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Abstract Compliant mechanism is a single piece elastic struc-

ture which can deform to perform the assigned task. In this

paper, the compliant mechanisms are evolved using a con-

straint based bi-objective optimization formulation which

requires one user defined parameter (η). This user defined

parameter limits a gap between a desired path and an ac-

tual path traced by the compliant mechanism. The non-linear

and discrete optimization problem is solved using the hy-

brid genetic algorithm (GA) wherein domain specific ini-

tialization, two-dimensional crossover operator and repair-

ing techniques are adopted. A bit-wise local search method

is used with elitist non-dominated sorting genetic algorithm

to further refine the compliant mechanisms. Parallel compu-

tations are performed on the master-slave architecture to re-

duce the computation time. A parametric study is carried out

for η value which suggests a range to evolve topologically

different compliant mechanisms. The applied and boundary

conditions to the compliant mechanisms are considered vari-

ables that are evolved by the hybrid GA. The post-analysis

of results unveil that the complaint mechanisms are always

supported at unique location that can evolve the non-dominated

solutions.
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1 Introduction

Topology optimization methodology is commonly used to

generate a compliant mechanism in which a flexible struc-

ture is designed. This structure can undergo an elastic defor-

mation on the application of applied load. The deformation

of elastic structure is then useful to accomplish the assigned

task. The field of topology optimization of structure is quite

mature by now and has find many applications in product de-

sign, off-shore structures, smart structures, microelectrome-

chanical systems [1] etc.

The topology optimization methodology follows contin-

uum mechanics approach in which an optimization proce-

dure decides the optimal distribution of material in a given

design domain. There exists methods like homogenization

method [2,3], solid isotropic microstructure with penaliza-

tion method (SIMP) [4], level-set method [5,6], and evolu-

tionary structural optimization (ESO) [7] etc. that are com-

monly used for topology optimization. These methods are

considered computationally efficient in which a discrete op-

timization problem is simplified into a continuous variable

optimization problem. But, the optimal solution will be sen-

sitive towards a threshold value for a continuous design vari-

able.

The major shortcoming of above methods can be elimi-

nated by using Boolean variable (0-1) for material distribu-

tion in the design domain. In this scenario genetic algorithm

(GA) is a viable approach for topology optimization [8–11].

Moreover, the multiple objectives can be aimed in addition

to inherent non-linearity of the optimization problem. The

major drawback of GA is a large computation time. But, it

can be reduced by performing function evaluations in paral-

lel [12,13].

The performance of GA can be improved for topology

optimization by providing problem-specific modifications [14].

It has been observed that modification at initial population
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[15,16], crossover operator [17], elitist selection strategy [18]

and repairing techniques [19] can evolve better offspring so-

lutions in the GA population.

Various formulations have been proposed in the litera-

ture to generate the compliant mechanisms. Some of them

are minimizing deformation and strain energy using weighted

sum method [20], minimizing error of geometric [21] and

mechanical advantages [22], maximizing ratio of mutual en-

ergy to strain energy [23], maximizing mutual potential en-

ergy [24] etc. Most of the above studies combine the mul-

tiple objectives into a single objective optimization prob-

lem. On the other hand, solving single objective optimiza-

tion problem as multi-objective optimization can introduce

adequate diversity in GA, thereby enhancing the chance of

finding good new solutions with generations [12,25,26].

From the above discussion, it is clear that GA can be

a best tool for generating compliant mechanisms. However,

attention is required to modify GA such that the convergence

of GA can be improved and better compliant mechanisms

can be evolved. This leads to the motivation of present work

wherein GA is modified using domain-specific initializa-

tion, two-dimensional crossover and repairing techniques.

The compliant mechanisms are further refined using a bit-

wise local search method. The elitist non-dominated sorting

GA (NSGA-II) [27] is used for global search and optimiza-

tion. The remaining paper is organized in five sections. In

Section 2, the problem formulation for the compliant mech-

anism is presented and the motivation behind user-defined

constraints is discussed. In Section 3, the hybrid GA is dis-

cussed and modification to NSGA-II are shown. In Section

4, the evolved compliant mechanisms are presented and post

analysis of results are done. In Section 5, the paper is con-

cluded and a scope for future work is mentioned.

2 Problem Formulation

The bi-objective optimization formulation is presented here

in which minimization of weight of the elastic structure is

considered as the primary objective. This objective is cou-

pled with the secondary objective in which input energy

supplied to the structure is minimized. Both of these objec-

tives are conflicting in nature as the primary objective aims

to generate flexible elastic structure and the secondary ob-

jective imposes stiffness to the structure. The two objectives

for the compliant mechanism is given as

Minimize: Weight of the elastic structure,

Minimize: Supplied input energy to the structure.
(1)

A continuum mechanics approach is used to evaluate

both objectives. In this approach, the design domain as shown

in Fig. 1 is represented by the grids. Each grid is either filled

with material (black colored grid) or it is a void. By count-

ing number of black grids, the weight of the structure can
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Fig. 1 A design-domain is represented by square grids, and is sub-

jected to applied and boundary conditions.

be evaluated by multiplying the count with area of grid and

density of the material. The input energy supplied to the

structure is calculated after performing finite element sim-

ulations. It signifies the strain energy stored in the deformed

elastic structure and the potential energy stored in the spring

as shown in Fig. 1.

The constraints are designed for the path generating com-

pliant mechanism (PGCM) in which a desired path is gener-

ated by the elastic structure. In the literature, PGCM is de-

signed by minimizing Euclidean distance between a desired

path and an actual path generated by the elastic structure at

some fixed points [28]. These fixed points are referred as

precision points. In this methodology, a closeness between

the paths cannot be ensured and may find a solution gen-

erating its actual path far from the desired path. This prob-

lem leads to the motivation to develop a formulation wherein

constraint is imposed at each precision point such that a gap

between the paths can be controlled [12].

A desired path can be represented by the equidistant pre-

cision points as shown in Fig. 2. The actual path traced by

the elastic structure can also be represented in a similar way.

A gap between these paths can be controlled by imposing a

limit on each precision point. This is given as

d2 ≤ d1 (2)

for each precision point, where

d2(=
√

(xia − xi)2 +(yia − yi)2) is Euclidean distance between

the precision point (i) and the corresponding point (ia) of the

actual path as shown in Fig. 2. The distance

d1(= η ×
√

(xi − xi−1)2 +(yi − yi−1)2) is η% of Euclidean

distance between the current precision point (i) and the pre-

vious precision point (i− 1).

It can be seen that a gap between the paths is controlled

by η . Variation in η value not only will change the optimal

solutions, but also it will modify shape and topology of the

elastic structure. The effect of different η values is presented

in this paper and a suitable range of η is suggested.
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Fig. 2 A prescribed path and an actual path traced by the elastic struc-

ture.

Another constraint is also imposed in which the maxi-

mum shear stressed developed in the elastic structure should

be less that the yield stress of the material which is given as

τmax < σy. (3)

The above constraint bi-objective optimization formula-

tion is used to generate multiple PGCMs. In the next sec-

tion, the hybrid genetic algorithm is discussed for solving

the given optimization problem.

3 Hybrid Genetic Algorithm

The hybrid genetic algorithm is used to solve the constraint

bi-objective optimization problem of the compliant mech-

anism. The global search and optimization is done using

NSGA-II [27]. This algorithms has successfully been used

for structure topology optimization earlier [12,14,15,17,25].

The flow chart of the hybrid NSGA-II algorithm is shown

in Fig. 3. The algorithm starts with random initial popula-

tion. A domain specific initial population generation strat-

egy is adopted [12] in which the locations of support and ap-

plied boundary conditions, and output region are connected

to each other. The output region is referred as a point on the

elastic structure which will generate a path. It can bee seen

in Fig. 4 (a), support, loading and output locations are con-

nected by piece-wise linear segments, randomly. These seg-

ments can have different length and orientation for different

structures in the GA population. In the present example, the

support location is connected to the loading location by ran-

domly placing three linear segments. However, these loca-

tions are allowed to be connected by two to four linear seg-

ments. Similarly any pair of locations can be connected by

two to four linear segments. Thereafter, the grids are filled

of combined population

Initial random
population’N’

FE analysis

If
generation

maximum
generation

>

Tournament selection

Two dimensional crossover

Mutation

Clustering procedure

Local search

Repairing Techniques

FE analysisCalculation of objectives and constraints

Terminate hybrid algorithm
Combine old and new populations

generation population
Choose best individuals to fill next

computation
Parallel

Calculation of objectives and constraints

Parallel computation

No

Yes

Non−dominated sorting based ranking and crowding distance

Non−dominated sorted ranking and
crowding distance calculation

Fig. 3 A flow chart of hybrid NSGA-II algorithm.
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Fig. 4 A domain specific initial population strategy distributes material

randomly.

with the material from where these line segments pass. The

distribution of material in the design domain can be seen in

Fig. 4 (b).

It is worth mentioning that the locations of support and

loading conditions are considered as variables. The magni-

tude of applied boundary condition, that is, input displace-

ment at loading location is also a variable. The support and

loading locations are thus different for different individuals

in the population. Moreover, these conditions are evolved by

the hybrid GA.

Once the initial population is generated, the finite ele-

ment computations are performed for each elastic structure

to calculate the objective and constraints. These computa-

tions are done in parallel on the cluster computers using the

master-slave architecture. The population is equally divided

on the slave processors on which the finite element computa-

tions are performed using ANSYS software for each elastic

structure.
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The rank of each individual in the population is then cal-

culated using non-dominated sorting ranking operator pro-

posed in NSGA-II [27]. The solutions are sorted in differ-

ent fronts based on the dominance principle. The crowding

distance is calculated front wise for each solution. The solu-

tions are then selected using constrained binary tournament

selection operator as described in [29]. Here, the solution

with better rank and larger crowding distance is selected.

The mating pool is then created after selecting good in-

dividuals. The crossover operator is then performed on the

population in the mating pool. A two dimensional crossover

operator is used in which a block of horizontal or vertical

grids are swapped between two randomly selected parent

solutions as shown in Fig. 5. The size and location of hori-

Horizontal block of grids Vertical block of grids

Fig. 5 A two dimensional crossover that swaps a block of horizon-

tal/vertical block of grids between randomly selected two parent solu-

tions.

zontal/vertical grids are randomly selected within the design

domain. Moreover, the swapping of horizontal or vertical

block is also decided randomly.

After performing crossover operator the bit-wise muta-

tion operator is used. In this mutation operator each grid is

mutation with a probability of pm. If the probability condi-

tion is satisfied, Boolean variable is mutated to its comple-

ment.

The crossover and mutation operators do not respect de-

sign feasibility of the elastic structures. In such situation

the offspring solution can have disconnected or infeasible

geometry as shown in Fig. 6 (a). In this figure a material
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Fig. 6 The elastic structure with disconnected topology.

discontinuity can be seen among the support, loading and

output locations. In this scenario minimum extra material is

placed in the grids to eliminate the problem. It is done by

calculating minimum distance between the clusters of mate-

rial and joined them by a straight line. Thereafter, the mate-

rial is assigned to those grids where the straight line passes

as shown in Fig. 6 (b).

The point singularity is another problem where two grids

filled with a material are connected by a point. It is encircled

in Fig. 6 (b). A heuristic repairing technique is used in which

a point singularity is removed by putting extra material as

shown in Fig. 7. In Fig. 7(a), an extra material can be filled
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Fig. 7 Point singularity case is illustrated.

at 1st or 3rd position with an equal probability. In Fig. 7(b),

extra material is filled at two grids. Another problem can be

seen with a topology in Fig. 6 (a) that few grids with material

which are encircled, are not attached to the main topology.

In that case, material is removed from those grids as shown

in Fig. 6 (b).

The offspring population is generated and is now to be

evaluated using parallel computation as described earlier.

The rank and crowding distance of each individual are calcu-

lated in the combined population from parent and child pop-

ulations. Here, (µ+λ ) selection scheme is used from evolu-

tionary strategy in which best µ solutions are selected from

the combined population of (µ +λ ). Here, the best individ-

uals are selected based on better rank and larger crowding

distance. This completes one generation of the hybrid GA.

The hybrid GA gets terminated when number of generations

reaches maximum allowed generations. The non-dominated

solutions evolved by the hybrid GA are stored for clustering

and local search.

The clustering procedure is then applied when large num-

ber of non-dominated solutions are evolved by the hybrid

GA. In this procedure the neighboring solutions (in the ob-

jective space) are grouped together using the k−mean clus-

tering algorithm. One solution from each group of the non-

dominated front is chosen as final representative solution.

The bit-wise local search method is then executed on the

representative solutions.
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The local search method uses weighted sum method in

which two objectives are added and multiplied by weights

as given as

minF(x) = min
n

∑
j=1

wx
j( f x

jmax
− f x

j )

f x
jmax

− f x
jmin

, (4)

where f x
j is jth objective function, f x

jmin
and f x

jmax
are mini-

mum and maximum values of jth objective function in the

population respectively, n is number of objectives and wx
j is

the corresponding weight to the jth objective function which

is computed as

wx
j =

( f x
jmax

− f x
j )\ ( f x

jmax
− f x

jmin
)

∑M
k=0( f x

kmax
− f x

k )\ ( f x
kmax

− f x
kmin

)
, (5)

where M is the number of representative solutions after clus-

tering procedure. In (4), the objective function values are

normalized to avoid bias towards any objective function.

In this approach the weight vector decides the importance

of different objectives, in other words it gives the direction

to the local search in the objective space. As (5) suggests,

these weights are calculated based on their positions in two-

objective space after the termination of the hybrid GA.

In the local search method the binary string of the repre-

sentative solution is converted into a two-dimensional array

which is then checked for the grids filled with material. For

each grid filled with material, there are eight possible neigh-

borhood cells. One by one all neighboring bits including its

own bit value is mutated to its complement. The new elastic

structure is then extracted on which the finite element com-

putations are performed for evaluating the objective func-

tion and constraints values. If the new structure does not

satisfy any of the constraints, the change in the new string

is discarded and the old values are restored. Otherwise, the

weight of structure represented by the new string is calcu-

lated and compared with that of the old string’s value. If

mutating a bit brings an improvement in the weight objec-

tive and the solution remains to be feasible, the change is ac-

cepted. Else, the change is discarded and the previous values

are restored. When all the bits having a material are mutated

along with their neighborhoods, the grids of the new elas-

tic structure are again checked for material and are mutated

as discussed above. The local search method is terminated

when no change in a bit improves the weight objective value

and simultaneously keep the solution feasible. In the same

way, all chosen non-dominated solutions are mutated one

by one.

4 Simulation Results

The material used for generating compliant mechanism is

assumed to have Young’s modulus (E) of 3.3 GPa, yield

stress (σy) of 69 MPa, density (ρ) of 1.114 gm/cm3, and

Poisson’s ratio (ν) of 0.40. The displacement boundary con-

dition is applied at the loading location in direction of x-axis

as shown in Fig. 1. Maximum six representative solutions

are chosen from the non-dominated set evolved by the hy-

brid GA using the clustering procedure. A 24-node cluster

is used to perform parallel computations. A few GA param-

eters are kept constant which are given in Table 1. Here, the

population size of 240 is used such that sub-population size

of 10 can be divided for each salve processor. The crossover

probability is kept high to explore the search space by the

hybrid GA. However, the mutation probability is kept very

low. The generations allowed to the hybrid GA is fixed as

100 so that the non-dominated solutions evolved by the hy-

brid GA will be further refined by the local search method.

Table 1 NSGA-II parameters used in this study.

Population 240 Generation 100

Crossover
0.95

Mutation 1/string

probability probability length

4.1 Parametric Study of η

The user defined parameter η is responsible to limit a gap

between a desired path and an actual path traced by the

compliant mechanism. The parametric study of η is done

for η = 5%, 10%, 15%, 20%, and 25%. For different values

of η , the compliant mechanisms generating curvilinear path

are evolved.

For η = 5%, the hybrid algorithm is unable to generate

any feasible solution. It is because the feasible space defined

by the constraints in (2) is narrow.

When η = 10% is set, the hybrid GA generates few non-

dominated solutions as shown in Fig. 8. Solutions a to f

are generated by NSGA-II. The local search method is then

1
54

5

1

2 3 4

a b c d f

32

e

Weight of structure (gm)

 6e+06

 7e+06

 8e+06

 9e+06

 0.9  1  1.1  1.2  1.3  1.4  1.5  1.6  1.7

S
up

pl
ie

d 
in

pu
t e

ne
rg

y 
(1

0E
−

7 
J)

NSGA−II solutions: 10%
Local search solutions

 4e+06

 3e+06

 2e+06

 0.96  1.12 1.08 1.04 1

 3.3e+06

 3.2e+06

 3.1e+06

 3e+06

 2.9e+06

 5e+06

Fig. 8 The approximate Pareto-optimal solutions evolved by the hy-

brid algorithm for η = 10%.
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(a) Solution 1: Undeformed (b) Solution 1: Deformed

(c) Solution 2: Undeformed (d) Solution 2: Deformed

(e) Solution 3: Undeformed (f) Solution 3: Deformed

Fig. 9 The compliant mechanisms for η = 10%.

applied to these solutions which generates five (1 to 5) solu-

tions. Here, solutions e and f are converged to same solution

5. Among five local search solutions, only three solutions (1,

2 and 3) are non-dominated.

The deformed and undeformed topology of three non-

dominated solutions are shown in Fig. 9. In this figure, so-

lution 1 is the minimum weight solution but requires larger

input energy to generate the desired curvilinear path. Solu-

tion 3 requires minimum supplied input energy but evolves

as heavier structure. Solution 2 also shows trade-off between

the two-objectives.

For η = 15%, NSGA-II algorithm evolves five non-dominated

solutions (a to e) as shown in Fig. 10. When local search

method is applied on these solutions, solutions (1 to 5) are

generated. Among the local search solutions only solutions

1 and 2 are non-dominated.

The topology of solutions 1 and 2 are shown in Fig. 11.

These solutions are topologically different and show trade-

off between weight and supplied input energy.
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Fig. 10 The approximate Pareto-optimal solutions evolved by the hy-

brid algorithm for η = 15%.

(a) Solution 1: Undeformed (b) Solution 1: Deformed

(c) Solution 2: Undeformed (d) Solution 2: Deformed

Fig. 11 The compliant mechanisms for η = 15%.

For η = 20%, NSGA-II evolves many non-dominated

solutions. Among them, six representative solutions (a to f )

are shown in Fig. 12. After the local search, solutions 1 to 6

are generated. But, solutions 1, 2, and 3 are non-dominated.

The deformed and undeformed topologies of solutions 1,

2, and 3 are shown in Fig. 13. It can be seen that solution 3 is

topologically different than solutions 1 and 2. All solutions

show a large distribution of the material near the center of

the design domain.

For η = 25%, only two solutions are evolved by NSGA-

II as shown in Fig. 14 and rest of the population members

are same as two solutions. After local search, only solution 1

is non-dominated. The topology of non-dominated solution

1 is shown in Fig. 15. The topology consists of two loops of

material.
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Fig. 12 The approximate Pareto-optimal solutions evolved by the hy-

brid algorithm for η = 20%.

In Fig. 16, the path traced by the compliant mechanisms

are shown for different values of η . It can be observed that

the actual path traced by the compliant mechanisms is close

to the desired curvilinear path for η = 10% and 15%. And

also, the actual path interests the desired path. But, a gap be-

tween these two paths increases for higher value of η . A gap

between the paths at each precision point is presented in Ta-

ble 2. It is represented by d1 and d2 as defined in (2) in which

d1 represents maximum allowed gap. It can be seen that the

precision point 5 is critical where the constraint is active.

The gap increases with increase in η value. The above study

shows that η ranging from 10% to 20% is a suitable where

topologically different PGCMs can be evolved and the paths

generated by them are close to the desired path.

4.2 Applied and Boundary Conditions

The applied and boundary conditions are considered vari-

ables and are evolved by NSGA-II algorithm. These condi-

tions are shown in Table 3 for different values of η . It can

be seen that an identical support location is evolved for all

compliant mechanisms. This suggests that the present sup-

port position is unique for the evolved compliant mechanism

to trace the desired curvilinear path or the optimization pro-

cedure fails to maintain diversity.

In order to investigate reasons behind the unique sup-

port location, the support region is divided into four equal

sub-regions as shown in Fig. 17. The support region is lo-

cated at the bottom of the elastic structure which span from

0 mm to 50 mm. The sub-regions I, II, III and IV span from

0 to 11 mm, 12 to 23 mm, 24 to 35mm and 36 to 50 mm,

respectively.

NSGA-II is run independently for each sub-region in

which variable bound for the support location is restricted

for one sub-region. Fig. 18 shows the non-dominated solu-

tions evolved for four sub-regions. It can be observed that

(a) Solution 1: Undeformed (b) Solution 1: Deformed

(c) Solution 2: Undeformed (d) Solution 2: Deformed

(e) Solution 3: Undeformed (f) Solution 3: Deformed

Fig. 13 The compliant mechanisms for η = 20%.

the non-dominated solutions evolved from sub-region I dom-

inate rest of the solutions.

The applied and boundary conditions evolved for four

sub-regions are shown in Table 4. It can be seen that when

the elastic structure is supported away from the origin, it re-

quires more input displacement to generate the desired path.

This suggests that more input energy is required to deform

the elastic structure. Therefore, the non-dominated solutions

evolved in sub-region I dominate other solutions. It signifies

that the support location of 2 mm is unique for curvilinear

path generating compliant mechanisms.

5 Conclusion

In this paper, the parametric study of a constraint bi-objective

optimization formulation for the compliant mechanisms was

carried out which controlled a gap between the desired path

and the actual path. The study suggested that η can be var-
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Fig. 15 The topology of compliant mechanism for η = 25%.

Table 2 The position of the precision points on the desired path and the

corresponding point on the actual path traced by the compliant mecha-

nisms for different values of η .

Precision 1 2 3 4 5

points

For η = 10%

d1 0.213 0.209 0.206 0.204 0.202

Sol. 1: d2 0.096 0.149 0.160 0.153 0.202

Sol. 2: d2 0.108 0.174 0.198 0.192 0.202

Sol. 3: d2 0.109 0.176 0.201 0.195 0.202

For η = 15%

d1 0.320 0.314 0.309 0.306 0.303

Sol. 1: d2 0.112 0.191 0.239 0.268 0.303

Sol. 2: d2 0.111 0.189 0.236 0.266 0.303

For η = 20%

d1 0.426 0.419 0.412 0.408 0.404

Sol. 1: d2 0.139 0.249 0.326 0.377 0.404

Sol. 2: d2 0.118 0.208 0.272 0.329 0.404

Sol. 3: d2 0.119 0.210 0.277 0.334 0.404

For η = 25%

d1 0.533 0.524 0.516 0.510 0.505

Sol. 1: d2 0.141 0.260 0.357 0.437 0.505
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(b) For η = 15%
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Fig. 16 The desired curvilinear path and the actual path traced by the

compliant mechanisms.
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Table 3 Applied and boundary conditions of evolved compliant mech-

anisms for different values of η .

Conditions Location from origin

For η = 10%

Support position 2 mm

Loading position 48 mm

Input displacement magnitude 10 mm

For η = 15%

Support position 2 mm

Loading position 48 mm and 46 mm

Input displacement magnitude 10 mm and 9 mm

For η = 20%

Support position 2 mm

Loading position 48 mm

Input displacement magnitude 10 mm

For η = 25%

Support position 2 mm

Loading position 40 mm

Input displacement magnitude 8 mm
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I IIIII IV

4 Support Regions
Fig. 17 The support region of a design domain is divided into four

sub-regions.
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Fig. 18 A comparison between the NSGA-II solutions evolved from

different sub-region analyses.

Table 4 Applied and boundary conditions of evolved compliant mech-

anisms for four sub-regions.

Conditions Location from origin

For region I

Support position 2 mm

Input displacement magnitude 7 mm

For region II

Support position 12 mm

Input displacement magnitude 10 mm

For region III

Support position 24 mm

Input displacement magnitude 12 mm

For region IV

Support position 36 mm

Input displacement magnitude 14 mm

ied between 10% to 20% to evolve topologically different

PGCMs. This range of η kept the actual path generated by

the compliant mechanisms closer to the desired curvilinear

path. Genetic algorithm was modified using domain spe-

cific initialization, two-dimensional crossover operator and

repairing techniques. These modification helped NSGA-II

to evolve a set of non-dominated solutions. These solutions

were further refined using a bit-wise local search method

which generated smooth structures. Moreover, the support

and applied boundary conditions were evolved by the hy-

brid GA in which all elastic structure were supported at the

identical location. This location was unique for evolving the

non-dominated PGCMs. This fact was supported by region-

wise analysis of the support region. In the future, the same

formulation and the hybrid algorithm can be used to evolve

the compliant mechanisms which can trace variety of paths.

Further attention is required to modify GA so that a a diverse

set of non-dominated solutions can be evolved.
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