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ABSTRACT
Layout optimization is carried out to achieve the true economic potential of cities by ensuring
optimal land usage. This paper presents a novel framework to resolve conflicts between types of
land usage while considering the effect of neighboring land plots to generate efficient city layouts.
The optimization problem is modeled as a game between land-usage based players, each trying to
maximize payoff based on expected layout modifications. It is worth noting that this framework
aims to include multi-stakeholder competition, land patch shaping, and neighbor plot effects. A
game-theory based approach is coupled with genetic algorithm in which swapping and resizing
operators are used to generate a new solution. A parametric study on fitness evaluation of
algorithmic output layouts is presented. The presented optimization framework has been imple-
mented on land usage map of Guwahati, a city in north-east India.
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1. Introduction

Current city planners face challenges in deciding the land use
layout to improve overall productivity and economic output.
The economic value of each tract of land can be quantified
via its usage and types of neighboring plots. Land use for a
particular purpose in an area also sets a precedent for pre-
ferable usage in the neighboring areas. Considering these
issues in planning land usage would result in better quality
of life for residents. To address these issues, we develop this
framework as a tool to allow regulators to design city layouts
for economic preferences. The methodology is designed on
the rationale to work across macro-scale land use allocation
problems fit for changes seen over decades in cities. Types of
land usage considered in this work are housing, industrial,
recreation, services and agricultural, which makes land layout
optimization a grid-based, discrete, intractable complexity
problem with arbitrary definitions of fitness. This paper pre-
sents a new approach to solving layout optimization problem
by integrating game theory into solution formulation via
upgraded variation operators to consider the effects of rela-
tionships between neighboring land tracts.

Initially, a number of linear programming (LP) techniques
were implemented with geographical information systems
(GIS) on fixed size land tracts. Chuvieco (1993) employed
technical, financial and ecological constraints with minimizing
rural unemployment as the objective. Various conceptual and
technical inconsistencies in the use of LP in (Chuvieco, 1993)
were corrected by Arthur and Nalle (1997) by comparing the
results from a widely used LINDO software system in (Schrage,
2016). The combination of this technology with GIS for land-
use planning showed the potential for using modeling and
optimization for land layout decisions while ensuring principled
interpretation and application. However, LP based methods are
applicable only to the problems having defined linear objectives
and constraints, but converting semantic expressions of desir-
able objectives to linear equations remains a challenge.

To overcome the shortcomings in the LP based methods,
heuristic-based algorithms such as cellular automata (CA) and
simulated annealing (SA) were used. Li and Yeh (2000, 2002)
extended CA and integrated with GIS information to allow
planners to find better urban forms for sustainable develop-
ment. The authors proposed a new method to simulate the
evolution of multiple land uses based on the integration of
neural networks and CA using GIS. Santé-Riveira, Boullón-
Magán, Crecente-Maseda, and Miranda-Barrós (2008)
employed SA for allocation of land units to a set of possible
uses on the basis of land use suitability and homogeneous
usage compactness, which are fixed a priori. Aerts and
Heuvelink (2002) demonstrated the use of SA to solve high-
dimensional non-linear optimization problems for multi-site
land use allocation problems. This multi-objective optimiza-
tion model minimizes development costs and maximizes spa-
tial compactness simultaneously.

Li, Shi, He, and Liu (2011) integrated CA with ant colony
optimization (ACO) to develop an integrated system named
geographical simulation and optimization system
(GeoSOS). In their case study, the CA component of the
GeoSOS generated simulations of the industrial land use
changes for some years in the following decade. The ACO
component had also been revised from the conventional
ACO to work on raster surfaces. Liu, Wang, Ji, Liu, and
Zhao (2012) proposed a variant of ACO by incorporating
multiple types of ants to solve multiple land use allocation
problems. This multiple land allocation method has a spa-
tial exchange mechanism which is used to deal with com-
petition between different types of land use allocation.

Liu et al. (2012a, 2012b) proposed a particle swarm opti-
mization (PSO) based model to maximize the attribute differ-
ences between land-use zones, spatial compactness, spatial
harmony and the ecological benefits of the land-use zones.
Constraints were designed as the quantity limitations for vary-
ing land-use zones, regulations assigning land units to a
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certain land-use zone, and the stipulation of a minimum
parcel area in a land-use zoning map.

Porta et al. (2013) used GAs to formulate and develop
land use plans implementing two criteria, namely the land
suitability and the shape regularity. The constraints and
decision variables were selected based on legal rules and
experts’ criteria. In contrast, Stewart, Janssen, and Van
Herwijnen (2004) focused on the development of goal pro-
gramming and the associated GA for multi-objective land
use planning. Brookes (1997, 2001) introduced GA for
patch design, combining a region-growing algorithm, raster
GIS functions, and multi-objective decision-making techni-
ques into solving single and multiple patch problems. Li and
Yeh (2005) demonstrated that GAs can be used with GIS to
effectively solve the spatial decision problems for optimally
deciding ‘n’ sites of a facility. Authors used detailed popula-
tion and transportation data from GIS to calculate fitness
functions and incorporate multiple objectives into the GA
program. Holzkämper and Seppelt (2007) presented a flex-
ible and easy to use GA-based library called LUPOlib
(Land-Use Pattern Optimization-library) for optimizing
the land use configurations. Morio, Schädler, and Finkel
(2013) presented a framework for spatially explicit, inte-
grated planning and assessment of brownfield (reuse of
underused or abandoned contaminated land) redevelop-
ment options. Balling, Taber, Brown, and Day (1999) also
used a GA with a multi-objective fitness function to obtain a
Pareto-optimal set of future land-use and corridor-upgrade
plans for the city of Provo, Utah. Cao, Huang, Wang, and
Lin (2012) proposed a spatial multi-objective land use opti-
mization and solved using non-dominated sorting genetic
algorithm-II. The case study presented in their paper has
demonstrated the ability of the model to generate diversified
land use planning scenarios which form the core of a land
use planning support system.

Despite such an array of work using evolutionary algo-
rithms (EA), the solutions to layout optimization are
restricted to the definition of objective function and its
characteristics. The objective function in referred publica-
tions does not consider the effect of land-use relations. In
retrospect, a real-world problem such as land layout opti-
mization has many more aspects such as conflicts between
stakeholders, effects of market forces, land usage regula-
tions, etc.. Such constraints need to be incorporated into
mathematical models for generating optimal layouts. Since
game theory (GT) is the study of strategic decision making,
it is the ideal tool for modeling conflicts on quantified
payoffs of stakeholders. We assume that decision making
by economic groups (players) incorporates human interests
via iterations in EA. Considering these possibilities,
researchers have recently begun to incorporate GT into
their models.

Several steps have been taken in the direction of integra-
tion of GT for resolving conflicts for land layout improve-
ments. Liu et al. (2015) have created a land-use spatial
optimization model through coupling GA and GT to aug-
ment land-use spatial optimization models for addressing
local land-use competitions. Lin and Li (2016) integrated
GT in layout optimization to resolve conflicts in eco-pro-
tected zoning areas. Hui and Bao (2013) developed a new
analytic framework by studying the logic and strategy of
conflicts of legal land acquisition from a behavioral perspec-
tive based on game theory. Liu et al. (2016) presented a

framework to study the implementation of concurrent algo-
rithms on the fine sized real-world grid by use of augmen-
ted PSO. In comparison, we partake in this area by
presenting an initial layout optimization framework that
can be used by a regulating authority to obtain layouts
with desired patch characteristics. Our approach modifies
GT operators to include local laws and land conversion
which imitate actual market transactions. This is a work
towards enabling regulators to design policies that can lead
to certain finalized layouts after transactions.

It can be observed from the literature that the land usage
planning is an intractable problem with an associated social
dimension. Solutions to this problem have been attempted
with a range of optimization algorithms, from LP methods
to more complex EAs with GT. In this paper, land distribu-
tion problem has been modeled by considering each eco-
nomic sector as a player. The land layout optimization is
formulated using game theory with a goal to maximize the
social payoff while preserving land use preferences.
Accordingly, the layout optimization algorithm has been
designed and implemented as a game among the economic
sectors where each player is maximizing its own payoff. The
operators in EA implementation have been designed to
represent land conversion and extension with respect to
economic players, a practice mimicking real estate deals in
markets. Following the concept of social good for assessing
changes in layout, any changes in the distribution are con-
sidered valid only if all affected parties benefit via payoff
values.

The paper is organized into six sections. Section 2 pre-
sents the problem formulation. Section 3 describes the opti-
mization method. Section 4 presents results and discussion
from a parametric study. A case study on Guwahati city,
India is shown in section 5. The paper concludes in section
6 with future work.

2. Problem formulation

The paper aims at solving the problem of layout optimiza-
tion having multiple conflicting objectives for city planning
by extending the work of Cao et al. (2011) in which mini-
mizing land conversion costs, maximizing accessibility and
maximizing compatibilities have been considered. We for-
mulate the effect of optimal land zones and their distribu-
tion in the city layout by considering each zone as a player
in the Game theoretic formulation. Landholding arrange-
ments are represented using grid type schemata. Each land
tract of certain usage type has desirable attributes such as
size, shape, uniformity, closeness among other patches of
the same type. Further, each land tract has a preference
order for types of land usage in the neighboring patches.
In this work, the objective of the problem has been designed
to maximize patch desirability (size, shape, etc.), accessibil-
ity and compatibilities – each of which are conflicting
objectives. The parameters are selected to sufficiently repre-
sent a player’s choice for patch geometry and their distribu-
tion across the land map.

The problem has been formulated for land usage types of
housing, industrial, recreation, services, and agricultural,
where each land type is a player vying to maximize its
payoff. The types of land usage considered here are selected
to classify economic activities in an urban setting. For
instance, the housing includes places of living; agriculture
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refers to land-based food production; industrial zones
include pollution generating establishments such as fac-
tories and manufacturing units. Recreational zones include
social areas such as parks and shopping centers. The service
sector would consist of information technology, design cen-
ters and other activities that are end-user facing. The payoff
depends on the land tract attributes for each player. Thus,
each player will specify an optimal value for each of the
attributes of the land distribution. The payoff for the player
should drop if the values achieved for attributes are differ-
ent from the optimal value. The player based modeling is
inspired by the GT based formulation in which it is desired
that each change in land distribution would improve payoffs
for all involved players.

The inputs to the given optimization problem as shown
in Figure 1 are 1) total land area (in square units), 2) types
of usage, 3) parameters characterizing optimal land type, 4)
relationship definitions between players, and 5) expectations
of each player in terms of characterizing parameters. The
total land in a map is discretized based on available area and
desired refinement. Types of usage are defined for consider-
ing optimal requirements for each stakeholder and further
establishing relations among them. The requirements on
physical attributes of patches for each stakeholder are repre-
sented via certain statistical parameters which are listed in
Table 1. Relationships between players represent the com-
patibility objective of the problem. Each of the expectations
of every stakeholder is given as certain values for each of the
predefined parameters. The details act as input to GA based
land optimization software presented in this paper. This
method modifies the initial land map to obtain a final layout
that maximizes the player objectives.

Figure 2 represents a graph-based model for evaluating
the fitness of the land distribution. Each of the vertices
represents a stakeholder and each edge represents the rela-
tionship between a pair of stakeholders. Thus, each vertex
has statistical parameters representing properties of intra-
land usage. Each edge would represent compatibility rela-
tionships by considering inter-player parameters. The ver-
tices in the model represent patch based payoff calculation
factors, whereas the edges represent inter-player usage rela-
tion payoffs. The presented method is designed for obtain-
ing preferred land patches for each player.

2.1. Statistical parameters for payoff calculation

The physical attributes and representative statistical para-
meters are presented in Table 1. Attributes such as size,
shape, and uniformity are required for characterizing phy-
sical patch desirability for the stakeholder. The players
denote individual payoffs with hat functions which are
used to represent the existence of a unique optimal value

for payoffs with respect to each parameter. It assumes the
existence of an optimal value for a player. For example, in a
layout, ‘residential’ land player may encode the land size of
6 units as preferred value.

Attributes related to closeness and relationships repre-
sent accessibility and compatibility, both of which contri-
bute to maximizing the economic output of the city. Each
type of the properties can be represented by one of the
corresponding parameters, which are most relevant to the
problem at hand. Keeping in mind the square and discrete
nature of land tracts, parameters in Table 2 are selected
corresponding to each attribute in Table 1. Furthermore,
the definition of each statistical parameter has been pre-
sented in Table 2.

Player relationships are encoded as an asymmetric
matrix in Table 3. The final payoff is defined as a summa-
tion over both independent and relative parameters. To
maintain the same sum of weight as individual payoffs,
the parameters representing relations between various
players are selected within a range of −5 to 5. Here, −5
signifies low compatibility, and 5 signifies a high compat-
ibility. The maximum and minimum values are selected to
match the maximum weight of 6 attained in a player’s
evaluation of their parameters. Land use compatibility has

Figure 1. The function of layout optimization software.

Table 1. Classification based on composition and configuration (McGarigal,
2016).

1 Area Patch area; radius of gyration, edge, largest patch index
2 Shape Perimeter/Area, shape index, circumscribing circle index
3 Core area Patch core area, core area index
4 Subdivision Patch density, splitting density
5 Isolation Euclidean nearest neighbor distance
6 Diversity Similarity index
7 Contrast Edge contrast index
8 Aggregation Contagion, clumpiness, patch cohesion, landscape shape

Figure 2. A model representing payoff calculation effects.
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been calculated by using the compatibility matrix approach
in Cao et al. (2011). A formal decision-making framework
such as analytical hierarchical process presented in Saaty
(1987) and studied recently in De FSM Russo and Camanho
(2015) can be employed for developing the compatibility
matrix. To avoid the non-uniqueness encountered in this
method, semi-definite programming as presented in
Vandenberghe and Boyd (1996) can also be employed to
derive such unique and optimal matrices on convex spaces.
In this paper, the player relationships are encoded with an
asymmetric matrix representing the nature of preferences
for land areas. For instance, an industry land player would
prefer being close to housing area for people to commute
easily. In comparison, house owners would prefer recreation
closer to their houses instead of polluting industries. Such
relationships are expressed in Table 3 and can be tweaked
for regulator objectives.

The rows in the relationship matrix belong to each player
whose payoffs are stated on a cell of any patch. For each cell
belonging to a player, the neighboring cell usage is used to
determine the relationship payoffs by summing them up for
8-point connectivity. The payoffs are further normalized to

obtain an equivalent representation for each patch. In the
relationship matrix, a higher payoff represents preference
towards the land type.

2.2. Playerwise payoffs

Each player has a unique optimal value for each statistical
parameter. This optimal value is mapped to individual pay-
offs using hat functions represented in Figure 3. The calcu-
lated value of the statistical parameter in a distribution acts
as input to hat function to obtain final payoff. It is noted
that the maximum payoff is obtained at the optimal value
for each parameter for each player. Any deviation from the
optimal value leads to a payoff lower than optimum. Payoff
obtained at the optimal value for a parameter can also be
decided by the player himself. It is represented by the height
of hat function in Figure 3, which acts as a map from
statistical parameters to individual payoffs. The magnitude
of the hat functions includes the influence of a player into
the calculations for the social payoff.

3. Optimization method

In this paper, GA is used for layout optimization for a single
layout. A general run of a proposed algorithm initializes the
land layout as a grid with integers representing the land use
type. The fitness evaluation of the layout is carried out using
statistical parameters as defined in Tables 2 and 3. The
relationship matrix values in Table 3 are based on edge
connections between players as shown in Figure 2. This
layout undergoes swapping and resizing consecutively,
each of which returns a new land distribution only if a
better distribution is obtained. Swapping and resizing
operators have stochastic designs presented in the following
sub-sections.

3.1. Population generation

A random population is generated for given edge length of
square-shaped land distribution. In the upcoming sections,
we present the results showing parametric effects on the

Table 2. Statistical properties and description.

Properties Explanation

Mean Patch Area Mean of four-point connected patch areas of a
distribution

Perimeter/Area Mean of the perimeter to area ratio. Represents
the regularity of the shape of the patches.

Circumscribing square
diagonal

Represents the maximum possible area that can
be covered by a patch

Patch Density Represents the uniformity of patch
Euclidian Distance Normalized Sum of the distances between two

member sets of patches
Patch Relation using
edge contrasts

This represents the contrast of a patch with the
neighboring patches

Table 3. Land usage relationship definitions.

Housing Industrial Recreational Services Agriculture

Housing 0 −5 5 2 −4
Industrial 3 0 3 3 3
Recreational 5 −4 0 3 −2
Services 5 −4 3 0 −4
Agriculture 3 −5 −2 −2 0

Land usage statistical parameters 

Payoff 
Matrix 

Mean 
Patch 
Area 

Mean 
Patch Edge 
length 

Circumscribing 
circle 

Patch 
Density 

Euclidian 
distance 

(isolation) 

Housing 

Industrial 

Recreation 

Services 

Agriculture 

Figure 3. Hat function.
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evolution of single layout. Each land type is represented by a
corresponding integer given in Table 4.

3.2. Payoff calculation

As shown in section 2.1, the parameters affecting payoff
calculation are normalized, resulting in values 0 to 1 with
methods presented in Table 5. The generalized scheme for
calculation of players and eventually social payoffs are
shown in Figure 4. The payoff is calculated based on two
types of parameters, i.e. usage and relationship parameters.
The usage parameters are calculated by converting the land
matrix into the binary matrix for each player. The area is
then segmented into patches whose properties are measured
and a mean value for each property-player pair is obtained.
Further, the neighborwise payoff is assigned as per relation-
ship matrix on the edge of each patch and then normalized.
For a given land distribution, a binary distribution of hous-
ing usage is obtained as has been shown in Figure 5. Such a
distribution considers all other usage types as equivalent.
This distribution is used to compute statistical parameters
representing desirability of the land. For relationship para-
meters, the boundary of each patch is considered and the
neighboring cells are computed based on relationship defi-
nition matrix given in Table 3. Each of the parameters is
normalized and summed up to obtain the final payoff.

Color based labeled matrix showing a color-coded map-
ping of individual patches for a player-specific binary
matrix is shown in Figure 6. Blocks of color other than

blue in original land represent an individual patch. In
Table 6, the player distribution specific parameters are cal-
culated by averaging over contiguous patches in the binary
matrix shown in Figure 5. Further, a relation parameter is
also calculated and implemented for the entire layout. Let us
define the variation operators used at each step of the
presented EA method.

3.3. Swapping operator

Swapping operator is designed to exchange the land track
between two land usage types or players. It has been imple-
mented on a cell basis among pairs of players. Five pairs of
players are taken ensuring equal representation for all
players. For each pair of players, a cell is selected at random
from a randomly selected patch and the two cells are
swapped as shown in Figure 7(a,b). The outcome is consid-
ered acceptable if payoffs improve for both players. In case of
multiple pairs achieving better payoffs, best net payoff dis-
tribution is selected for further stages of the algorithm.

3.4. Resizing operator

Resizing operator is the extension of occupied land by a
player beyond its current expanse. Resizing operator has
been implemented on a player owned cell basis. For each
player, a random boundary cell in a random patch is selected.
Further, a neighboring patch of foreign usage type is selected
at random by the cell whose identity is then changed to the
original cell as shown in Figure 7(a,c). If the transaction leads
to higher payoff for the parent and foreign players, then the
change is accepted. In case of multiple transactions achieving
better payoffs, best net payoff distribution is selected for
further stages of the algorithm.

As shown in Figure 1, the layout optimization software
inputs an initial land distribution with requisite data and
outputs a final distribution. The details of the software have
been represented in Figure 8. The flowchart begins with an
initial land distribution and preferred values of statistical
parameters for each player. The optimal values define the
peak of hat functions for each parameter-player pair, i.e. the
players obtain maximum payoff whenever the value of sta-
tistical parameters for a given layout match these values.
The land distribution is passed on to ‘swapping acceptance’
function. This function creates five pairs of players such that
each player is represented exactly twice. For each pair, cell-
based swapping is carried out at random. When the

Table 4. Player definitions.

Player 1 Housing
Player 2 Industrial
Player 3 Recreation
Player 4 Services
Player 5 Agriculture

Table 5. Land usage statistical parameters.

Parameters Normalization Method

Mean patch area Division by total land area
Mean patch edge
length

Division by 4 times number of 4-connected
patches

Circumscribing square
diagonal

Using diagonal length of the plot

Patch density Already normalized
Mean euclidian
distance (isolation)

Division by land diagonal length

Land usage
relationship

[−5, 5]. (x + 5)/10. Further division by patch area
for every patch followed by averaging.

Figure 4. A flowchart depicting fitness evaluation.
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swapping operator generates better payoff for both players,
the swapped distribution is marked acceptable as it signifies
an improvement. If multiple such solutions are accepted in
the five swaps, then the one maximizing social payoff is
chosen for replacing the original land distribution. The
updated distribution is passed on for resizing operation.
The operator resizes a random patch for each player and
accepts the change if both players have improved payoffs. In
case of multiple acceptances in the five resize operations, the
distribution with maximum social payoff is selected for
replacing original land distribution. Each of the payoff cal-
culations is done by considering the hat curve mapping
shown in Figure 3. This process is repeated for multiple
iterations to ensure that relative error of social payoff has
converged for each player.

4. Results and discussions

This section presents a parametric study of the proposed
algorithm. The parametric effects of player-wise payoff
weight, relational payoff weight, mean/median based fitness
calculation and number of cells are studied. The controlled
inputs in this optimization algorithm are land size, a num-
ber of iterations, player-wise optimal payoff values, and
weights of relationship payoffs which are shown in
Table 7. The complete land has been assumed to be a square
layout divided into cells of uniform size. Thus, a layout of
edge length 20 has a total of 400 units. Player-wise payoffs
represent the weight of each player. In terms of Figure 3,
each column represents the height of the hat function for
the player. This aids the representation of a super-player
who has greater weight in determining social payoff. It can
be used to skew the final layout towards a particular sector.
The payoffs for usage-based payoff include calculation of
each parameter on a patch basis for each player. These
parameters can then be used for representing a player by
either taking their mean or their median. Medians are a
more accurate representation of current status in a para-
meter for a player. In practice, use of mean based payoffs
was found to ensure faster convergence.

The efficiency of the methods has been measured by a
term representing percentage ratio of obtained payoff to net
achievable payoff. Efficiency or Social Payoff percentage is
calculated as the product of a number of players and sum of
maximum achievable player payoffs.

The following initial payoff values have been obtained for
initial layout.

The contribution of normalized relationship based para-
meter payoff is one-sixth of net player payoff. This has also

Figure 5. Representational Binary matrix for a player.

Figure 6. Color-coded labels for each 4-connected patch in binary matrix
corresponding to the individual player.

Table 6. Value of statistical parameter for layout in Figure 6.

Statistical Parameters Values

Mean Patch Area 1.8
Mean Perimeter to Area ratio 3.4667
Mean diagonal of circumscribing square 2.0258
Mean Patch Density 0.95
Mean Euclidian distance in Patches 2.4015

A.Original B.Swapped
Distribution

C.Resized
Distribution

Figure 7. Swapped and Resized distribution.
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been varied and changed to a half. The results are docu-
mented in Case III in the upcoming section. Figure 9 shows
the land distribution of edge length of 20 obtained at ran-
dom. This distribution has been used as initial distribution
for six case studies.

4.1. Case study I: general case

In this case study, the input parameters presented in Table 7
are considered. The percentage Social Payoff obtained in
this case study is 72.92%, as shown in Figure 10. In case of
mean payoff, the variation of the social payoff is mostly
smooth and levels off after 300 generations. Even with
varied initial land distributions, the final payoffs obtained
were close to this value. This trend has been observed for all
variations studied in this report. Most of the units are
integrated and patterns can be observed with respect to
binary matrices of each player.

4.2. Case study II: player-wise payoff varied

This is continued parametric study from Case I where player-
wise payoffs are varied to indicate relative preferences among
players. This can be used to provide emphasis on a sector for

developing the city plan. Following player-wise payoffs is
considered in this case study; [1, 1.2, 0.95, 1.05, 1.07].

The percentage social payoff obtained in this case is 72.28%
which is shown in Figure 11. The payoff ability can be used to
represent super-user and dominated users in the society and
payoffs can then be obtained. The percentage payoff obtained
is almost the same as in the previous case.

4.3. Case study III: relational payoff weight varied

Continuing the case study I, the relationship payoffs are
now increased to five times their original contribution.
This ensures the equal contribution of usage and relation-
ship payoffs in the calculation of individual player
payoffs.

Figure 8. Flowchart of GA based software.

Table 7. Input parameters.

S. No. Variable parameters Sample values

1 Land Edge, N 20
2 Number of iterations 600
3 Player wise payoffs [1 1 1 1 1]
4 Statistical averaging parameter Mean/Median
5 Relationship payoff Unity (normalized)

Mean based initial payoff: [3.2122, 3.3123, 2.9040, 2.7756, 2.0954]
Median based initial payoff: [1.4208, 1.3743, 1.4576, 1.4476, 0.7805]

Figure 9. Original Land Distribution.
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Figure 12 shows that the percentage social payoff
obtained is 75.18%. The weight of relationship parameters
in the calculations is multiplied by five units to ensure
comparable payoff as that of land usage payoffs. Better
efficiency is observed in this case. This can be attributed
to the greater emphasis on patch relations as evident from
Figure 12.

4.4. Case IV: player-wise and relational payoff weight
varied

Compared to the case study I, both player-wise payoffs and
relationship payoff weights are varied and the change in net
social payoffs is recorded. The player-wise payoffs are con-
sidered as [1, 1.2, 0.95, 1.05, 1.07] and the relationship

payoffs are increased to five times their original contribu-
tion. The mean-based payoff calculations are considered.

In this case, the percentage social payoff obtained is
75.23% which is shown in Figure 13. The net social payoff
has risen compared to the case study I. The majority of the
rise can be attributed to newly weighted relationship payoffs
as can be observed in Case II and Case III.

4.5. Case V: payoff calculation method of mean
followed by median

As a continued parametric case study I, the effect of varia-
tion of a statistical parameter in the calculation of player
payoffs is varied. A simulation run is made on mean based
payoff calculation followed by a median based one. Here the

Figure 10. Case Study 1.

Figure 11. Case Study II.

Figure 12. Case Study III.
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optimization was being run in two stages, V(1) and V(2),
corresponding to mean and median-based payoff
calculations.

For mean payoff based algorithm run, initial payoffs are
[3.1550, 3.2537, 2.8106, 2.7638, 2.1329] and final payoffs are
[4.9851, 4.0876, 4.8463, 3.7442, 4.3196]. In this case,
Figure 14 shows that the percentage social payoff obtained
is 74.04%. This stage showed a rapid change in a payoff by
increasing from 0.5 to 0.733.

For median payoff based algorithm run, initial payoffs
are [3.7116, 2.2954, 3.7049, 1.9616, 3.1657] and final pay-
offs are [4.5305, 2.4981, 4.0643, 2.7901, 3.8188]. The per-
centage social payoff obtained is 59.02%. This stage
showed minor changes in payoff as shown in Figure 15
by improving from 0.52 to 0.59. The runs have been made

in succession which implies a payoff of 0.74 in terms of
mean based calculation, equivalent to 0.5 in terms of
median based calculations.

In terms of mean based calculations, the percentage
social payoff obtained is 71.61%. Although the percen-
tage payoff has diminished, this is a good method to
bring variations into the layout which sometimes leads
to layouts with lesser numbers of single unit land tracts.
This change yielded better results as it means based
payoffs record tiny improvements in layout whereas
medians represent the actual situation and respond
rarely with respect to any changes in layout. Thus, a
run of mean followed by median allows for larger
changes in the beginning followed by smaller changes
in the later part.

Figure 13. Case study IV.

Figure 14. Case Study V-1 based on the mean payoff.

Figure 15. Case Study V-2 based on the median payoff.
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4.6. Case VI: payoff calculation method of median
followed by mean

As a continued parametric case study I, the effect of varia-
tion of a statistical parameter in the calculation of player
payoffs is varied. A run is made on median based payoff
calculation followed by mean based one. The results
obtained from mean based payoff variation run are pre-
sented in Case VI-2.

In this case, as shown in Figure 16, the payoff
obtained and the corresponding layout is poor after a
median payoff based run as the variations in the median
are difficult to obtain with just a variation in the cell,
although it is a more accurate representation parameter.
In contrast, a secondary mean-based run as presented in
Figure 17, Case VI-2 demonstrates significant improve-
ments in social payoff and land distribution.

4.7. Case VII: larger land size

In this case, the effect of varying number of cells in the
layout has been studied. The land edge size, N, is con-
sidered as 20, 30 and 50. A number of iterations are fixed
1000, 2000 and 4000 for N = 20, 30, and 50, respectively.
Equal player-wise payoffs are considered. Median based
payoff calculations with normalized payoff relationship
are used.

The simulation results for Case VII 1–3 show a net
efficiency obtained as 74.01%, 72.82%, and 69.12%,
respectively. From Figure 18, it can be observed that
the percentage social payoff converges to 70% as the
simulation progresses. This strengthens the hypothesis

that maximum efficiency achieved using the proposed
algorithm has low sensitivity towards a variation of land
size. In each case, the contiguous patches tend towards
desired land sizes, shapes, and relative placement. This
pattern is observed in Case VII 1–3. A similarity of
aggregated land patch sizes, roundness and neighbor
types is observed in each case in Figure 18.

5. Case study: Guwahati city, India

This section contains a case study on a selected land
usage map of Guwahati city, India by Guwahati
Metropolitan Development Authority (2013). Since the
discussed algorithm can only input rectangular maps, we
assume the white space to contain agricultural land
situated on the outskirts of the city. The algorithm can
consider non-participating land which will not be
altered in the course of development. In this case,
river water and other water bodies fall under this
category.

The land map shown in Figure 19 was averaged and
brought to smaller mesh to incorporate into appropriate
run times for the algorithm, as depicted in Figure 20.
The initial payoff corresponding to each land usage type
is obtained as [4.3479, 2.3550, 4.3800, 2.1227, 5.1715].

As can be observed, the payoff of agricultural lands is
much higher due to the greater presence of contiguous
agricultural lands. The algorithm was implemented as
shown in case study 1 and distribution obtained is shown
in Figure 21. The final payoff corresponding to each land
usage type is shown as [4.5467, 4.3096, 5.1880, 4.7489,

Figure 16. Case Study VI-1.

Figure 17. Case Study VI-2.
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5.0748]. As can be observed, there have been no significant
changes barring increase in the land of the services sector.
The amount of land dedicated to agriculture has remained

almost unchanged to ensure no fall in the payoff at any
change in its distribution. The regularity in shapes of indus-
trial lands has improved.

Original land distribution Optimal land distribution 

Case VII-1 

Original land distribution Optimal land distribution 

Case VII-2 

Figure 18. Final land layout and payoff variations for case study VII.
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6. Conclusions

This article proposed an algorithm towards tackling the
problem of layout optimization with a novel framework
based on genetic algorithm and game theory. This work
is aimed at developing a methodology for developing
economic zones in the cities over a time-period of
decades. For this purpose, land usage has been classified
as housing, industry, recreation, services, and agricul-
ture. Each of the land usage types is classified as a
player who aims to improve their payoff with variations
over several iterations. Variation operators such as
swapping and resizing are developed based on land

exchange and extension activities. In comparison to a
GA, this method does not have a set of the population,
but rather starts with a particular layout and improves it
across iterations. The operators have been implemented
on a cell basis and hold a promise of better performance
if also applied on a patch basis.

Consideration of neighbor relationship based payoff
is a major highlight of this work. It considers the effect
of the proximity of one land type to another, such as
that housing areas would prefer closeness to recreation
and a distance from industry. The presence of self-sus-
taining units containing patches of each type of land
unit can also be observed. Increasing the payoff of such
relationship in payoff calculation of players has also led
to improved layouts, as evident from social efficiency.

Player-wise payoff variation has helped capture the effect
of super-user and dominated player. Such a variation can be
used to capture dominance of a particular industry in a city
and corresponding plans. In case of such variations, the
social efficiency obtained is close to the general case.

It has been observed that median is a more accurate
measure of the parameters. However, using medians causes
the problem of slowing down of any variations in simula-
tions. Thus, only median based payoff calculation leads to
poor quality final layouts. A more reasonable method stu-
died has been of applying a median based algorithm once a
mean based algorithm has become saturated. This has led to
lower ranges of patch sizes and improved layout despite
slight depreciation in percentage social payoff. Also, this
method shows the way towards improving payoffs after its
stagnation.

Original land distribution Optimal land distribution 

Case VII-3 

Figure 18. Continued.

Figure 19. Land usage map of Guwahati city (https://gmda.assam.gov.in/
documents-detail/master-plan-guwahati-2025-maps).
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Other extensions such as patch based variations and
inclusion of more statistical parameters can still be
incorporated into this method to explore for better city
layouts. The payoff functions can further be altered to
include terrain and geological effects in the objective
functions of each economic zone to improve the quality
of predictions with this framework. The issue of defining
parameters for neighboring matrix and optimal player
parameters can be carried out with data-driven methods
on desired city layouts. The current work displays the
possibilities in layout design with a framework merging
effects of current land patches, neighbors and a game
theoretic algorithm design.
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