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Abstract

Finite element method has been successfully implemented on the graphics pro-

cessing units to achieve a significant reduction in simulation time. In this paper,

new strategies for the finite element matrix generation including numerical in-

tegration and assembly are proposed by using a warp per element for a given

mesh. These strategies are developed using the well-known coloring method.

The proposed strategies use a specialized algorithm to realize fine-grain paral-

lelism and efficient use of on-chip memory resources. The warp shuffle feature of

Compute Unified Device Architecture (CUDA) is used to accelerate numerical

integration. The evaluation of elemental stiffness matrix is further optimized

by adopting a partial parallel implementation of numerical integration. Per-

formance evaluations of the proposed strategies are done for three-dimensional

elasticity problem using the 8-noded hexahedral elements with three degrees of

freedom per node. We obtain a speedup of up to 8.2× over the coloring based as-

sembly by element strategy (using a single thread per element) on NVIDIA Tesla

K40 GPU. Also, the proposed strategies achieve better arithmetic throughput

and bandwidth.
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1. Introduction

Computing on the general purpose graphics processing unit (GPGPU) has

proved to be very efficient in accelerating compute-intensive as well as memory-

intensive scientific codes. A GPU works together with a CPU (central processing

unit) to accelerate scientific, analytic, engineering and enterprise applications

around the world. There is a fundamental difference in the architectural de-

sign of a GPU and a CPU. GPUs are basically a many-core processors having

thousands of cores designed to deliver high computational throughput, whereas

CPUs sacrifice the computational throughput of the processor to increase the

performance of a single core. This different design philosophy necessitates the

development of specialized algorithms to exploit the potential performance of

the GPU hardware [1]. GPUs are most suitable for throughput oriented nu-

merical applications which operate over a huge amount of independent data

set.

Finite Element Method (FEM) is one of the most popular numerical methods

for obtaining the solution of partial differential equations. FEM simulation is

highly compute and memory-intensive for complex problems having thousands

or millions of mesh elements [2, 3]. The computational load further increases

for problems in 3D (three dimensions). FEM primarily involves computation

of elemental matrices and force vectors for all elements of the mesh and their

assembly to a linear system of equations. For the 3D problem having a complex

weak form or higher order elements, numerical integration and assembly time

can be considerable. The performance can degrade more in problems where

the assembly is required iteratively such as nonlinear elasticity. GPUs have

been found to be very effective in accelerating almost every step of FEM based

simulation [4]. The speedup of several orders of magnitude is reported in the

assembly of elemental matrices [5, 6, 7] for different applications. Although

the numerical integration is not so easily parallelizable, the notable speedup is

observed in [8, 9, 10].
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This paper aims to explore a more efficient strategy for GPU implementa-

tion of numerical integration and assembly for elasticity problems in 3D. The

computation of the elemental matrix on GPU is problematic as it consists of

a number of sequential steps. Our proposed assembly strategies make careful

use of a specialized algorithm, suitable data structures, and recently added fea-

tures in a programming language to obtain better performance. Three different

strategies for assembly based on the coloring method for an 8-noded hexahedral

element are presented. All strategies assign a warp to each element of the mesh

for numerical integration and assembly either completely or partially. The warp

shuffle feature of CUDA has been used in all the strategies to calculate Jacobian

in a very efficient manner. The assembly to the global matrix is done in the CSR

(Compressed sparse row) format by precomputing the indices. The profiling of

the proposed strategies is done and performance is compared with established

assembly by element strategy (single thread per element) [5, 7, 11].

This paper is organized as follows. Section 2 deals with details of previ-

ous works that have addressed the problem of implementing FEM on GPU. In

section 3, the key components of the CUDA programming model and memory

hierarchy available to each thread are presented. Finite element formulation of

3D elasticity problem is discussed along with the sequential and parallel im-

plementation of FEM assembly. The parallel implementation is based on the

coloring method and uses assembly by element strategy (single thread per ele-

ment) for computation. The new strategies are proposed in section 4. In section

5, detailed analysis of the proposed strategies is presented and performance is

compared to each other as well as with assembly by element strategy. The paper

is concluded in section 6.

2. Previous works

Earlier studies on implementing FEM simulation on GPU have focused pri-

marily on a solution for a sparse linear system of equations. It is because the

solver is the most time-consuming step of FEM and that can be done in parallel.
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There is a rich amount of literature discussing many efficient implementations

of sparse linear solvers on GPU [12, 11, 7, 13]. Several efficient libraries, such

as CUSP [14], MAGMA [15], AmgX [16], etc. also exist. New capabilities in

hardware and more flexible programming environment have helped researchers

to focus on other steps of FEM like the calculation of elemental matrices and

assembly. These steps of FEM can consume a considerable amount of time

for complex problems involving finer mesh [17], higher order finite elements [6],

non-linear elasticity [18], and topology optimization [19] to name a few.

In [8], GPU implementation of numerical integration for electromagnetic

application is discussed. Here, the computation for a single finite element is

assigned to a single thread-block. Individual threads of the thread-block calcu-

late a set of entries of the elemental stiffness matrix using one outer loop over

integration points and two inner loops over shape functions. A grid of thread-

blocks is launched for the whole mesh or a sub-mesh if the problem is large. The

results show a speedup of 3× to 19× for a higher order prismatic element on

NVIDIA GeForce 8800GTX. Another study by the same authors investigates

numerical integration for quadrilateral elements with curved geometry using

OpenCL in [20]. Numerical integration for the higher order tetrahedral element

is implemented in [9] in which elemental matrix is computed for 32 elements

in parallel. Each element uses 81 thread-blocks to perform the calculation for

81 Gauss points. Thereafter, the assembly of the elemental stiffness matrices is

performed using a different kernel. There are some implementations in which

integration and assembly are performed by single GPU kernel [10]. The well-

known coloring method is used which assigns colors to the mesh such that no

two elements of the same color share any common node. The GPU kernel then

performs elemental stiffness calculations for the elements of the same color and

then assemble them into the global stiffness matrix. The study shows coalesced

access of node coordinates, but the detailed implementation of numerical inte-

gration is not discussed. The study demonstrates speedup of 7× and 10× for

the quadrilateral and hexahedral (8-noded) elements respectively on NVIDIA

GeForce GT430. Similar kind of assembly strategy using the coloring method
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is found in [21]. However, authors suggest two types of implementations for

elemental matrix computation for the 8-noded 3D elements. One using a single

kernel for all the computations, while the second using three kernels. The lat-

ter implementation is found to be better that reduced the assembly time from

2.44 seconds to 0.65 seconds for 512,000 elements. However, the paper does not

discuss the work distribution among the threads as well as the memory types

used for storing intermediate values in numerical integration computation. In

[22], numerical integration strategies which can scale to higher order elements

are investigated. A group of threads called as work-group is used to do the com-

putation for a block of the element stiffness matrix by looping over integration

points. The GPU strategies are found to be performing better than CPU in all

the test cases.

In [6], GPU-based simulation of seismic wave propagation is done using a

high-order spectral-element. A thread block is assigned to each element consist-

ing of 125 nodes to calculate the elemental contribution. The problem of race

condition in global assembly is handled by using the coloring method. Another

detailed analysis of global assembly for more general FEM implementation is

presented in [5]. The authors investigate many approaches using different GPU

memory types for storing elemental data and different kernel design for assem-

bly. General conclusion recommends using two different approaches for low and

high order elements. For lower order elements, the elemental data is stored in

the shared memory of the GPU, while the assembly is done by associating the

threads with non-zero (NZ) entries of the global matrix. For higher order ele-

ments, the best performing method uses a single thread per element to calculate

the elemental data and stores it into the global memory of GPU. The assembly

to the system of equations is done by parallel reduction. The elemental sub-

routine is treated as a black box which might hamper the performance when

using the higher-order elements. While the most of the literature focuses on

very specific implementation, in [11] a FEM implementation scalable to higher

order finite elements is proposed. The elemental matrix calculation is done by

allocating a single thread per element. A numerical integration scheme which
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uses outer loops over shape functions and an inner loop over Gauss points is

used. The numerical integration does not use any memory to store intermedi-

ate data and calculates them every time by doing the redundant computation.

The other approaches which use local memory or global memory are found to

be memory bandwidth bound. It also presents an insight into the effect of the

data structure on the performance. In addition to the global matrix assem-

bly approach, local matrix approach (LMA) and matrix-free approach are also

discussed in the literature. Markall et al. [23] have compared several differ-

ent assembly strategies on different many-core architectures. Authors proposed

LMA approach for the assembly and demonstrated the suitability of this ap-

proach to many-core architecture for 2D meshes. In [7], a different approach to

mesh partitioning is found. Disjoint sets of nodes called as patches are made

out of the mesh. Element assignment is done in such a way that each element

belongs to one patch only. The element stiffness matrix (4 × 4) is calculated by

reading input data in the coalesced way and using a single thread per element.

The CSR storage format for the global matrix is used which has precomputed

column indices and row offsets. The assembly is done for all the elements be-

longing to a patch in the shared memory and final data is written in a coalesced

manner to the global matrix in global memory. A new finite element assembly

strategy based on sparse matrix multiplication is found in [24]. The strategy

captures connectivity information of the mesh through sparse matrix represen-

tation and uses them to efficiently assemble elemental matrices by avoiding any

type of preprocessing. Another recent finite element assembly method is found

in [25]. In this work, the assembly process for 3D finite elements is dividing into

a node-by-node symbolic part and an element-by-element numeric part.

The strategies presented in the above-mentioned studies achieve a signifi-

cant speedup on GPUs which, however, are outdated. But the methods are

still viable. Based on the survey of previous work, we found that numerical

integration which does redundant computation and uses no off-chip memory is

more suitable for GPU implementation. The other approaches which use lo-

cal memory or global memory perform better for lower order elements becomes
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memory bandwidth bound for elements having larger stiffness matrix size. This

is particularly true in the case when a single thread per element strategy is used.

In this work, we present a strategy which uses multiple threads to do the com-

putation for one element. This provides us sufficient on-chip memory space for

numerical integration (without redundant computation) as well as an elemental

matrix. The existing coloring method is used to avoid the race condition during

assembly. The mesh is divided into disjoint sets of elements denoted by different

colors in the same way as in earlier works. Computation corresponding to each

of the colors is done sequentially by the GPU kernel presented. The proposed

strategies implement element matrix computation and assembly using the same

kernel.

3. Preliminaries

3.1. GPU Architecture and CUDA

GPUs are throughput oriented devices designed to process the data parallel

and data throughput tasks. The data parallel applications are those which

operate over the independent data sets, whereas data throughput tasks need

to process a huge amount of data. The hardware design of GPU is based on

many-core processing units and differs considerably from multi-core processing

units like CPU. The many-core design consists of a large number of simple

processing units, very small cache, and a high memory bandwidth. On the other

hand, the multi-core processor consists of few highly complex and efficient cores

along with a large cache memory and low memory bandwidth. In this paper,

GPU developed by NVIDIA is used, which consists of a number of streaming

multiprocessor (SMs). Each SM contains a number of streaming-processor (SPs)

and on-chip memory. It also has an off-chip memory (DRAM) known as global

memory, which has the highest latency on GPU. The off-chip memory is also

used for data transfer between CPU and GPU. The on-chip memory available to

each SM is further divided into registers, configurable shared memory, and read-

only data cache. Registers are allotted to one thread and cannot be accessed by
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any other thread. The shared memory is common to a block of threads where it

can be accessed by all threads of the block. The on-chip memory is much faster

than the off-chip memory. Local memory is the private memory space of each

thread. This memory often occupies space in registers, but can spill over to off-

chip memory. Constant memory is read-only for GPU threads. Figure 1 shows

NVIDIA Tesla K40 streaming multiprocessor along with memory hierarchy.
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Figure 1: A SMX of NVIDIA Tesla K40 based on Kepler architecture. It has 15 SMX and

192 CUDA cores. The figure also shows memory hierarchy for a thread.

Compute Unified Device Architecture (CUDA) [26] is a parallel program-

ming platform created by NVIDIA. It allows software developers to use a CUDA-

enabled graphics processing unit (GPU) for general purpose computation. CUDA

provides flexibility of using many languages like C, C++, FORTRAN, etc. to

program the hardware (GPU). Interested readers can refer to [27] for more de-

tails.

3.2. Linear Elastic Finite Element Formulation

Finite element method is a numerical technique for solving partial differential

equations (PDEs). The governing PDEs, that is, the strong form for linear

elastic material is given by

∇ · σ + b = 0, (1)
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where σ is the Cauchy stress tensor, and b is the body force per unit volume.

The strong form is supplemented by the displacement u and traction t boundary

conditions given by

u = uo on Γu,

t = t̄ on Γt, (2)

where uo and t̄ are the specified displacement and traction on the displace-

ment boundary Γu and the traction boundary Γt, respectively. The constitutive

equation for the linear elastic material is given by Hooke’s law as

σ = Dǫ. (3)

Here, D is the material constitutive tensor and ǫ is the small strain tensor given

by

ǫ =
1

2

[

∇u +∇uT
]

. (4)

The solution for the strong form given in (1) is difficult to obtain for any ar-

bitrary geometry and boundary conditions. Hence, the strong form is converted

into the weak form using the Galerkin weighted residual approach [28]. The

domain on which the solution is sought is discretized into a number of polygons

or polyhedra, called as the elements. The displacement at a point x over a

typical element domain Ωe is approximated as

u(x) =

n
∑

i=1

uiφi(x), (5)

where n is the total number of nodes per element, ui is the nodal displacement

vector of node i, and φi(x) is the shape function of node i. This can be re-

arranged in the following matrix form given by

uuu =



















ux

uy

uz



















= φ∆φ∆φ∆e, (6)
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where, φφφ is the shape function matrix given by

φφφ =











φ1 0 0 φ2 0 0 ... φn 0 0

0 φ1 0 0 φ2 0 0 ... φn 0

0 0 φ1 0 0 φ2 0 0 ... φn











, (7)

and ∆∆∆e is the elemental displacement vector given by

∆∆∆e =
{

u1
x u1

y u1
z u2

x u2
y u2

z ... un
x un

y un
z

}T

. (8)

Here, ui
x, ui

y, ui
z are the x, y and z components of the displacement of the ith

node, respectively. The substitution of (6) into the weak form and assembly

over all the elements gives the global form given by

KKK∆∆∆ = F + Q, (9)

where KKK =
∑

e

KKKe, F =
∑

e

Fe, and Q =
∑

e

Qe. The expressions for elemental

matrices are given by

KKKe =

∫

Ωe

BBBTDBdx,

FFFe =

∫

Ωe

φφφTbbbdx,

QQQe =

∮

Γe

φφφT t̄̄t̄tds. (10)

The elemental stiffness matrix KKKe is of the order 3n × 3n, the elemental body

force vector FFFe and the elemental external force vector QQQe are of the order 3n

× 1, where 3n is the total degree of freedom (DOF) per element. The matrix

B is also known as strain-displacement matrix and is defined as

BBB =
[

BBB1 BBB2 BBB3 .... BBBn

]

, (11)

BBBi =





























∂φi/∂x 0 0

0 ∂φi/∂y 0

0 0 ∂φi/∂z

0 ∂φi/∂z ∂φi/∂y

∂φi/∂z 0 ∂φi/∂x

∂φi/∂y ∂φi/∂x 0





























(12)
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The constitutive matrix DDD contains the elastic properties of the material and

has the following form for isotropic materials:

DDD =
E

(1 + ν)(1 − 2ν)





























1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1− 2ν 0 0

0 0 0 0 1− 2ν 0

0 0 0 0 0 1− 2ν





























(13)

where E is the Young’s modulus and ν is the Poisson’s ratio. A numerical inte-

gration scheme based on the Gauss quadrature rule is employed to integrate the

expression given by (10). Algorithm 1 presents the basic steps in the numerical

integration of the elemental matrices. At each Gauss point, the shape function

matrix (φφφ), and the strain-displacement matrix (B) are computed together with

the Jacobian matrix (J). The determinant (|J|) and inverse of Jacobian (J−1),

required to transform the shape function values from natural (reference) coordi-

nates to physical coordinates, are also computed. Once the strain-displacement

matrix B is found, the elemental stiffness matrix can be generated by carrying-

out the required matrix multiplication.

Algorithm 1 Numerical integration

1: Initialize Ke, Fe and Qe to zero

2: for q=1 to Number of Gauss points do

3: Read φφφ(q) and dφφφ(q)

4: Read node coordinates

5: Compute J, |J|, and J−1

6: Compute B

7: Ke+ = BTDB

8: Fe+ = φφφTbbb

9: Qe+ = φφφT t̄̄t̄t

10: end for
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Two kinds of data sets are required for FEM computation, one is the nodal

data matrix C(q) and another is the connectivity matrix P(e, i). The nodal

data matrix contains coordinate values of all the nodes having the global node

number q and any other field value associated with the node. The connectivity

matrix P(e, i) contains the global node number of the ith node of each element

e, i.e., it presents mapping from local node number of an element to global node

number. Global matrix is obtained by assembling the elemental matrices of all

the elements of a mesh into a system of equations.

3.3. Sequential FEM assembly

The elemental stiffness matrix and the elemental load vectors of all the ele-

ments are accumulated to form the global stiffness matrix and the global force

vector. The contribution of each element to a non-zero of the global matrix

depends on the connectivity pattern of the mesh. Mesh connectivity also influ-

ences the sparsity of global matrix. The most common way of sequential global

assembly is known as Addto algorithm [29] which is presented in Algorithm 2.

The outer loop over all the elements uses an elemental subroutine to calculate

the elemental stiffness matrix and load vector. Once these values are calculated,

the assembly is done based on a mapping from local DOF to global DOF given

by the connectivity matrix P(e, i).

3.4. Parallel FEM assembly using coloring method

The coloring is one of the simplest and widely used methods for avoiding

race condition in FEM assembly. It is robust and works well for a wide range of

problems and types of elements. As shown by Cecka et al. [5] and Komatitsch

et al. [6], the coloring method is particularly suitable for higher order elements.

The main idea behind the coloring method is to partition the mesh into sets of

elements such that no two elements belonging to the same set have any node

in common. Here, each set is identified with a unique color. Assembly can now

be done for elements corresponding to one color simultaneously because threads

working over different elements will not have any access to the same piece of
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Algorithm 2 Sequential FEM assembly or Addto Algorithm

1: Initialize K and F to zero

2: for all elements e do

3: (Ke,Fe)← elementalSubroutine(e)

4: for all local node n1 do

5: F(P(e, n1))+ = Fe(n1) // Assembly of local force vectors

6: for all local node n2 do

7: K(P(e, n1),P(e, n2))+ = Ke(n1, n2))

// Assembly of local matrices

8: end for

9: end for

10: end for

memory. Assembly for different colors is done in a sequential manner, thus

preventing any possibility of race condition. The parallel FEM assembly based

on the coloring method is shown in Algorithm 3. CUDA kernel is launched for

each color in sequence, whereas in each kernel one thread is assigned to one

element. Ek is the mapping from the local element number in the kth color set

to the global element number. Input data are accessed by each thread for its

global element number. Once the computation of elemental stiffness matrix and

load vector is over, assembly into the global matrix is done by the same kernel.

Algorithm 3 Parallel FEM assembly using the coloring method on GPU

1: for all colors k do

2: threadId← blockDim.x ∗ threadIdx.y + threadIdx.x

3: if threadId < Nk then // Nk: Number of elements in kth color

4: e = Ek(threadId) // Ek: Local to global element mapping

5: compute Ke and Fe

6: K ← Accumulate(Ke)

7: F ← Accumulate(Fe)

8: end if

9: end for
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While using assembly by element strategy, one must decide the memory

type for storing input and output data like node coordinates, elemental stiffness

matrix, and connectivity matrix. The selection is to be made between on-chip

and off-chip memories provided by GPU. The off-chip global memory is slow and

bigger in size, whereas the on-chip memory is fast but smaller in size. Along

with input and output data, geometrical parameters (Jacobian, determinant,

and inverse of Jacobian) required in numerical integration are also stored in

between the computations. Thus, the selection of memory types for all these

data must be done judiciously accounting its effect on performance. Also, it

shows the number of different implementations that can be produced based

upon the selection of memory type.

In our experiments, NVIDIA card based on Kepler architecture is used and

we decide the memory type for assembly accordingly. The on-chip memory

resources available on NVIDIA Tesla K40 GPU are 48 KB shared memory per

SM and 65536 registers per SM. For full occupancy, shared memory is shared

by 2048 threads (Kepler architecture). Hence for each thread, allowed number

of values to store on shared memory is given by

48× 1024

2048× 4
= 6, (14)

considering the size of each value equal to four bytes. The number of registers

available per thread shall be 32. This is in contrast to the requirement posed by

our test problem using an 8-noded hexahedral element. Each element requires

space to keep 24 values for coordinates of eight nodes and eight values for global

connectivity of each node. Since, there are eight nodes with three DOF per node,

the total degrees of freedom per element is 24. Consequently, the size of the

element stiffness matrix becomes 576. In addition to this, geometry parameters

in numerical integration also need to be stored. We can easily observe the

difference between the amount of fast memory resource available and the size of

data that an element is required to work with. This indicates that the assembly

strategy using a single thread per element put a constraint on the usage of fast

on-chip memory for data that are frequently needed. We address this issue in
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our proposed assembly strategies by assigning a warp to an element.

We make an attempt to optimize assembly by element strategy (using a

single thread per element) for our test problem. The implementation, which we

later use to compare with our proposed assembly strategies, uses local memory

to store the element stiffness matrix. The numerical integration uses an outer

loop over Gauss points while two inner loops over shape functions. Geometrical

parameters are calculated once for each Gauss point and are used within inner

loops to calculate all stiffness matrix entries. The derivatives of shape functions

in natural coordinates are pre-computed on the CPU. It is stored in the shared

memory. Nodal coordinates are read in a coalesced manner every time when

required. Once computation of the element stiffness matrix is over, connectivity

matrix is loaded in a coalesced way into the local memory. The assembly to the

global matrix is done in CSR format with the help of the connectivity matrix

and the precomputed index into CSR value array.

4. Proposed Assembly Strategies for GPU

Our proposed assembly strategies use 32 threads (a warp) per element for

computation of elemental stiffness matrix and assembly into global matrix. As

discussed in section 3.4, for a strategy using a single thread per element, a

thread can have storage space of six values in a shared memory having a size

of four bytes each. By the same logic, assigning a warp to an element allows

us to keep 32 × 6 = 192 values per element in shared memory. This is more

space than required to keep nodal data and connectivity matrix. Our proposed

strategies also use shared memory to keep intermediate parameters in numerical

integration. More space in shared memory implies low register pressure, higher

data reuse and very few or no local memory access. The use of 32 threads to

compute the elemental stiffness matrix also entails reduced arithmetic intensity

on each thread. One warp is assigned to one element for computation of ele-

mental matrix as well as assembly. We divide the computation equally among

all the threads of a warp. Thus for an element having 576 entries in elemental
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*  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *
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Figure 2: Distribution of elemental matrix entries for 4 threads per row for an 8-noded hexa-

hedral element with 3-DOF per node.

stiffness matrix, one thread is required to compute 18 entries. We can choose

to assign any 18 entries to a thread out of total 576. But considering its effect

in implementation and also in the assembly, we investigate only two types of

choices. We call our strategies: “Assembly by warp”, “Assembly by warp using

PPNI”, and “Assembly by two kernels” respectively. In the following sections,

different variants of the strategies are presented. The assembly strategies pro-

posed in this article provide an efficient GPU kernel to use with the popular

coloring method.

4.1. Assembly by warp using 4 threads per row

The selection of 18 entries for a thread in a warp to work upon is shown in

Figure 2. The entries of the elemental stiffness matrix (24×24) for an 8-noded

hexahedral element with three DOF per node are divided among 32 threads.

The entries assigned to each thread span over three rows and six columns. The

assembly by warp using 4 threads per row is presented in Figure 3.
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Figure 3: Assembly by warp using 4 threads. Each thread calculates its allotted entries

independently and stores them into the local memory.

Nodal coordinates and connectivity matrix are laid together in global mem-

ory in an element-wise manner. Such reordering of input data is done for each

color set. This enables a warp to read 24 values for coordinates and 8 connec-

tivity values at once in the most efficient way (coalesced). The derivatives of

the shape functions in natural coordinates are pre-computed on CPU for all the

Gauss points. Once these data are loaded into shared memory, we proceed with

numerical integration by involving many threads of the warp. The Jacobian is

calculated by multiplying the coordinates of nodes with shape function deriva-

tive. The schematic for the Jacobian computation is shown in Figure 4. The

24 threads read 24 values of shape function derivative from shared memory and

multiply with eight values of nodal coordinates. The warp shuffle feature of

CUDA is used for the reduction of eight values spread over eight threads. Here

at a time, three entries of Jacobian are calculated. It requires two more passes

of the computation to find total nine entries of the Jacobian.

The determinant is then calculated by using one thread as shown in Fig-

ure 3. The determinant is found by a conventional method involving co-factors
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Figure 4: The access pattern for Jacobian calculation is shown. Threads store the multiplica-

tion value in their registers for utilization in warp shuffle reduction.

Table 1: Overall running time of assembly by warp (4 threads) strategy for three different

approaches for calculating Jacobian. Problem solved for 6.5 million degrees of freedom.

Jacobian calculation approach Time (sec)

Atomic functions 1.39

Shared memory 1.09

Warp shuffle 1.03
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evaluation. A total of nine threads are used to find the inverse of the Jacobian.

Each thread calculates co-factor of one entry of Jacobian and stores in their

registers. These values in registers are divided by the value of determinant from

shared memory. Finally, it is transposed to store in shared memory by overwrit-

ing the Jacobian. We again use 24 threads to find derivative of shape function

in physical coordinates. Numerical integration steps are shown in Algorithm 4.

The other approaches for calculating Jacobian are also investigated. Table 1

shows the running time of assembly by warp (4 threads) for approaches using

atomic functions, shared memory and warp shuffle. The approach using atomic

function takes approximately 34 % more time than that using warp shuffle. The

shared memory based approach consumes 5.8 % more time than warp shuffle

and requires additional space in shared memory. Since warp shuffle-based ap-

proach takes the least time and requires no additional space in shared memory,

we opt it to find Jacobian in this paper.

Computation of entries of the elemental matrix is done by each of the thread

independently. Each thread evaluates the multiplication BTDB for their 18 en-

tries and store in local memory. Threads pick their corresponding shape function

derivative in physical coordinates from shared memory and perform multiplica-

tion with material property matrix D. With proper indexing into shape function

derivative array, we could do this computation without any branching in code.

Each thread is now responsible to assemble its own 18 entries into global

matrix. During assembly, each thread accesses their calculated entries stored in

a local array using the same index, which results in zero replay overhead. There-

fore, values are accessed from local memory in a most efficient way. Assembly is

done into the global matrix having CSR format. Entries of the element stiffness

matrices are accumulated into the value array of CSR format. The location of

entries into the value array is precomputed on CPU and sent to GPU. We call it

CSR index. Since we are using an 8-noded element, a total of 64 entries in CSR

index are required for each element. Each row of the element stiffness matrix

requires eight CSR indices to accumulate into the global matrix. As discussed

in the beginning of this section, four threads are responsible for assembly of all
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Algorithm 4 Numerical integration by a warp

1: threadId ← blockDim.x ∗ threadIdx.y + threadIdx.x

// Indicies of threads in a block.

2: LaneId← threadId % 32 // Indicies of threads in a warp.

3: Derivative shapefn nat←Read shape function derivative in natural coor-

dinate from global memory into shared memory.

4: for all the Gausspoints do

5: if LaneId < 24 then

6: Jacobian← jacobian()

7: end if

8: if LaneId < 1 then

9: Determinant← Calculate determinant().

10: end if

11: if LaneId < 9 then

12: Jacobian← Calculate Inverse().

13: end if

14: if LaneId < 24 then

15: Evaluate derivative of shape function in physical coordinate.

16: end if

17: Calculate elemental stiffness matrix

18: end for
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entries in a row. Therefore, they access CSR indices in two passes. In the first

pass, indices located at even places are accessed, whereas in the second pass

indices at odd places are accessed. The storage pattern for CSR index is shown

in Figure 5. For each element, the CSR indices are stored in two separate groups

based on their positions on even and odd places. As shown in the figure, the

even place indices are represented by the cyan color. The data is stored in the

column-major convention so that all the warps read contiguous memory loca-

tions. Each thread accumulates value into the global matrix (the value array

of CSR format) by using connectivity matrix and CSR index. Access to the

global matrix is not coalesced as different threads of a warp accumulates values

to strided locations in global memory.

6 62 630 1 2 3 4 5

CSR index

Thread 0

Thread 1

Thread 31

Element 0 Element n

Figure 5: The CSR index data read pattern.

4.2. Assembly by warp using 8 threads per row

In this strategy, the threads now work over the different set of entries. Each

thread is assigned entries spanning over six rows and three columns of the ele-

mental matrix as shown in Figure 6. The figure represents the distribution of

elemental matrix entries in a similar way as discussed in section 4.1.
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Figure 6: Distribution of elemental entries for 8 threads per row.

The input data is read as described using Figure 3. The numerical integra-

tion also follows exactly the same strategy as given in Algorithm 4. Since each

thread now computes a different set of 18 entries, the approach to the compu-

tation of BTDB changes accordingly. The CSR index is read in two passes as

in the previous strategy. It now uses different criterion to partition CSR indices

into two groups. The 18 entries allotted to a thread now span over six rows of

element stiffness matrix. These correspond to six degrees of freedom of 2 nodes.

The assembly now takes place for all degrees of freedom of 1st, 3rd, 5th and 7th

nodes first. This requires corresponding CSR indices in the first pass. In the

second pass, the CSR indices for 2nd, 4th, 6th and 8th nodes are read. The data

is stored and read in a similar way as in the previous strategy. The access to

the global memory for assembly is still not coalesced, but it is more localized

compared to the previous strategy. In the strategy using 4 threads per row, a

warp had to accumulate values in eight different rows of the global matrix at

a time, whereas in this strategy values are accumulated in four different rows
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only. This reduces the number of global memory transactions required in this

strategy using 8 threads per row of elemental stiffness matrix.

4.3. Assembly by warp using PPNI

In this strategy of assembly, we develop a partial parallel implementation of

numerical integration (PPNI) for assembly by a warp. Computation of element

stiffness matrix requires an evaluation of weak form at each of the Gauss points

followed by their summation. For each Gauss point, evaluation of numerical

integration requires calculation of many geometrical parameters (Jacobian, de-

terminant etc.). The previous strategies used a loop over the Gauss points for

this computation. In PPNI, we calculate the geometrical parameters for all the

Gauss points in parallel, whereas the weak form evaluation at each of the Gauss

points is done inside a loop.

B D B
T

Shared memory

Global memory

Local memory

Global memory

Derivative of shape function
in natural coordinate Nodal data

Jacobian

Determinant

Inverse of Jacobian

Derivative of shape function in physical coordinate

Calculate

Figure 7: Assembly using partial parallel numerical integration (PPNI) strategy.

The schematic of the assembly using PPNI by a warp is shown in Figure 7.

The nodal coordinates and derivatives of shape function in natural coordinates

constitute the input data for computation of the element stiffness matrix. The

derivatives of shape functions in natural coordinates are calculated for all the
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Gauss points on CPU. It is stored in the shared memory of GPU so that all warps

of a thread block can access. Like previous strategies, one warp is assigned to one

element. Jacobians for all the Gauss points are calculated simultaneously and

stored in shared memory. This requires space for 72 entries per element to store

all Jacobians corresponding to eight Gauss points. The Jacobian calculation

follows the same procedure as described in assembly by warp using 4 threads,

except now it uses all the threads of a warp. In the previous strategy, three

entries of the Jacobian were calculated using 24 threads of a warp at a time. Now

it uses all 32 threads to calculate four entries of the Jacobian. This computation

is repeated 18 times to calculate all 72 entries. The listing 1 shows the code for

the Jacobian evaluation. The Jacobian calculation is followed by the calculation

of determinant and inverse of Jacobian for all the Gauss points. Eight threads

are used to calculate eight determinants. Each warp makes use of 27 threads

to calculate the inverse of three Jacobians at a time. The threads are taken

in multiple of nine such that one thread is assigned to find cofactor of one

entry of a Jacobian. Each thread divides their cofactor by the corresponding

determinant. The inverse of the Jacobian is stored in the shared memory by

overwriting the Jacobian. Remaining part of the algorithm such as computation

of shape function derivatives in physical coordinate and elemental matrix remain

the same as previous strategies. Computation of BTDB is done sequentially

at each Gauss points by evaluating derivative of shape function in physical

coordinates. Element stiffness matrix is stored in local memory of all threads of

the warp. Once the elemental stiffness matrix is found, the connectivity matrix

is loaded into the shared memory and assembly is done. The proposed PPNI

assembly strategy is implemented using 4 threads per row and 8 threads per

row assignment.

Listing 1: Jacobian evaluation using warp shuffle. The code shows computation of 24 entries

of Jacobian. Corresponding to 8 Gauss points we have 8 Jacobians having total 72 entries.

#pragma un ro l l

for ( int i =0; i <6; i++)

{
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f l oat abc=dshape fn natu ra l [ i ∗32+ lan e id ]∗

nodal data [ connec t index∗24+ lo ca l e l emen tno∗8+ lan e id %8];

for ( int j =4; j>=1; j /=2)

abc += s h f l x o r ( abc , j , 8 ) ;

i f ( ( l an e i d %8)==0)

{ j acob ian [ wid∗72+( l an e id /8)∗3+12∗ i ]=abc ;}

}

4.4. Assembly by two kernels

In the previous three strategies, a single kernel for each color is used. In this

strategy, two kernels are used so that computational load at the single complex

kernel is split into two kernels. These two kernels are optimized to give the best

result for the task they are assigned to do. The first kernel calculates geometri-

cal parameters required to transform shape function values and its derivatives

from the natural coordinates to the physical coordinates. The second kernel

calculates the element stiffness matrix and accumulates into the global matrix.

This strategy is shown in Figure 8.
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Derivative of shape function
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Global memory

Shared memory

Calculate

Jacobian

Determinant

Inverse of Jacobian

Kernel break

BGenerate matrix 

Figure 8: Assembly strategy using two kernels. The first kernel computes inverse of Jacobian

corresponding to all the Gauss points, whereas in the second kernel evaluation and assembly

of element stiffness matrices are done.
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The first kernel reads input data (nodal coordinates and shape function

derivatives in natural coordinates) from global memory and store into shared

memory. The calculation of Jacobian, determinant, and the inverse of Jacobian

is done in the same way as described in assembly by warp using PPNI. Once

the inverse is calculated, it is stored in global memory along with determinant.

The inverse is then read in the coalesced manner in the second kernel. The

second kernel assigns a thread block of 576 threads to an element. Since there

are 576 entries in the element stiffness matrix, one thread is responsible for

calculation and assembly of one entry. The strain matrices (B) are calculated

for all the Gauss points simultaneously and stored in shared memory. Each

thread calculates their corresponding entry of the element stiffness matrix for

each Gauss point in sequence and adds them to obtain the final value. Like

previous strategies, the assembly is done into the CSR format in an uncoalesced

way. The entries of the element stiffness matrix are assigned to threads in a

row-wise manner such that the first 24 threads are allotted entries in the first

row and next 24 in the next row. This ensures that during assembly, for consec-

utive entries in the element stiffness matrix their corresponding threads access

either consecutive locations or locations having smaller stride in the global ma-

trix. This provides the higher level of localization in data access than strategies

using 4 threads and 8 threads per row. Consequently, there are less global mem-

ory transactions and a higher amount of cache hit. This reduces the effect of

uncoalesced access more effectively than previous strategies.

5. Results and Discussion

5.1. Problem statement

The proposed assembly strategies are compared with the most common strat-

egy of assembly by element on a 3D elastic cantilever beam problem. Figure

9 shows a 3D cantilever beam with point loads at one end and the other end

fixed. For simplicity, an 8-noded brick element of equal sides is considered for

meshing. However, the proposed strategies do not use any geometric property
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of the mesh and treat them as unstructured. The coloring of the mesh is done

by the greedy algorithm as given in [30]. The coloring algorithm is implemented

in CPU which takes about 1.4 seconds for the finest mesh of 2,097,152 elements.

The problem is solved with geometric and material properties as given in the

Table 2.

Figure 9: A 3D cantilever beam with boundary condition and mesh element.

Table 2: Geometric and material properties of a cantilever beam problem.

Length (l) Breadth (b) Height (h) Young’s modulus (E) Poisson’s ratio (ν)

16.0 m 2.0 m 2.0 m 200 GPa 0.333

In order to verify the efficiency of the proposed strategy for different prob-

lem sizes, four types of meshes are taken as given in Table 3. The boundary

condition is implemented after assembling the system of equations in which the

corresponding rows and columns of nodes on the boundary are made zero.

The strategies are tested on a hybrid CPU-GPU environment that consists

of NVIDIA Tesla K40 GPU and Intel Xeon(R) E5-2650 CPU. The system uses

GPU of compute capability 3.5 and CUDA runtime version 8.0. The GPU has

2880 CUDA cores clocked at 875 MHz with 384 bits bus width. The global

memory is clocked at 3004 MHz. It also has configurable L1 cache and unified
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Table 3: Finite element meshes.

Mesh Elements Nodes Degrees of Freedom

Mesh 1 110 592 120 625 361875

Mesh 2 262 144 279 873 1055499

Mesh 3 1 000 000 1 043 001 3129003

Mesh 4 2 097 152 2 167 425 6 502 275

L2 cache. CUSP library [14] is used for the solution of the linear system of

equations. CUDA Event API functions are used for reporting the execution

time.
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Figure 10: Effective arithmetic throughput obtained from assembly strategies.

5.2. Code Profiling and Performance Results

A comparison of the arithmetic throughput and memory bandwidth achieved

by the proposed strategies with the theoretical peak values of NVIDIA Tesla

K40 is done to show the level of utilization of the GPU. The Tesla K40 card

has a peak memory bandwidth of 288 GB/s and a peak arithmetic throughput

of 4096 GFLOP/s for a single precision floating point computation. NVIDIA’s
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Figure 11: Effective bandwidth obtained from assembly strategies.

command line profiler nvprof is used for the measurement which gives effec-

tive arithmetic throughput and effective memory bandwidth observed by the

hardware. The effective arithmetic throughput is calculated as

Arithmetic throughput (GFLOP/s) =
flop count sp

kernel time (sec)× 109
,

whereas the effective memory bandwidth is given by

Bandwidth (GB/s) =
(dram read transactions+ dram write transactions)× 32

kernel time (sec)× 109
,

where flop count sp, dram read transactions, dram write transactions are

the metrics given by nvprof. Figures 10 and 11 show the effective arithmetic

throughput and effective memory bandwidth respectively for the various strate-

gies as a function of mesh size. The arithmetic throughput of assembly by

element strategy is found to be the least at 0.213 GFLOP/s. The proposed

strategies show significant improvement over it and achieve throughput in the

range of 181 GFLOP/s to 523 GFLOP/s. The highest arithmetic throughput

is achieved by the second kernel of assembly by two kernels strategy, reaching

12.7% of the peak value of Tesla K40. The device memory bandwidth utiliza-

tion of two of our proposed strategies is found to be less than that of assembly
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by element strategy. The maximum bandwidth achieved by assembly by ele-

ment strategy is found to be 51.4% of the peak bandwidth, whereas assembly

by warp using PPNI (4 threads) achieve the highest value reaching 54.5% of the

peak bandwidth. The strategy using 8 threads uses less bandwidth than that

of 4 threads. This behavior is expected since strategy using 8 threads requires

less number of transactions to device memory due to the reason explained in

section 4.2. The arithmetic throughput and memory bandwidth achieved by

the proposed strategies are found to be much less than the peak values of the

device. This indicates that the proposed kernels are not able to saturate the

hardware resources. However, the results show a better utilization of GPU by

our proposed strategies than assembly by element.

Table 4: Performance metrics for different strategies obtained for 2.01M elements and 6.5M

degree of freedom.

Assembly strategies ach occ l1 c lhit local mem

Assembly by element 0.49 11.05% 55.38 %

Assembly by warp (4 threads) 0.49 91.80% 3.53%

Assembly by warp (8 threads) 0.49 99.87% 0.13%

Assembly by warp using PPNI (4 threads) 0.56 0% 0%

Assembly by warp using PPNI (8 threads) 0.56 0% 0%

Assembly by two kernel 0.57 0% 0%

ach occ : achieved occupancy, l1 c lhit: l1 cache local hit rate, local mem:

local memory overhead.

Further insights into the implementation of our proposed strategies can be

obtained by the performance metrics given by nvprof. Table 4 lists some of the

metrics (achieved occupancy measures occupancy, l1 cache local hit rate

gives the hit rate in the L1 cache for local loads and stores, and local memory overhead

gives the ratio of local memory traffic to total memory traffic between L1 and

L2 caches) for the assembly strategies. Not much improvement in occupancy is

observed for the proposed strategies against assembly by element. Occupancy
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in proposed strategies is limited by registers use. An attempt to increase oc-

cupancy by controlling register use by -maxrregcount nvcc directive is found

to have an adverse effect on execution time. There is a spillage of registers

into local memory for some of the strategies. The local memory overhead for

assembly by element strategy is found to be at 55.38%. This indicates a huge

performance penalty. The request for local memory access is less expensive

when it gets a cache hit in L1. The l1 cache local hit rate for assembly

by element is at 11.05%, whereas assembly by warp strategy shows a huge

improvement achieving up to 99.87% cache hit. The higher hit rate for local

memory access in L1 cache reduces the amount of memory transfer from device

memory. This is reflected by the lesser value of local memory overhead in

case of assembly by the warp. The zero values of local memory overhead and

l1 cache local hit rate for assembly by warp using PPNI and assembly by

two kernels indicate that there is no register spillage for these two strategies.

Mesh 1 Mesh 2 Mesh 3 Mesh 4

10-1

100

101

102

L
og

10
(t

im
e)

(i
n 

se
co

nd
s)

Assembly by element
Assembly by warp (4 threads)
Assembly by warp (8 threads)
Assembly by warp using PPNI (4 threads)
Assembly by warp using PPNI (8 threads)
Assembly by two kernels

Figure 12: Assembly kernel running time for different mesh sizes.

The relative running time of the assembly kernel of our proposed strategies

is presented in Figure 12. It shows the time spent in the computation of ele-

mental stiffness matrix and assembly. Running time is measured using CUDA

31



Mesh 1 Mesh 2 Mesh 3 Mesh 4

10-1

100

101

102

L
og

10
(t

im
e)

(i
n 

se
co

nd
s)

Assembly by element
Assembly by warp (4 threads)
Assembly by warp (8 threads)
Assembly by warp using PPNI (4 threads)
Assembly by warp using PPNI (8 threads)
Assembly by two kernels

Figure 13: Assembly kernel running time for ANSYS mesh.

Event API functions. The results show a significant reduction in assembly time

for our proposed strategies. The assembly by warp using PPNI achieves the

least running time for all the mesh sizes. This is closely followed by assembly

by warp strategy and assembly by two kernels. The comparison of kernel run-

ning time also suggests that the strategy taking lesser time has the bandwidth

and GFLOP/s on the higher side. The assembly by warp using PPNI has bet-

ter bandwidth and GFLOP/s than assembly by warp and assembly by element

strategies. The assembly by two kernels strategy having best GFLOP/s, but

lowest bandwidth takes more time than assembly by warp. The relatively infe-

rior performance of assembly by two kernels can be attributed to more number

of kernel launches as well as the global memory write and read in between the

two kernels. The performance penalty due to local memory access in assembly

by warp strategy seems to be significantly reduced due to a higher hit rate in the

L1 cache. The running time of assembly by warp strategy is found to be much

lesser than assembly by element, whereas both the strategies have the same level

of occupancy. We also find that implementation of numerical integration has a

significant effect on assembly kernel time. The assembly by warp using PPNI
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takes much lesser time than the assembly by warp strategy, while both these

strategies use the same thread assignment and have the same implementation

to calculate BTDB. The difference lies in the partial parallel implementation

of numerical integration, which not only improves occupancy and removes local

memory access, but also enables better utilization of GPU by achieving better

arithmetic throughput and bandwidth. Assembly strategies using 4 threads are

found to be a bit better in terms of running time than those using 8 threads.

The lesser requirement of bandwidth in strategies using 8 threads does not

seem to be a dominating factor in kernel execution time. The performance of

the proposed strategies is also evaluated on realistic meshes. The mapped mesh

of the cantilever beam has been generated in ANSYS software package using

the brick elements and with the mesh parameter as given in Table 3. To assess

the impact of node connectivity on the performance, we follow the same data as

given by ANSYS. Figure 13 shows the execution time of different strategies for

the meshes generated by ANSYS. The proposed strategies achieve the similar

timings as found in Figure 12. The assembly by element strategy seems to be

highly dependent on the connectivity as its performance degrades significantly

with the increasing mesh size. The initial results suggest that the warp based

strategies are least affected by the node connectivity. However, more detailed

study is required and can be taken as future work.

The speedup of our proposed strategies over assembly by element strategy on

GPU is shown in Figure 14. The best speedup is achieved by assembly by warp

using PPNI (4 threads) strategy for all the mesh sizes. It achieves the maximum

speedup of 8.2× for 262,144 elements and 7.09× for the finest mesh consisting

of 2.09 million elements. The assembly by warp strategy achieves speedups of

5.82× and 5.17× respectively for 4 threads and 8 threads variant for the mesh

containing 2.09 million elements. The assembly by two kernel strategy achieves

speedup in the range 5.17×− 6.05×.
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Figure 14: Speed up obtained for different strategies over assembly by element strategy

on GPU.
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6. Conclusion and future work

This paper attempts to find an effective strategy to implement the FE ma-

trix generation and assembly on GPU for an elasticity problem. Three assembly

strategies named as assembly by warp, assembly by warp using PPNI and assem-

bly by two kernels, based on the popular coloring method have been presented

for the linear hexahedral element. The focus of the proposed strategies was to

optimize numerical integration in matrix generation and assembly step of FEM.

All the proposed strategies made use of the warp shuffle feature of CUDA to

calculate Jacobian efficiently. Assembly was done to the global matrix in the

CSR format. The performance of the proposed strategies was compared with

established assembly by element strategy. The test case was run on NVIDIA

Tesla K40 card in single precision to obtain the running time of assembly ker-

nels. Compared to the assembly by element strategy, the speedup in the range

6.73× − 8.21× has been obtained by assembly by warp using PPNI for differ-

ent mesh sizes. The assembly by warp and assembly by two kernels achieved

speedup in the range 5.17×− 6.84× and 5.17×− 6.05× respectively. Further,

the results of code profiling showed better arithmetic throughput and band-

width of our proposed strategies over the assembly by element. In the present

work, the kernel has been designed for single-precision. This can limit its usage

to certain cases for which a kernel with double-precision has to be designed.

Also, the study can be extended to develop efficient GPU kernel for higher or-

der finite elements. Moreover, a parallel implementation for precomputing the

locations of entries in a value array of the CSR matrix can be done for reducing

overhead.
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