
Evolutionary and GPU Computing for Topology

Optimization of Structures

Laxman Ram and Deepak Sharma∗

Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam,

India, PIN-781039

Abstract

Although Structural topology Optimization, as a discrete optimization problem,
has been successfully solved several times in the literature using evolutionary
algorithms (EAs), the two key difficulties lie in generating geometrically feasible
structures and handling a high computation time. These two challenges are ad-
dressed in this paper by adopting triangular representation for two-dimensional
continuum structures, related crossover and mutation operators, and by per-
forming computations in parallel on the graphics processing unit (GPU). Two
case studies are solved on the GPU that show 5× of speedup over CPU imple-
mentation. The parametric study on the population size of EA shows that the
approximate Pareto-optimal solutions can be evolved using a small population
with the proposed EA operators.

Keywords: Topology Optimization, Structure Representation, Crossover,
Mutation, GPU Computing, Evolutionary Algorithm

1. Introduction

Structural topology optimization is a discrete optimization problem that
aims to find the optimal layout of a structure by distributing the material inside
the design domain [1]. Topology optimization usually determines the number,
location and shape of holes, and the material connectivity inside the design
domain of a particular structure. A design domain is generally represented by a
Cartesian mesh in which the material is assigned to a few elements of the mesh.
The assignment of material is decided with the help of existing methods such
as solid isotropic material with penalization (SIMP) [2], level set method [3],
genetic algorithms (GAs) [4] etc. Except for GA, the numerical optimization
techniques are used to find the optimal layout. It has been reported that SIMP,
level set method etc., are computationally effective, but their convergence to
the global optimum solution is not guaranteed [5].

∗Corresponding author
Email address: dsharma@iitg.ernet.in (Laxman Ram and Deepak Sharma)

Preprint submitted to Elsevier July 31, 2016

GA on other hand can precisely handle discrete optimization. It is also
insensitive to the design variables, and can handle multiple objectives simulta-
neously [6, 7]. Major drawback of population based algorithms including EAs
and swarm algorithms that they are computationally expensive as compared to
SIMP, level set based methods etc. However, these population based algorithms
found a niche for the global search and optimization in the field of structural
optimization. Based on the recent survey [8], GA, Artificial Immune Algo-
rithms, Ant Colonies, Particle Swarms, Simulated Annealing, Harmony Search,
Differential Evolution Schemes, Bacterial Foraging have been used for various
structural optimization problems. New algorithms such as evolution strategy
[9], Firefly algorithm [10], Symbiotic Organisms Search [11] have been used for
solving various engineering design and truss optimization problems.

Many multi-objective EAs have been developed for structural optimization
which are reported in the recent survey [12]. These algorithms generates many
Pareto-optimal solutions by showing trade-off among the different objectives. It
was concluded in the paper that non-dominated sorting GA (NSGA-II) is the
most widely used algorithm followed by Strength Pareto EA (SPEA2). Variants
of multi-objective particle swarm optimization have also been used.

Using EAs and multi-objective EAs, various structural optimization prob-
lems have been targeted including truss optimization [9], compliant mechanisms
[13], civil structure optimization [14], airfoil design optimization [15] to name a
few.

But GAs including other EAs often fail to generate geometrically feasible
structures, where the regions of applied load and imposed boundary conditions
must be connected throughout the material [13, 14]. Another major difficulty
with EAs is higher computation time [16], which is mainly due to finite element
(FE) analysis of a continuum structure. It has been observed that the solver for
FE state equations consumes most of the time of analysis [17]. The solver usually
involves a large amount of sparse matrix-vector multiplications to find a solution
for the system of linear equations [18]. These two challenges are addressed in this
paper by representing structures using triangles, and performing FE simulations
in parallel on the GPU.

The main contributions of this paper are as follows:

• A triangular topology representation from [19] is adopted to represent a
geometrically feasible continuum structure. Kawamura et al. [19] used
triangle topology representation using frame/beam element, whereas it is
extended to two-dimensional linear continuum structure in this paper.

• This representation is coupled with non-dominated sorting genetic algo-
rithm (NSGA-II) [20]. The crossover and mutation operators are designed
for the triangular topology to preserve geometrical feasibility of a gener-
ated structure.

• The second challenge is tackled by performing FE simulations on the GPU
in parallel to reduce computation time. Mainly, the solver for the linear

2

finite element state equations is designed using matrix-free conjugate gra-
dient (CG) method.

Two examples are solved by simultaneously minimizing weight and strain energy
stored in the structures to generate multiple diverse topologies.

The organization of this paper is as follows. Section 2 overviews the relevant
literature for representing the structure and high performance computing in
structural optimization. Section 3 presents the bi-objective optimization prob-
lem formulation for two different case studies. In section 4, evolutionary and
high performance computing for topology optimization are discussed in detail.
In section 5, various results of two case studies are presented, and speedup is
shown. The paper is concluded in section 6 with a note on future work.

2. Overview

In this section, an overview of related studies targeting structure represen-
tation and operators for EA is presented. The literature survey is also extended
to high performance computing used in structure optimization.

2.1. Overview of Structure Representation Using EA

In the literature, well-connected structures are created by adopting special
representation for EAs. A bit-array representation is the most obvious choice
using a binary string. Bit value ‘1’ represents material in the grid, otherwise it
is a void [4]. This representation, however, has the drawbacks of generating (i)
disconnected topology at the regions of applied and boundary conditions, (ii)
floating elements which were not connected to a topology of a structure, (iii)
checkerboard topology, and (iv) topology with point connectivity between two
grids of material [13].

A morphological structure representation was developed by Tai and Chee
[21], where the Bézeir parametric curves with varying thickness were used to
connect the regions of applied and boundary conditions. This morphological
representation method was able to generate well-connected structures without
any checkerboard problem. It has been further improved by using the graph
theory by Wang and Tai [22] in which vertices were connected with the piece-
wise cubic Bézier curve. This representation overcame the drawbacks of higher-
order Bézier curve. These two methods were further improved by skeleton and
flash morphology technique [23]. Recently, pairs of curves have been used to
generate topologies of compliant mechanisms [14]. In this implementation, the
areas bounded by a pair of curves define the material distribution between them.

The linear piece-wise segment connectivity was proposed by Sharma et al.
[13] to reduce complexity of Bézier curve. In this method, the regions of applied
and boundary conditions were connected through straight lines via intermediate
points inside the design domain. Such representation was able to generate well-
connected structures, and eliminated the floating element problem. However,
the material connectivity was destroyed by a two-dimensional crossover operator

3

suggested in [16]. A repair operator was then devised to generate well-connected
structures.

The topologies generated by EAs or other numerical techniques are not
smooth in general [24, 25, 26]. A different approach has been adopted in the
literature to smoothen the boundaries and holes of structural topology by us-
ing feature based shape recognition techniques [27] employing artificial neural
network. The smooth structures were then further optimized for their shape
using various hybrid algorithms like GA with Taguchi method [28, 29], im-
mune algorithm with Taguchi method [30], differential evolution algorithm with
Taguchi method [31] and particle swarm optimization with Taguchi method
[32]. In the hybrid algorithms, refinement of the population space was intro-
duced by Taguchi method in which variable bounds were refined, and the shape
optimization problem was solved using different EAs. In multicomponent struc-
tural assembly, the feasibility of structures was maintained by designing various
constraints and repairing rules in which the design domain was divided into
square structural elements, thin strip elements and small square diagonal joint
elements [7].

A well-connected truss topology was developed by using triangular topol-
ogy members [19]. In this method, a triplet of three truss members, which are
making a triangle, was added to the topology till all the regions of applied and
boundary conditions were connected. Although this method was developed for
truss topology, it can be extended for a continuum structure. In this work, we
adopted the triangle topology representation to generate well-connected struc-
tures, and to reduce associated problems discussed earlier.

2.2. Overview of High Performance Computing in Structure Optimization

Structural optimization is computationally expensive in general because of
the involvement of FE analysis at each step. We can reduce this computation
time by performing FE simulations in parallel. The massage passing interface
(MPI) was used in the literature in which each structure of EA got evaluated
on different computers [6]. However, such clusters of computers require high
installation cost, power consumption, and large floor areas.

From last few years, many researchers have been attracted toward the GPUs,
which are high-performance multi-thread many-core processors with tremendous
computational power and very high memory bandwidth [33]. Moreover, it is
affordable, and can easily be fixed with a computer. In structural optimization,
GPUs were used to perform FE simulations in parallel [34, 35, 36] using gradient
based optimization techniques. Iterative CG method is generally used for solving
the finite element state equations.

Two approaches have been described in the literature for the solver of FE
state equations. In one approach, the global stiffness matrix was constructed
in the CPU and stored in a specialized format on the GPU to save the device
memory [34, 36]. The solution is then sought by minimizing the residual for FE
state equations. In another approach, the residual for FE state equations was
calculated element- or node-wise to reduce the device memory access [35]. The

4

matrix-vector products for the residuals needed in the CG iteration were gener-
ated procedurally without storing the global stiffness matrix. We are exploring
the GPU computing with EA for topology optimization in this paper using the
matrix-free CG method.

3. Problem Description

Topology optimization problem has been solved in the literature using single
and multiple objectives for aerospace, civil and mechanical structures [1], where
weight minimization is the primary objective. Weight minimization generates
flexible structure which may not be rigid enough to bear external loads [37]. In
such situation, another objective such as minimization of strain energy or total
potential energy of a structure etc., can be used with the primary objective.
This bi-objective optimization can generate multiple structures with varying
flexibility and rigidity. This idea has been explored earlier by incorporating a
helper or secondary objective to the primary objective for topology optimization
[13, 16].

In this paper, we generate structures using a bi-objective optimization for-
mulation which is given as,

min W,
min U,
subject to ϑ ≤ 50%V,

(1)

where W is the weight of a structure, U is the stored strain energy inside a
structure, ϑ is the volume of a structure, and V is the total volume of a design
domain of a structure.

These two objectives are conflicting in nature as weight minimization intro-
duces flexibility to a structure which otherwise increases strain energy stored in
it. We use the continuum mechanics approach to calculate both objectives. In
this approach, a given design domain is divided into finite grids or Cartesian
mesh. Material is then assigned to few grids to generate a structure. An exam-
ple is shown in Fig. 1, in which a rectangular domain is represented by finite
grids. Few of these grids are filled with material (black in color), and rest of
them are void. The material in each finite grid is represented by ‘1’ and void
finite grids get ‘0’. The binary representation creates a binary string of length
equivalent to the number of finite grids. We, then, calculate weight, W , of a
structure by counting number of ‘1’s in the binary string.

Another objective is minimization of strain energy, U , stored in the structure,
which is given by,

U =
1

2
{u}T [K]{u}, (2)

where {u} is the nodal displacement vector, and [K] is the global stiffness matrix
of a structure. It is worth noting that the vector and matrix are generated from
assembly of elemental nodal displacement vector and elemental stiffness matrix,
respectively. Details of FE analysis for linear elasticity can be found in any

5

Length
W

id
th

1 1 1

0 0 0

1 1 1 1 11111

11 1 1 11

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0 0 0 0

0

00000

0 0

00

0

0

0

0

00 0 0 0

000

0 0

1

1

1

1

0

0

0

0

0

Figure 1: A rectangular design domain is represented by finite grids wherein few elements are
filled with material, and rest of them are void.

standard finite element book like [38]. We then calculate U by performing finite
element simulations on the graphics card. It is worth mentioning that the matrix
[K] becomes singular when material is assigned to some of the elements, and
the rest of them are left as void. Therefore, we assign minimum density of 0.3 to
voids and 1 to the elements filled with material. We consider non-dimensional
unit of material density so that we can use our finite element analysis for any
type of material.

We consider one constraint on the volume of the structure which is directly
proportional to the weight of the structure, W . We, thus, count the number
of ‘1’s in the binary representation of a structure, which should be less than a
particular fraction (50%, for the present implementation) of the binary string
length.

It is to be noted that the Boolean representation (0− 1) for each grid shown
in Fig. 1 is the decision variable for the given problem. Number of decision
variables is equal to number of grids.

We can observe from the above discussion that topology optimization is a
discrete optimization problem. The primary objective depends on the material
distribution, and the second objective is based on finite element analysis of a
structure generated from the same material distribution.

4. Evolutionary and High Performance Computing

In this section, we present evolutionary algorithm (EA) to solve a discrete
structural topology optimization problem. EA is used as global search and
optimization technique because EA can offer various advantages as mentioned
in section 1. In the following sections components of EA and GPU computing
for finite element simulations are described.

4.1. NSGA-II

Elitist non-dominated sorting genetic algorithm (NSGA-II) is one of the
benchmark algorithms for two- and three-objective optimization [39]. Thus,
we choose NSGA-II for solving a discrete bi-objective topology optimization
problem of elastic structure. A detailed description of NSGA-II can be found
in [20]. A generalized flow chart of EA describing the steps in NSGA-II is

6

P (t) : Random
initial population

Evaluate objective func-
tions of P (t) on GPU

Assign fitness to P (t)

If t ≤ T ?

P
′

(t) := Selection(P (t))

P
′′

(t) := Crossover
(

P
′

(t)
)

Q(t) := Mutation
(

P
′′

(t)
)

t : t + 1

P (t + 1) := Survivor(P (t) ∪Q(t))

Assign fitness to P (t) ∪ Q(t)

Evaluate objective func-
tions of Q(t) on GPU

Terminate

Yes

No

Figure 2: Flow chart of EA for topology optimization.

7

shown in Fig. 2. The algorithm starts by generating random initial population,
which is then evaluated by calculating the values of the objective functions
and constraint. NSGA-II assigns fitness to its solutions by using mathematical
partial-ordering principle. It emphasizes (i) non-dominated population members
by non-dominated sorting operator, and (ii) isolated population members by
using a crowding distance operator in every iteration. In a standard loop of
EA, NSGA-II uses crowded comparison binary tournament selection operator in
which a solution with better non-dominated rank and larger crowding distance
wins the tournament. The selected solutions are copied to the mating pool.
The crossover and mutation operators are then performed on the mating pool
solutions to generate new population, which is referred as child or offspring
population. NSGA-II uses elite preservation procedure at the survival stage in
which parent and offspring populations are combined together. The fitness is
assigned to the combined population by using non-dominated sorting operator
and crowding distance operator. The solutions with better fitness are selected
for the next generation.

From the above description of EA, it can be observed that a random binary
string representation can generate a geometrically infeasible structure which
has no practical meaning [6]. Moreover, the standard crossover and mutation
operators for binary strings can further distort the topology of structures [40]. It
is observed from the literature [13, 41] that performance of EA can be enhanced
by incorporating domain knowledge. It indicates that representation of solution,
crossover and mutation operators for topology optimization require structural
changes for NSGA-II [13, 16].

4.2. Triangular Representation for Structures

We adopted the triangular representation from [19], in which truss topology
was represented by a combination of triangles. We chose this representation be-
cause it is simple to implement for various topology optimization problems. We
extend this representation for topology optimization of 2D continuum structure
so that a monolithic and joint-less structure can be generated [1].

The triangular representation is shown in Fig. 3 wherein a set of six nodes
is used to draw triangles within the rectangular design domain. We consider
three nodes in the horizontal direction and two nodes in the vertical direction.
If the boundary conditions are applied, say, at nodes 1, 4 and 6, it is necessary
for these three nodes to be connected through some combination of triangles to
make a geometrically feasible structure. We start the representation by joining
nodes 1 − 2 − 4 at random as shown in Fig. 3(a). It is to be noted that any
randomly selected triplet of nodes must not be collinear. At this stage node
6 is not connected. We then draw another triangle by randomly selecting two
nodes from previous triangle, i.e., triangle A and one non-collinear node from
rest of the nodes, i.e., 3, 5 and 6. Suppose, nodes 2 and 4 are selected at random
from triangle A, and node 3 is selected to draw the second triangle B that is
shown in Fig. 3(b). Still, node 6 is not connected to nodes 1 and 4 by any
combination of triangles. We now draw a third triangle by selecting any two
nodes from previous triangles, i.e., triangles A and B. Suppose, nodes 1 and 2

8

P

A

1 2 3

4 5

6

(a) One triangle.

P

A B

1 2 3

54

6

(b) Two triangles.

P

A B
C

21 3

4

6

5

(c) Three triangles.

(d) Triangles in a design do-
main.

1 1

1 1

1 1

1 1

1

1

1

1111

1

1

1

1

1 1

1 1

1

1

11

0

0

0 0

0 0

00

0 0 0 0 01 0 1

1 1 0 1

1 1 1 0

1 0 1 0

1 1 0

1 1 1 1 1 1

1

1

1

1 1

1

1

1

(e) Binary representation. (f) Material representation.

Figure 3: Triangular representation for structure.

1 1

1 1

1 1

1 1

1

1

1

1111

1

1

1

1

1 1

1 1

1

1

11

0

0

0 0

0 0

00

0 0 0 0 01 0 1

1 1 0 1

1 1 1 0

1 0 1 0

1 1 0

1 1 1 1 1 1

1

1

1

1 1

1

1

1

Row−2

Row−5

Row−6

Row−1

Row−3

Row−1

1 1 1 1 1 1 1 1 1 1 1 1 1 0

Row−2 Row−6

1 1 1 0 0 0 0 0 0 1 1 1

Binary string

Row−4

Binary representation
of structure

Figure 4: A binary string representation of a discrete structure for NSGA-II.

are selected so that they can be connected to either node 5 or node 6. Assuming
node 6 is selected, triangle C is drawn as shown in Fig. 3(c). This completes the
triangular representation for a structure in which three triangles are required to
connect nodes at the applied and boundary conditions. It is worth mentioning
that nodes 1− 4− 6 at the applied and boundary conditions can be connected
in one triangle. In this case the triangular representation for a structure gets
completed.

The material is now distributed in the design domain according to the tri-
angles. It can be seen in Fig. 3(d) that the design domain is divided into finite
grids. A grid is assigned with ‘1’, if any edge of the triangles passes through
it as shown in Fig. 3(e). Otherwise, ‘0’ is assigned to it. The material is then
assigned to the grids having a value ‘1’ as shown in Fig. 3(f). Later, these grids
represent four node quadrilateral finite elements for FE analysis.

9

The binary representation shown in Fig. 3(e) is used to generate a binary
string for each individual of NSGA-II population. The rows are copied one by
one into a single binary string a shown in Fig. 4. Here, the number of decision
variables is equal to number of grids that can take either ‘0’ or ‘1’ value to
represent a discrete structure.

The procedure for generating triangles and distributing material in the de-
sign domain is repeated to generate a random initial population (P (t)) of geo-
metrically feasible structures.

4.3. Triangular Crossover Operator

Crossover is the primary EA operator that is responsible for exploring search
space by creating new structures. Typically, single-point crossover operator,
multi-point crossover operator etc., are used for binary strings to generate new
solutions. However, we observe from the literature that such crossover opera-
tions are not efficient for topology optimization [41]. Therefore, other crossover
operators like block exchange [13], domain specific [16] etc., are devised to im-
prove performance of EA.

6

P

1

4

2

5

3

(a) Parent 1.

6

P

1

4 5

2 3

(b) Parent 2.

6

P

1

4 5

2 3

(c) Offspring 1.

6

P

4

1 2

5

3

(d) Offspring 2.

Figure 5: Triangular crossover operator.

Triangular crossover operator is thus developed that can support our trian-
gular representation. We describe triangular crossover operator by an example
shown in Fig. 5. One triangle from both parent 1 and parent 2 is chosen at
random as shown in Figs. 5(a) and 5(b). The triangle with the thicker edges
joining nodes 2 − 3 − 4 from parent 1 and the triangle joining nodes 1 − 2 − 6
from parent 2 are swapped to create two new structures as shown in Figs. 5(c)
and 5(d). The thicker edges in these figures show addition of new triangle.

4.4. Mutation Operators

We propose two mutation operators to use with the triangular represen-
tation. The first mutation operator is responsible for deleting a triangle at

10

random. Another operator termed as the repairing operator creates triangle(s),
if any structure becomes geometrically infeasible due to triangular crossover and
triangular mutation.

We describe triangular mutation operator by an example shown in Fig. 6(a)
in which nodes 2−3−5 of a triangle is chosen at random. The mutated structure
is shown in Fig. 6(b) in which the chosen triangle is deleted.

5

3

6

P

4

1 2

(a) Structure before mutation.

5

3

6

P

4

1 2

(b) Structure after mutation.

Figure 6: Triangular mutation operator.

The repairing mutation operator is performed when a structure becomes
geometrically infeasible after the application of crossover and mutation. It
means that the nodes at the applied and boundary conditions are not con-
nected through any combination of triangles. One such example can be seen
in Fig. 5(d) where the node 6 is not connected. Another type of infeasibility
can be seen in Fig. 7 where, although the nodes 1, 4 and 6 are connected by
triangles, they are not connected to each other.

5

3

6

P

4

1 2

Figure 7: Infeasible structure.

We make such structures feasible by choosing two nodes from previous trian-
gles at random, and connect them to the node where the applied and boundary
conditions are applied. The procedure is similar to the triangular representation
which was discussed in section 4.2.

4.5. GPU Computing

GPU computing is coupled with EA to reduce its computation time. The
objective functions and constraint are calculated using (1) in which finite ele-
ment linear elastic simulations are being performed on the graphics card. The
weight of the structure is calculated by counting the number of ‘1’s of the bi-
nary string of a structure. The strain energy is calculated by using Galerkin
finite element method [38]. A set of partial differential equations is thus evolved

11

which takes a form of linear state equations, [K]{u} = {f}, after considering
all finite elements. Here, [K] is the global stiffness matrix, {u} is the nodal
displacement vector, and {f} is the force vector of internal and external forces.
It has been observed from the literature that the solver for FE state equations
is the most time consuming step [18]. The conjugate gradient (CG) method is
generally used for solving a system of linear equations, iteratively. However, the
CG method requires a lot of sparse matrix-vector multiplications, which renders
the process computationally expensive. This calls for the use of the GPU.

Two procedures are followed in the literature for solving FE state equations
in which the solution, {u}, is calculated by minimizing the residual |R|, where
{R} = {f} − [K]{u}. In first procedure, matrix [K] is assembled on the CPU,
and later copied to the GPU memory [42]. This procedure requires more global
memory on the GPU, and requires many costly CPU-GPU transactions through
the PCI bus. For solving large scale problems, a domain decomposition approach
is used [43], but it is difficult to find the correct partition of a domain that
can result in a higher speedup. Other approach is to use the matrix-free CG
procedure [35], in which [K] is not stored explicitly, and nodal computation is
used for the finite element matrix-vector multiplications to find the residual.
It is observed that some extra computations are always performed for sharing
nodes, and padding of zeros may be required, if the size of Cartesian mesh is
not multiple of a block-size of the GPU. However, this procedure can use shared
memory of the GPU efficiently, fulfills the necessities for memory coalescing,
and avoids shared memory bank conflict.

We adopted Schmidt and Schulz [35] procedure in this work, where the
matrix-free CG method is used as an iterative solver for FE state equations.
We consider one thread per node, and use the built-in data type ‘float4’ or
‘double4’ to store displacement and density of each node. This provides better
GPU memory alignment. Each thread loads data into shared memory such that
the block of threads can access data for neighboring nodes. This implementation
can minimize global memory access. It is worth mentioning that the nodal finite
element matrix-vector computation requires data of neighboring node for linear
finite element test function. However, some threads, specially on the edge or
corner of the design domain, must load halo values (defined later). If the number
of halo values is not multiple of half-warp size, loading halo value cannot be done
entirely on coalesced way.

The implementation is shown in algorithm 1 and their steps are described
in subsequent paragraphs.

4.5.1. Algorithm 1, step 1

In this step, some constant parameters like iteration counter and maximum
allowed iterations are initialized.

4.5.2. Algorithm 1, step 2

The residual {R} is calculated on the GPU. Here, one thread is assigned to
each node of the finite element mesh. The implementation for calculating {R}
is shown in algorithm 2.

12

Algorithm 1 Matrix-Free Conjugate Gradient Method for FE Simulations

1: Iteration counter t = 0 and maximum allowed iterations T .
2: Calculate residual {Rt} for each node on the graphics card using algorithm

2.
3: {pt} = {Rt}
4: while (t < T || |Rt| < ǫ) do

5: αt =
RT

t Rt

pTt Kpt
6: ut+1 = ut + αtpt
7: Rt+1 = Rt − αtKpt

8: βt =
RT

t+1Rt+1

RT
t
Rt

9: pt+1 = Rt+1 + βtpt
10: t = t+ 1
11: Calculate residual {Rt} for each node on the graphics card using algo-

rithm 2.
12: end while

Algorithm 2 Residual calculation by a compute thread for node (i, j) of finite
element.
1: Copy the coordinates of node (i, j) and halo values, if any, to the shared

memory.
2: Assign |Rt| = 0.
3: Update {Rt} if Neumann or Dirichlet boundary conditions are applied at

node (i, j).
4: Identify a set of elements E for which node (i, j) is a common vertex.
5: Copy the density of all elements belong to E to the shared memory.
6: for each element e ∈ E do
7: Fetch density (ρe) of element e from the shared memory.
8: Identify a set of all local nodes L of element e.
9: for each local node k ∈ L do

10: Fetch the global coordinates for local node k.
11: Calculate residual using (3).
12: end for
13: end for
14: Synchronize thread.

Algorithm 2, step 1. We first copy coordinates of a finite element node into the
shared memory of the GPU. We can see from Fig. 8 that node (i, j) is one
of the vertices for four-node quadrilateral finite element. We assign a thread
to node (i, j) which we refer as a compute thread (i, j). The rectangle repre-
sented by dashed line in the same figure shows that all the nodes inside it are
being computed by one block of threads which has a common shared memory.
The coordinates of nodes inside the dashed rectangle are copied to the shared

13

memory to minimize access to the device memory. It is noted that coordinates
of neighboring nodes are also required for FE analysis of the particular block.
Therefore, some threads on the boundary of the thread block will also store
coordinates of neighboring nodes in the shared memory [35]. These extra coor-
dinates are known as halo values in the literature. Similarly, threads of other
blocks will store the required coordinates into the shared memory.

e1

Nodes on the boundaryCompute thread (i,j)

e3 e4

e2

Figure 8: Schematic for GPU computing.

Algorithm 2, steps 2−3. Once the required data is copied into the shared mem-
ory, the compute thread (i, j) initializes zero residual for node (i, j). The residual
gets updated, if Neumann or Dirichlet boundary conditions are applied at node
(i, j).

Algorithm 2, steps 4−5. It can be seen from Fig. 8 that node (i, j) is the
common vertex to few elements. In this case, residual {R} for node (i, j) is
calculated with respect to the elements sharing the common vertex (i, j), that is,
elements E = {e1, e2, e3, e4}. This implies that {R} of node (i, j) is calculated
with respect to all nodes belonging to the set E. When the set E is identified
by the compute thread (i, j), density of each element e ∈ E is copied into the
shared memory.

Algorithm 2, steps 6−8. The residual for node (i, j) is now calculated wherein
density of element e ∈ E is fetched from the shared memory. A set of local
nodes of element e is identified as L = {1, 2, 3, 4}. It can be seen in Fig. 9 that
common node (i, j) is represented as node 4 for element e1, node 3 for element
e2, node 2 for element e3, and node 1 for element e4. This local node numbering
of elements helps to decide correct trial or test finite element function.

Algorithm 2, steps 6−13. For each local node, the global coordinates are fetched
from the shared memory by the compute thread (i, j), and the residual is cal-
culated, which is given by,

{R} = {R} − ρe × ([K]e{u}e), (3)

where ρe is the density of element, [K]e is the elemental stiffness matrix, and
{u}e is the elemental displacement vector. This completes residual calculation

14

e3

i,j

e1 e2 e

1 2

3 4

e4

Figure 9: Elements having common vertex (i, j) and local numbering of nodes for any element
e.

by the compute thread (i, j) on the GPU. At the end of residual computation, all
compute threads of the GPU are synchronized. Now, the computations return
to algorithm 1.

4.5.3. Algorithm 1, steps 3−10

Residual {Rt} is now copied to the host wherein residual values are copied
to another vector {pt} for performing CG iterations. The termination condition
is then checked at step 4 in which CG method gets terminated when it reaches
to the maximum allowed iterations T or the residual becomes less than some ǫ
value. Till step 10, the standard steps of CG method are followed.

4.5.4. Algorithm 1, step 11

Residual {Rt} is again calculated on the GPU using algorithm 2. However,
only Dirichlet boundary conditions are applied at step 3 of algorithm 2.

When CG method terminates, the solution {u} is utilized to calculate strain
energy of a structure. This step involves multiplication of vectors and matrix
which are also performed on the GPU. The standard steps of matrix−vector
multiplication on the GPU are followed which can be found in [44].

5. Results and Discussion

We consider two case studies for topology optimization from [1]. We choose
the same set of EA parameters and finite element simulation parameters for
both case studies as given in Table 1. Runs are taken for different population
sizes including 4, 8 and 12. The number of generation is kept fixed after ob-
serving progress of the approximate Pareto-optimal solutions depicted in Fig.
11. We kept higher value of crossover probability and lower mutation probabil-
ity which is generally recommended in the EA literature. ǫ value is kept small
for termination CG iterations. We run EA for 10 times with different initial
population to perform statistical analysis.

The statistical analysis is performed to measure the strengths and weak-
nesses of algorithm based on the quality of the evolved solution such as prox-
imity to the reference set, spread and evenness of the non-dominated solutions
in the objective space. Several indicators are available to indicate the perfor-
mance of multi-objective EAs which independently explore different features

15

Table 1: EA and FE parameters.

EA parameters Finite element parameters
Population 12 Number of elements in x-direction 200
Generation 50 Number of elements in y-direction 100
Crossover probability 0.9 ǫ for CG termination 10−3

mutation probability 0.01

of the algorithm [45, 46, 47]. In this paper, we choose hypervolume indicator
and attainment surface plots for the assessment. It is worth to mention that
the attainment plot is a qualitative indicator and the hypervolume indicator is
quantitative. Both indicators can assess performance of the algorithm on con-
vergence, spread and evenness of the non-dominated solutions simultaneously.

Hypervolume indicator (IH̄): [48]
The hypervolume indicator IH measures the hypervolume of that portion
of the objective space that is weakly dominated by an approximate set A.
This indicator gives the idea of spread quality and has to be maximized.
As recommended in the study [47], the difference in values of hypervol-
ume indicator between the approximate set A and the reference set R is
calculated in this paper, that is, IH̄ = IH(R)− IH(A). The smaller value
suggests good spread [46, 47].

Attainment surface: [49, 50]
An approximate set A is called the k%−approximate set of the empirical
attainment function (EAD) αr(z), iff it weakly dominates exactly those
objective vectors that have been attained in at least k percentage of the
r runs. Formally, ∀ ∈ Z : αr(z) >= k/100 ↔ A � {z} where αr(z) =
1

r

∑

r

i=1
I(Ai � {z}). Ai is the ith approximation set (run) of the optimizer

and I(.) is the indicator function, which evaluates to one if its argument
is true and zero if its argument is false.

An attainment surface of a given approximate set A is the union of all
tightest goals that are known to be attainable as a result of A. Formally,
this is the set {z ∈ ℜn : A � z ∧ ¬A ≺≺ z} [47].

The runs are taken on a workstation with Intel Xeon processor E5-1650 (12M
cache, 3.20GHz) equipped with 12GB DDR3-1600 RAM, 12GB NVIDIA Tesla
K40c GPU card with 2880 cores, and 1GB NVIDIA Quadro K600 GPU card
with 192 cores. Further details of the GPU cards can be found on NVIDIA
website1.

5.1. Case Study 1: Cantilever Plate Design

We consider a rectangular design domain for cantilever plate design that is
shown in Fig. 10. One end of this plate is fixed, and a concentrated load is

1www.nvidia.com

16

applied at one corner. For our analysis we consider nodes 1, 3, and 4 where a
material connectivity is sought.

4

P

321

5 6

Figure 10: A design domain for cantilever plate.

The approximate Pareto-optimal solutions of a typical EA run is shown in
Fig. 11. It can be seen in the figure that nine solutions are evolved by showing
trade-off between two objectives. Solution 1 gets evolved as the lightest solution.
A simple topology of solution 1 can be seen in Fig. 12(a) in which three nodes
at the applied and boundary conditions are connected by one triangle.

2

5

9876

4

3

1

 130

 24 26 28 30 32 34 36

S
tr

ai
n

en
er

gy
 (

x
10

0)

Weight (x 100)

Pareto solutions

 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

Figure 11: The approximate Pareto-optimal solutions for cantilever plate design.

Solutions 1 and 2 in Figs. 12(a) and 12(b) have common triangle. But,
solution 2 stores less strain energy due to the presence of a stiffener between
nodes 2 and 4. Similarly, different material connectivity between solutions 2
and 3 results in drastic reduction in strain energy. But at the same time, weight
of the structures increases.

Solutions 3 and 4 of Fig. 11 have different topologies as shown in Figs. 12(c)
and 12(d) with additional stiffener of material between nodes 2 and 5. It can

17

be observed that inclusion of stiffener increases weight of structure but reduces
strain energy stored in the structure.

Solution 5 in Fig. 11 is topologically different and little heavier than solutions
3 and 4 due to additional triangle joining nodes 2, 3 and 6 as shown in Fig. 12(e).
The strain energy stored in solution 5 is less due to presence of material at node
3 where an input force is applied.

Solution 6 is stiffer than solution 5 in Fig. 11 due to the presence of a stiffener
joining nodes 2 and 4 as shown in Fig. 12(f). Also, solution 7 in Fig. 12(g)
has one more triangle joining nodes 1, 5 and 6 than solution 5 which makes it
stiffener but heavier. Again a stiffener at nodes 2 and 5 is extra in solution 8
as shown Fig. 12(h) which makes it more stiffer than solution 7. In solution 9,
a triangle of solution 1 gets added to the topology of solution 7 which makes it
the most stiffer structures among the Pareto solutions which stores minimum
strain energy.

(a) Solution 1. (b) Solution 2. (c) Solution 3.

(d) Solution 4. (e) Solution 5. (f) Solution 6.

(g) Solution 7. (h) Solution 8. (i) Solution 9.

Figure 12: Topology of Pareto-optimal solutions for cantilever plate design.

It can be observed from the evolved topologies of Fig. 12 that these ap-
proximate Pareto-optimal solutions are evolved due to the presence of different
stiffener or triangle. It can also be observed from the same figure that triangles
of solution 3 is common among all solutions except solutions 1 and 2 to provide
stiffness to structure. Other triangles keep on adding to make structures more
stiffer.

Progress of non-dominated front of the same typical run is shown in Fig.
13. It can be seen that EA is converged to the approximate Pareto-optimal
solutions in only 40 generations with a small population size of 12. It is due to
the triangular representation that helped EA to evolve topologically different
solutions quickly.

18

 24 26 28 30 32 34 36

S
tr

ai
n

en
er

gy
 (

x
10

0)

Weight (x 100)

Initial Population

 30

 40

Generation 10

Generation 30
Generation 20

Generation 50

 50

 60

 70

 80

 90

 100

 110

 120

 130

Generation 40

Figure 13: A progress of non-dominated solutions for 50 generations of EA.

5.1.1. Effect of Population Size

The cantilever plate design problem is also solved using population sizes of 4
and 8. Rest of EA parameters are kept same as given in Table 1. EA is then run
for 10 times, and statistical analysis is done using attainment plot and hyper-
volumne indicator [46]. Fig. 14 shows 0% attainment plots for three population
sizes. The plot suggests a good spread and proximity of approximate Pareto-
optimal solutions among themselves. Statistical hypervolumne indicator values
are given in Table 2. The best hypervolume values suggest that small popu-
lation sizes are able to generate a good set of the approximate Pareto-optimal
solutions. Other statistical parameters are also small and close to zero value. It
can be concluded that EA with the triangular representation shows equivalent
performance with small population sizes that can further reduce computation
time.

Table 2: Statistical values of hypervolume indicator for different population sizes. Indicator
value −1 is best, and +1 is worst.

Population Mean Median Standard deviation Best Worst
4 0.2409 0.2385 0.1576 0.0657 0.6407
8 0.0992 0.1054 0.0469 0.0530 0.1910
12 0.0418 0.0442 0.0162 0.0263 0.0798

5.1.2. Computation Time

Finite element simulations using the matrix free CG method are performed
both on the CPU and the GPU. Table 3 shows computation time and speedup
for a typical run of CG for 2000 iterations. We can achieve a speedup of 5× by
using Tesla K40c card over the CPU. However, we could achieve a speedup of
2× only using Quadro K600 GPU card over the CPU. The reason is that more

19

0% Attainment plot

 30
 40

Population: 8

 50
 60

Population: 4

 70
 80
 90

 100
 110
 120
 130

 24 26 28 30 32 34 36

S
tr

ai
n

en
er

gy
 (

x
10

0)

Weight (x 100)

Population: 12

Figure 14: 0% attainment plots for different population.

number of computing cores and larger memory are provided by Tesla K40c
than Quadro K600. A speedup of 2.58× is observed between two GPUs for CG
iterations.

Table 3: Computation time in seconds and speedup for 2000 CG iterations.

CPU 98.46
Tesla K40c 19.14
Quadro K600 49.31
Speedup K40c vs CPU 5.14
Speedup Quadro K600 vs CPU 2.00
Speedup K40c vs Quadro K600 2.58

Average computation time of EA for 10 runs with finite element simulations
on the graphics cards are shown in Table 4. Same speedup is obtained as
reported in the last table. However, a significant computation time can be
saved with Tesla K40c GPU. Moreover, a marginal difference can be seen in
total computation time of optimization and FE simulations. This suggests that
EA operators consume negligible time as compared to FE simulations. The
higher computation time results from function evaluations where finite element
simulations are required to calculate strain energy stored in the structures.

Table 4: Computation time in seconds for overall optimization process including FE compu-
tations on the GPUs.
Population 4 8 12

GPUs T. K40c Q. K600 T. K40c Q. K600 T. K40c Q. K600
FEM time 3888.05 9374.06 7762.38 18795.80 11657.54 28217.22
Total time 3889.13 9375.13 7763.54 18796.93 11658.77 28218.41

20

5.2. Case Study 2: Plate Supported from Both Ends

We consider another case study of a plate supported from both ends, and
the load is applied at the middle of the top edge. The design domain is shown
in Fig. 15 in which we sought material connectivity among nodes 1, 3 and 5.

P
4 5

2

6

1
3

Figure 15: A design domain for plate supported at both ends.

The approximate Pareto-optimal solutions evolved by a typical run of EA
are shown in Fig. 16, and their respective topologies are shown in Fig. 17.

5

76

1

4
3

2

 26 28 30 32 34 36 38

S
tr

ai
n

en
er

gy
 (

x
10

0)

Pareto solutions

Weight (x 100)

 6

 7

 8

 9

 10

 11

 12

 24

Figure 16: The approximate Pareto-optimal solutions for a plate design supported from both
ends.

It can be seen from the figure that solution 1 is the simplest and lightest
solution which has one triangle joining the nodes 1, 3, and 5. Solution 2 becomes
stiffer due to a stiffener between nodes 2 and 4, but makes it heavier than
solution 1. For other solutions, similar observations can be drawn here that
inclusion of triangles and stiffeners make the structures stiffer which store less
strain energy but increase their weight. In this case, study topology of solution
1 shown in Fig. 17(a) exists in all solutions, except solution 5. Apart from

21

(a) Solution 1. (b) Solution 2. (c) Solution 3.

(d) Solution 4. (e) Solution 5. (f) Solution 6.

(g) Solution 7.

Figure 17: Topology of Pareto-optimal solutions for a plate design which is supported at both
ends.

solution 1, two triangles of solution 2 of Fig. 17(b) are also present in all
solutions, except solution 5.

Progress of non-dominated solutions is shown in Fig. 18. For this case study
also EA converged to the approximate Pareto-optimal solution in 40 generations
only.

 26 28 30 32 34 36

Initial Population

 38

S
tr

ai
n

en
er

gy
 (

x
10

0)

Weight (x 100)

 6

 7

Generation 10

Generation 30
Generation 20

Generation 50

 8

 9

 10

 11

 12

 24

Generation 40

Figure 18: A progress of non-dominated solutions for 50 generations of EA for designing a
plate supported at both ends.

Effect of different size of population for the present case study is shown in
Fig. 19 for 0% attainment plot, and statistical values of hypervolume indicator
are given in Table 5. The plot shows a good spread and proximity among the

22

approximate Pareto-optimal solutions of different populations sizes. Also, the
best hypervolume values for different populations sizes are quite small and close
to zero value. The same conclusion can be drawn here that a small population
with triangular representation is able to show equivalent performance on the
quality of solutions.

0% Attainment plot

 6

 7

Population: 8

 8

 9

Population: 4

 10

 11

 12

 24 26 28 30 32 34 36 38 40

S
tr

ai
n

en
er

gy
 (

x
10

0)

Weight (x 100)

Population: 12

Figure 19: 0% attainment plots for different population sizes for second case study.

Table 5: Statistical values of hypervolume indicator for different population sizes for second
case study. Indicator value −1 is best, and +1 is worst.

Population Mean Median Standard deviation Best Worst
4 0.1843 0.2017 0.1514 0.0360 0.4638
8 0.0713 0.0712 0.0570 0.0102 0.2076
12 0.0360 0.0357 0.0224 0.0068 0.0850

The computation time of a typical run of matrix free CG method for finite
element simulations is same as reported in the last case study. It means that
the speedup of 5× is achieved in this case study because number of elements in
x- and y-directions is same for both case studies. The overall computation time
and time taken by FE analysis are shown in Table 6. The computation time is
also similar because most of the optimization time gets consumed in performing
finite element simulations, while EA operators consume negligible time.

Table 6: Computation time in seconds for overall optimization process including FE compu-
tations on the GPUs for second case study.

Population 4 8 12
GPUs T. K40c Q. K600 T. K40c Q. K600 T. K40c Q. K600

FEM time 3874.20 9329.09 7749.24 18914.18 11566.10 28383.44
Total time 3875.28 9430.17 7750.40 18915.32 11567.34 28384.64

23

6. Conclusion

In this paper, the triangular representation, crossover and mutation oper-
ators were proposed and coupled with NSGA-II for generating geometrically
feasible structures. It can be concluded from the study that the triangular
representation and EA operators proposed in this paper can generate the ap-
proximate Pareto-optimal solutions with a small population, and also in less
generations. The approximate Pareto-optimal solutions showed trade-off be-
tween the two objectives by adding or deleting triangles and stiffeners for evolv-
ing diverse topologies of structures. The GPU computing was also performed to
reduce computation time of the algorithm by performing FE computations on
the GPU. It was observed that a large fraction of the total time was consumed
by the FE simulations, whereas the time consumed by EA operators was negli-
gible in comparison. Approximately 5× of speedup was achieved by using the
GPU computing over the CPU. For future work this study can be extended to
generate topologies for three dimensional structures.

Acknowledgment

We acknowledge the support from SERB, Department of Science and Tech-
nology (DST), India (grant # SB/FTP/ETA-28/2013) and IIT Guwahati under
start-up grant scheme (SG/ME/DS/P/01). We gratefully acknowledge the sup-
port of NVIDIA Corporation with the donation of the Tesla K40c GPU used
for this research.

[1] M. P. Bendsoe, O. Sigmund, Topology Optimization: Theory, Methods and
Applications, Springer, ISBN 9783540429920, 2004.

[2] M. P. Bendsøe, Optimal Shape Design as a Material Distribution Problem,
Structural and Multidisciplinary Optimization 1 (4) (1989) 193–202.

[3] M. Y. Wang, X. Wang, D. Guo, A Level Set Method for Structural Topology
Optimization, Computer Methods in Applied Mechanics and Engineering
192 (1–2) (2003) 227–246.

[4] C. D. Chapman, K. Saitou, M. J. Jakiela, Genetic Algorithms as an Ap-
proach to Configuration and Topology Design, ASME, Journal of Mechan-
ical Design 116 (4) (1994) 1005–1012.

[5] G. I. N. Rozvany, Aims, Scope, Methods, History and Unified Terminol-
ogy of Computer-Aided Topology Optimization in Structural Mechanics,
Structural and Multidisciplinary Optimization 21 (2) (2001) 90–108.

[6] D. Sharma, K. Deb, N. Kishore, Towards Generating Diverse Topologies
of Path Tracing Compliant Mechanisms using a Local Search Based Multi-
Objective Genetic Algorithm Procedure, in: Evolutionary Computation,
2008. CEC 2008. (IEEE World Congress on Computational Intelligence).
IEEE Congress on, IEEE, 2004 –2011, 2008.

24

[7] A. R. Yıldız, K. Saitou, Topology Synthesis of Multicomponent Structural
Assemblies in Continuum Domains, ASME Journal of Mechanical Design
133 (1) (2011) 011008–011008–9, doi:10.1115/1.4003038.

[8] D. J. Munk, G. A. Vio, G. P. Steven, Topology and shape op-
timization methods using evolutionary algorithms: a review,
Structural and Multidisciplinary Optimization 52 (3) (2015)
613–631, ISSN 1615-1488, doi:10.1007/s00158-015-1261-9, URL
http://dx.doi.org/10.1007/s00158-015-1261-9.

[9] A. Ahrari, A. A. Atai, K. Deb, Simultaneous topology, shape
and size optimization of truss structures by fully stressed de-
sign based on evolution strategy, Engineering Optimization
47 (8) (2015) 1063–1084, doi:10.1080/0305215X.2014.947972, URL
http://dx.doi.org/10.1080/0305215X.2014.947972.

[10] A. H. Gandomi, X.-S. Yang, A. H. Alavi, Mixed variable
structural optimization using Firefly Algorithm, Comput-
ers & Structures 89 (23–24) (2011) 2325–2336, ISSN 0045-
7949, doi:http://dx.doi.org/10.1016/j.compstruc.2011.08.002, URL
http://www.sciencedirect.com/science/article/pii/S0045794911002185.

[11] M.-Y. Cheng, D. Prayogo, Symbiotic Organisms Search:
A new metaheuristic optimization algorithm, Comput-
ers & Structures 139 (2014) 98–112, ISSN 0045-7949,
doi:http://dx.doi.org/10.1016/j.compstruc.2014.03.007, URL
http://www.sciencedirect.com/science/article/pii/S0045794914000881.

[12] G. R. Zavala, A. J. Nebro, F. Luna, C. A. Coello Coello, A
survey of multi-objective metaheuristics applied to structural op-
timization, Structural and Multidisciplinary Optimization 49 (4)
(2014) 537–558, ISSN 1615-1488, doi:10.1007/s00158-013-0996-4, URL
http://dx.doi.org/10.1007/s00158-013-0996-4.

[13] D. Sharma, K. Deb, N. N. Kishore, Domain-Specific Initial Population
Strategy for Compliant Mechanisms using Customized Genetic Algorithm,
Structural and Multidisciplinary Optimization 43 (4) (2011) 541–554, ISSN
1615-147X.

[14] N. Wang, X. Zhang, Topology optimization of compliant mecha-
nisms using pairs of curves, Engineering Optimization 47 (11)
(2015) 1497–1522, doi:10.1080/0305215X.2014.977274, URL
http://dx.doi.org/10.1080/0305215X.2014.977274.

[15] M. Emmerich, B. Naujoks, Metamodel Assisted Multiobjective Optimisa-
tion Strategies and their Application in Airfoil Design, in: I. Parmee (Ed.),
Adaptive Computing in Design and Manufacture VI, Springer, London,
249–260, 2004.

25

[16] D. Sharma, K. Deb, N. N. Kishore, Customized Evolutionary Optimiza-
tion Procedure for Generating Minimum Weight Compliant Mechanisms,
Engineering Optimization 46 (1) (2014) 39–60.

[17] T. Zegard, G. H. Paulino, Toward GPU accelerated topology optimiza-
tion on unstructured meshes, Structural and Multidisciplinary Optimiza-
tion 48 (3) (2013) 473–485, ISSN 1615-1488, doi:10.1007/s00158-013-0920-
y, URL http://dx.doi.org/10.1007/s00158-013-0920-y.

[18] M. Dehnavi, D. Fernandez, D. Giannacopoulos, Finite-Element Sparse
Matrix Vector Multiplication on Graphic Processing Units, Magnetics,
IEEE Transactions on 46 (8) (2010) 2982–2985, ISSN 0018-9464, doi:
10.1109/TMAG.2010.2043511.

[19] H. Kawamura, H. Ohmori, N. Kito, Truss Topology Optimization by a
Modified Genetic Algorithm, Structural and Multidisciplinary Optimiza-
tion 23 (6) (2002) 467–473, doi:10.1007/s00158-002-0208-0.

[20] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A Fast and Elitist Multi-
objective Genetic Algorithm: NSGA-II, Evolutionary Computation, IEEE
Transactions on 6 (2) (2002) 182 –197.

[21] K. Tai, T. H. Chee, Design of Structures and Compliant Mechanisms by
Evolutionary Optimization of Morphological Representations of Topology,
ASME, Journal of Mechanical Design 122 (2000) 560–566.

[22] S. Y. Wang, K. Tai, Graph Representation for Structural Topology Op-
timization Using Genetic Algorithms, Computers & Structures 82 (2004)
1609–1622.

[23] K. Tai, S. Akhtar, Structural Topology Optimization Using A Genetic Algo-
rithm with A Morphological Geometric Representation Scheme, Structural
and Multidisciplinary Optimization 30 (2005) 113–127.

[24] A. Yildiz, N. Kaya, N. Öztürk, O. Alankuş, Optimal design of
vehicle components using topology design and optimisation, Inter-
national Journal of Vehicle Design 34 (4) (2004) 387–398, doi:
http://dx.doi.org/10.1504/IJVD.2004.004064.

[25] A. R. Yıldız, Optimal Structural Design of Vehicle Components Using
Topology Design and Optimization, Materials Testing 50 (4) (2008) 224–
228, doi:10.3139/120.100880.

[26] I. Durgun, A. R. Yıldız, Structural Design Optimization of Vehicle Com-
ponents Using Cuckoo Search Algorithm, Materials Testing 54 (3) (2012)
185–188, doi:10.3139/120.110317.

[27] A. Yildiz, N. Öztürk, N. Kaya, F. Öztürk, Integrated opti-
mal topology design and shape optimization using neural net-
works, Structural and Multidisciplinary Optimization 25 (4) (2003)

26

251–260, ISSN 1615-1488, doi:10.1007/s00158-003-0300-0, URL
http://dx.doi.org/10.1007/s00158-003-0300-0.

[28] N. Öztürk, A. Yildiz, N. Kaya, F. Öztürk, Neuro-Genetic Design Op-
timization Framework to Support the Integrated Robust Design Opti-
mization Process in CE, Concurrent Engineering 4 (1) (2006) 5–16, doi:
10.1007/s00158-003-0300-0.

[29] A. R. Yıldız, N. Öztürk, N. Kaya, F. Öztürk, Hybrid multi-
objective shape design optimization using Taguchi’s method and ge-
netic algorithm, Structural and Multidisciplinary Optimization 34 (4)
(2006) 317–332, ISSN 1615-1488, doi:10.1007/s00158-006-0079-x, URL
http://dx.doi.org/10.1007/s00158-006-0079-x.

[30] A. R. Yıldız, A new design optimization framework based
on immune algorithm and Taguchi’s method, Comput-
ers in Industry 60 (8) (2009) 613 – 620, ISSN 0166-
3615, doi:http://dx.doi.org/10.1016/j.compind.2009.05.016, URL
http://www.sciencedirect.com/science/article/pii/S0166361509001353,
computer Aided Innovation.

[31] A. R. Yıldız, Comparison of Evolutionary-based Optimization Al-
gorithms for Structural Design Optimization, Engineering Ap-
plications of Artificial Intelligence 26 (8) (2013) 327–333, doi:
http://dx.doi.org/10.1016/j.engappai.2012.05.014.

[32] A. R. Yıldız, A new hybrid particle swarm optimization approach for struc-
tural design optimization in the automotive industry, Proceedings of the
Institution of Mechanical Engineers, Part D: Journal of Automobile Engi-
neering 226 (10) (2012) 1340–1351, doi:10.1177/0954407012443636.

[33] nVidia, nVidia CUDATM Pragramming Guide Version 7.0, 2015.

[34] E. Wadbro, M. Berggren, Megapixel Topology Optimization on a
Graphics Processing Unit, SIAM Review 51 (4) (2009) 707–721, doi:
10.1137/070699822.

[35] S. Schmidt, V. Schulz, A 2589 line topology optimization code written for
the graphics card, Computing and Visualization in Science 14 (6) (2011)
249–256, ISSN 1432-9360, doi:10.1007/s00791-012-0180-1.

[36] V. Challis, A. Roberts, J. Grotowski, High resolution topology optimization
using graphics processing units (GPUs), Structural and Multidisciplinary
Optimization 49 (2) (2014) 315–325, ISSN 1615-147X, doi:10.1007/s00158-
013-0980-z.

[37] M. I. Frecker, G. K. Ananthasuresh, S. Nishiwaki, N. Kikuchi, S. Kota,
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Op-
timization, ASME, Journal of Mechanical Design 119 (2) (1997) 238–245.

27

[38] J. N. Reddy, An Introduction to the Finite Element Method, Mc Graw Hill
Education, New York, USA, 3rd edn., ISBN 978-0-07-060741-5, 2005.

[39] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms,
Chichester, UK: Wiley, first edn., 2001.

[40] D. Sharma, K. Deb, N. N. Kishore, A Domain-Specific Crossover and a
Helper Objective for Generating Minimum Weight Compliant Mechanisms,
in: Proceedings of the 10th annual conference on Genetic and evolutionary
computation, GECCO ’08, ACM, New York, NY, USA, ISBN 978-1-60558-
130-9, 1723–1724, 2008.

[41] S. Y. Wang, K. Tai, M. Y. Wang, An Enhanced Genetic Algorithm for
Structural Topology Optimization, International Journal for Numerical
Methods in Engineering 65 (1) (2006) 18–44.

[42] A. Dziekonski, P. Sypek, A. Lamecki, M. Mrozowski, Accuracy, Memory,
and Speed Strategies in GPU-Based Finite-Element Matrix-Generation,
IEEE Antennas and Wireless Propagation Letters 11 (2012) 1346–1349,
ISSN 1536-1225, doi:10.1109/LAWP.2012.2227449.

[43] C. Cecka, A. J. Lew, E. Darve, Assembly of finite element methods on
graphics processors, International Journal for Numerical Methods in En-
gineering 85 (5) (2011) 640–669, ISSN 1097-0207, doi:10.1002/nme.2989,
URL http://dx.doi.org/10.1002/nme.2989.

[44] NVIDIA, CUDA C Programming Guide, 5.5, Tech. Rep., NVIDIA Corpo-
ration, August 2014.

[45] C. M. Fonseca, P. J. Fleming, On the performance assessment and com-
parison of stochastic multiobjective optimizers, in: Proceedings of Parallel
Problem Solving from Nature IV (PPSN-IV), 584–593, 1996.

[46] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, V. Grunert da Fonseca,
Performance Assessment of Multiobjective Optimizers: An Analysis and
Review, IEEE Transactions on Evolutionary Computation 7 (2) (2003)
117–132.

[47] J. Knowles, L. Thiele, E. Zitzler, A Tutorial on the Performance Assess-
ment of Stochastic Multiobjective Optimizers, TIK Report 214, Computer
Engineering and Networks Laboratory (TIK), ETH Zurich, 2006.

[48] E. Zitzler, L. Thiele, Multiobjective Evolutionary Algorithms: A Compar-
ative Case Study and the Strength Pareto Approach, Evolutionary Com-
putation, IEEE Transactions on 3 (4) (1999) 257–271.

[49] V. G. Fonseca, C. M. Fonseca, A. O. Hall, Inferential performance assess-
ment of stochastic optimizers and the attainment function, in: Proceedings
of the First Evolutionary Multi-Criterion Optimization (EMO-01) Confer-
ence, 213–225, 2001.

28

[50] C. Fonseca, V. Fonseca, L. Paquete, Exploring the Performance of Stochas-
tic Multiobjective Optimisers with the Second-Order Attainment Function,
in: C. Coello Coello, A. Hernndez Aguirre, E. Zitzler (Eds.), Evolutionary
Multi-Criterion Optimization, vol. 3410 of Lecture Notes in Computer Sci-

ence, Springer Berlin Heidelberg, ISBN 978-3-540-24983-2, 250–264, 2005.

29

