81940E-01

W
F
G

5

3
8.82950E-01 9.03320E-01 8.98040E-01 9.02990E-01 7.32620E-01 9.03510E-01

8.80890E-01 + 9.01220E-01 = 8.93180E-01 + 8.98100E-01 + 7.30130E-01+ 9.02710E-01

8.79540E-01 8.94090E-01 8.89130E-01 8.93790E-01 7.24970E-01 8.97040E-01

5
3.49760E-01 9.57580E-01 9.50670E-01 9.56040E-01 7.24480E-01 9.60070E-01

3.21680E-01 + 9.51690E-01 + 9.47760E-01 + 9.53650E-01 + 7.22990E-01+ 9.58880E-01

3.17350E-01 9.46870E-01 9.46240E-01 9.49460E-01 7.14660E-01 9.57390E-01

8
9.31020E-01 9.55790E-01 9.58040E-01 9.62240E-01 7.20810E-01 9.61710E-01

9.23240E-01 + 9.50110E-01 + 9.55180E-01 + 9.60370E-01 = 7.19180E-01+ 9.60780E-01

9.15960E-01 9.43710E-01 9.51790E-01 9.58730E-01 7.06000E-01 9.58600E-01

10
2.95180E-01 9.57650E-01 9.58640E-01 9.60640E-01 7.21330E-01 9.61450E-01

2.55770E-01 + 9.54870E-01 + 9.56310E-01 + 9.58770E-01 + 7.18190E-01+ 9.60010E-01

2.51260E-01 9.46620E-01 9.52040E-01 9.53100E-01 7.16580E-01 9.57330E-01
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M MOEA-D SPEA2+SDE SPEA/R VaEA GrEA LEAF

W
F
G

6
3

8.90020E-01 9.11430E-01 9.12380E-01 9.06840E-01 5.81050E-01 9.10700E-01

8.74750E-01+ 9.06340E-01
= 9.04200E-01 = 9.01570E-01 + 5.80840E-01+ 9.04950E-01

8.73820E-01 8.99830E-01 9.00880E-01 8.97230E-01 5.80370E-01 9.01000E-01

5
3.25520E-01 9.68310E-01 9.68320E-01 9.62430E-01 5.76270E-01 9.67870E-01

3.20350E-01+ 9.63000E-01
= 9.58200E-01 + 9.56510E-01 + 5.75740E-01+ 9.61550E-01

3.08050E-01 9.59340E-01 9.54280E-01 9.51670E-01 5.75090E-01 9.56620E-01

8
9.54790E-01 9.66710E-01 9.76720E-01 9.74290E-01 5.70510E-01 9.71610E-01

8.94460E-01+ 9.59900E-01 + 9.65940E-01 =
9.65950E-01

= 5.70120E-01+ 9.64650E-01
8.63360E-01 9.55500E-01 9.58560E-01 9.59030E-01 5.69430E-01 9.56080E-01

10
2.58050E-01 9.66500E-01 9.80160E-01 9.73060E-01 5.67900E-01 9.75080E-01

2.45840E-01+ 9.61140E-01 +
9.67310E-01

= 9.64340E-01 = 5.67370E-01+ 9.65710E-01
2.36260E-01 9.55910E-01 9.56200E-01 9.50880E-01 5.67120E-01 9.60820E-01

W
F
G

7

3
9.10830E-01 9.25220E-01 9.24960E-01 9.22930E-01 5.19440E-01 9.25790E-01

9.06110E-01+ 9.24750E-01 + 9.24160E-01 + 9.22650E-01 + 5.13800E-01+ 9.25170E-01

8.97420E-01 9.23580E-01 9.23570E-01 9.21630E-01 5.08770E-01 9.24760E-01

5
3.46370E-01 9.85880E-01 9.84000E-01 9.83410E-01 4.64280E-01 9.87850E-01

3.32900E-01+ 9.84990E-01 + 9.83520E-01 + 9.80370E-01 + 4.60730E-01+ 9.87120E-01

3.29180E-01 9.83410E-01 9.81920E-01 9.77780E-01 4.55460E-01 9.86030E-01

8
9.71600E-01 9.90760E-01 9.95600E-01 9.95010E-01 3.85120E-01 9.95600E-01

9.54080E-01+ 9.86010E-01 +
9.94890E-01

= 9.94400E-01 = 3.52080E-01+ 9.94250E-01
9.33240E-01 9.82070E-01 9.93800E-01 9.93570E-01 3.14980E-01 9.93550E-01

10
3.01270E-01 9.94830E-01 9.97810E-01 9.96620E-01 3.50130E-01 9.97630E-01

2.78160E-01+ 9.93150E-01 +
9.97570E-01

− 9.95440E-01 + 3.36260E-01+ 9.96650E-01
2.62150E-01 9.89310E-01 9.96790E-01 9.93230E-01 3.16590E-01 9.96060E-01

W
F
G

8

3
8.73560E-01 8.99640E-01 9.12060E-01 8.93340E-01 5.51060E-01 9.08500E-01

8.58990E-01+ 8.96730E-01 +
9.09470E-01

− 8.90140E-01 + 5.49260E-01+ 9.06290E-01
8.44030E-01 8.93910E-01 9.05760E-01 8.86740E-01 5.46000E-01 9.04610E-01

5
2.77240E-01 9.64760E-01 9.73780E-01 9.53750E-01 5.64610E-01 9.70340E-01

2.20730E-01+ 9.62690E-01 +
9.70780E-01

− 9.45730E-01 + 5.63130E-01+ 9.66480E-01
1.90960E-01 9.60450E-01 9.66910E-01 9.35660E-01 5.58190E-01 9.63020E-01

8
9.40600E-01 9.79330E-01 9.89670E-01 9.62950E-01 5.66570E-01 9.65800E-01

9.20960E-01+ 9.77170E-01 −
9.88220E-01

− 9.52950E-01 + 5.65540E-01+ 9.59860E-01
8.90010E-01 9.74240E-01 9.85050E-01 9.36220E-01 5.62900E-01 9.48000E-01

10
2.73470E-01 9.84750E-01 9.94820E-01 9.67200E-01 5.67200E-01 9.79960E-01

1.73300E-01+ 9.81510E-01 −
9.94030E-01

− 9.56930E-01 + 5.66450E-01+ 9.66620E-01
1.29770E-01 9.77900E-01 9.92960E-01 9.39640E-01 5.64710E-01 9.56930E-01

W
F
G

9

3
8.61620E-01 8.96670E-01 8.89040E-01 8.93400E-01 7.98790E-01 8.96170E-01

8.53330E-01+ 8.60220E-01 = 8.62340E-01 =
8.73110E-01

= 7.83540E-01+ 8.61500E-01
8.52070E-01 8.57900E-01 8.59100E-01 8.53690E-01 7.56110E-01 8.60710E-01

5
3.28210E-01 9.46620E-01 9.21170E-01 9.35730E-01 8.28430E-01 9.48550E-01

3.09430E-01+ 9.10110E-01 = 9.01670E-01 + 9.01900E-01 + 8.09330E-01+ 9.43320E-01

2.73970E-01 9.06070E-01 8.96610E-01 8.97920E-01 7.98530E-01 9.05420E-01

8
8.89640E-01 9.46820E-01 9.03290E-01 9.39060E-01 8.15890E-01 9.42990E-01

8.80480E-01+ 9.01370E-01 = 8.91790E-01 + 8.97570E-01 + 7.94770E-01+ 9.33660E-01

8.70290E-01 8.89310E-01 8.80880E-01 8.90390E-01 7.84480E-01 9.03180E-01

10
2.84860E-01 9.47320E-01 9.22390E-01 9.44250E-01 8.16590E-01 9.47210E-01

2.43830E-01+ 9.40070E-01 = 8.94760E-01 + 8.98490E-01 + 8.05180E-01+ 9.40410E-01

2.10400E-01 8.90080E-01 8.87560E-01 8.91280E-01 7.80360E-01 9.00730E-01

Table 9: A relative performance of MaOEAs over all objective dimensions for DTLZ problems,
namely DTLZ (Dx) based on IGD is presented. The ratio (win/loss) suggests win/loss of LEA
over the corresponding MaOEA based on the outcome of the Wilcoxon signed-rank test.

IG
D

(w
in
/
lo
ss
) M 3 5 8 10 15

MOEA/D 4/0 4/0 4/0 4/0 4/0
SPEA2+SDE 4/0 4/0 4/0 4/0 4/0
SPEA/R 4/0 4/0 4/0 4/0 4/0
VaEA 4/0 4/0 4/0 4/0 4/0
GrEA 4/0 4/0 4/0 4/0 4/0
Overall 20/0 20/0 20/0 20/0 20/0

IG
D

(w
in
/
lo
ss
) Problems D1 D2 D3 D4
MOEA/D 5/0 5/0 5/0 5/0
SPEA2+SDE 5/0 5/0 5/0 5/0
SPEA/R 5/0 5/0 5/0 5/0
VaEA 5/0 5/0 5/0 5/0
GrEA 5/0 5/0 5/0 5/0
Overall 25/0 25/0 25/0 25/0
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Table 10: A relative performance of MaOEAs over all objective dimensions for DTLZ prob-
lems, namely DTLZ (Dx) based on HV is presented. The ratio (win/loss) suggests win/loss
of LEA over the corresponding MaOEA based on the outcome of the Wilcoxon signed-rank
test.

H
V

(w
in
/
lo
ss
)

M 3 5 8 10
MOEA/D 4/0 4/0 4/0 4/0
SPEA2+SDE 3/1 3/0 1/3 1/2
SPEA/R 3/1 4/0 4/0 4/0
VaEA 4/0 4/0 4/0 4/0
GrEA 4/0 4/0 4/0 4/0
Overall 17/2 19/0 17/3 17/2

H
V

(w
in
/
lo
ss
)

Problems D1 D2 D3 D4
MOEA/D 4/0 4/0 4/0 4/0
SPEA2+SDE 4/0 2/2 0/3 2/1
SPEA/R 4/0 4/0 4/0 3/1
VaEA 4/0 4/0 4/0 4/0
GrEA 4/0 4/0 4/0 4/0
Overall 20/0 18/2 16/3 17/2

Table 11: A relative performance of MaOEAs over all objective dimensions for WFG problems,
namely WFG (Wx) based on IGD is presented. The ratio (win/loss) suggests win/loss of LEA
over the corresponding MaOEA based on the outcome of the Wilcoxon signed-rank test.

IG
D

(w
in
/
lo
ss
) M 3 5 8 10 15

MOEA/D 9/0 8/1 8/1 9/0 9/0
SPEA2+SDE 6/2 8/1 7/1 8/0 6/2
SPEA/R 5/2 5/2 7/2 6/2 8/1
VaEA 8/1 8/1 7/2 8/1 5/3
GrEA 8/1 9/0 9/0 9/0 8/0
Overall 36/6 38/5 38/6 40/3 37/6

IG
D

(w
in
/
lo
ss
) Problems W1 W2 W3 W4 W5 W6 W7 W8 W9

MOEA/D 4/1 5/0 4/1 5/0 5/0 5/0 5/0 5/0 5/0
SPEA2+SDE 3/2 2/0 2/3 4/1 5/0 5/0 5/0 4/0 5/0
SPEA/R 5/0 1/3 5/0 3/1 5/0 3/0 5/0 1/4 3/1
VaEA 3/2 2/3 3/2 4/1 5/0 5/0 5/0 4/0 5/0
GrEA 4/1 5/0 5/0 5/0 5/0 5/0 5/0 5/0 5/0
Overall 19/6 15/6 19/6 21/3 25/0 23/0 25/0 19/4 23/1
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Table 12: A relative performance of MaOEAs over all objective dimensions for WFG problems,
namely WFG (Wx) based on HV is presented. The ratio (win/loss) suggests win/loss of LEA
over the corresponding MaOEA based on the outcome of the Wilcoxon signed-rank test.

H
V

(w
in
/
lo
ss
)

M 3 5 8 10
MOEA/D 8/0 8/1 6/2 9/0
SPEA2+SDE 3/1 6/1 4/2 6/2
SPEA/R 5/1 8/1 4/3 4/4
VaEA 7/1 8/1 2/2 6/2
GrEA 8/1 9/0 9/0 9/0
Overall 31/4 39/4 25/9 34/8

H
V

(w
in
/
lo
ss
)

Problems W1 W2 W3 W4 W5 W6 W7 W8 W9
MOEA/D 2/1 2/1 3/1 4/0 4/0 4/0 4/0 4/0 4/0
SPEA2+SDE 1/2 1/2 3/0 3/0 3/0 2/0 4/0 2/2 0/0
SPEA/R 4/0 1/2 4/0 2/2 4/0 1/0 2/1 0/4 3/0
VaEA 1/3 2/1 2/2 3/0 3/0 2/0 3/0 4/0 3/0
GrEA 3/1 4/0 4/0 4/0 4/0 4/0 4/0 4/0 4/0
Overall 11/7 10/6 16/1 16/2 18/0 13/0 17/1 14/6 14/0
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