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Abstract. Structural topology optimization is a method of finding optimum ma-

terial distribution within a given design domain, which is subjected to various 

loading and support conditions. However, the large computation time is one of 

the major challenges in its implementation. This challenge gets escalate with the 

use of unstructured mesh. In this paper, a Solid Isotropic Material with Penaliza-

tion (SIMP)-based implementation of topology optimization on the graphics pro-

cessing unit (GPU) for a 3D unstructured mesh is presented. The finite element 

analysis is performed entirely on a GPU. The main implementational challenges 

are addressed by developing an efficient and optimized GPU ��	
��. The per-

formance of the implementation is analyzed over an example using three different 

mesh sizes. Results show almost 4 × speedup over a standard CPU implementa-

tion.  
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1 Introduction 

Topology optimization is a method for designing lightweight and reliable structures. Its 

main objective is to find an optimum layout by distributing material in a given design 

space. The material is distributed in order to achieve the best structural performance in 

terms of minimizing compliance, cost, or weight of the structure. The topology optimi-

zation has been successfully used in mechanical structural design [1], civil structures 

[2], aerospace structures [3], to name a few. 

The theoretical aspect of topology optimization is well established. The density-

based methods are popular and widely used, particularly SIMP [4]. The density-based 

methods work on a fixed domain of finite elements and represent a smooth and differen-

tiable problem, which can be solved efficiently by available numerical optimization al-

gorithms.  

The SIMP -based topology optimization method begins with the discretization of a 

design domain, which is known as meshing. In literature, the structured mesh has been 

mostly used for meshing solid structures [5]. Structured meshes indeed offer a clear 

advantage in terms of simplicity of computational implementation, and the amount of 

computation required. However, their use is limited to simple design problems with 
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regular domain geometry, thereby making their limit applications for real-world prob-

lems.  

The unstructured meshes are more versatile to discretize domains with complex and 

irregular geometries. This makes them useful over a wider range of problems, such as 

those containing non-orthogonal domains and curved boundaries. However, the main 

challenge is a higher computation time than that with a structured mesh. As topology 

optimization is already a computationally expensive method, its implementation using 

unstructured meshes makes it even more computationally challenging. 

A viable solution to a high computation time can be found by performing the com-

putation in parallel. The GPU has been very popular in the recent few years for solving 

data-parallel computation.  

Previous studies used GPU to speedup different parts of topology optimization. The 

majority of these studies targeted the finite element analysis (FEA) part of the SIMP-

based topology optimization [6, 7, 8, 9]. Schmidt et al. used GPU to accelerate FEA and 

gradient computation on a 3D structured mesh. Special attention was given for imple-

menting a sparse matrix-vector product (SpMV) on GPU [5]. Several studies in the 

literature also computed both FEA and optimization on GPU [10, 11, 12]. Methods 

other than SIMP have also been used with GPU. For example, the level-set method 

[13], topological sensitivity method [9], and evolutionary optimization [14,15] have 

also been implemented on GPU. Recently, Kiran et al. presented a GPU-based strategy 

for the generation of finite element stiffness matrices and their assembly [16]. Sanfui 

et al. used GPU to accelerate the elemental computation and assembly by exploiting the 

symmetry [17]. Kiran et al. presented a comparative analysis of the GPU-based solver 

libraries for a sparse linear system of equations [18]. 
Most of the studies discussed above use structured meshes for discretization and 

analysis. The first work on GPU-based topology optimization using 2D unstructured 

meshes was presented by Zegard et al. [10]. Later, Duarte et al. presented a GPU-based 

topology optimization tool PolyTop++ [7] using a polygonal mesh. The following are 

the contributions of this paper. 

• Implementation of SIMP-based topology optimization using 3D unstructured 

mesh on GPU.  The implementation is developed using compute unified device 

architecture (CUDA) [19], to be run on NVIDIA GPUs.  

• Development of efficient CUDA ��	
�� for matrix-free SpMV and application of 

!ℎ	#$% library [20] of the CUDA toolkit for linear algebra operations. 

• Development of GPU strategy in order to perform FEA entirely on GPU, which 

thus obviates the need for CPU-GPU data transfer.  

• Comparative analysis of the proposed GPU implementation with a standard CPU 

implementation. 

 The paper is organized as follows. The implementation details are discussed in Sec-

tion 2. In Section 3, the results and discussions are presented, followed by the conclu-

sions in Section 4. 
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2 Computational Implementation 

The structural topology optimization for compliance minimization under volumetric 

constraint can be defined as, 

min       * +(,) =  ./0., 

1#2. %4         0(,). = 5, 6(,) =  ∑ 89: ≤  6∗, 8: ∈ >0, 1?,  (1) 

where 0 is the stiffness matrix, . is the nodal displacement vector, 89 is the elemental 

density and 6∗ is the volume fraction for restricting material consumption. 

The flowchart in Fig. 1 shows the computational steps involved in the proposed im-

plementation of the topology optimization for compliance minimization of solid con-

tinua. 

 
Fig. 1. Flowchart of topology optimization implementation 

The input to the implementation includes the material properties, mesh information, 

and the code parameters (termination criterion and maximum no. of iterations). In the 

beginning, the decision variable (DV) vector is initialized. Since the proposed imple-

mentation uses SIMP -based topology optimization, the elemental densities are the de-

cision variables. Thereafter, FEA is carried out to compute the nodal displacements.  

The profiling of the CPU implementation reveals that 99.5% of total computation time 

is being consumed by FEA, which makes it the most time-consuming block in the entire 

optimization shown in Fig. 1. Hence, in order to reduce the total computation time, the 

entire FEA process is carried out on GPU without the need for any CPU-GPU data 

transfer. 

Once the nodal displacements(.) are known, the compliance of the structure is com-

puted as per Eq. (2), and its sensitivity as per Eq. (3). 

A(8) =  B(8:)C >.:?/[�:]>.:? .
DEFE

:GH
 

 

(2) 
IA

I8:
=  −K 8:CLH>.:?/[�:]>.:? . (3) 

where K is the penalty parameter, and M:N:  is the total no. of elements in the mesh, 89 

is the elemental density,  [�:] is elemental stiffness matrix, and >.:? is the vector of 

nodal displacements of the element � 

The next step involves the mesh independency filter, which is an important step to 

prevent the checker-board problem in the resulting topologies [10]. Following this, the 

decision variable (density) vector is updated. The key details of the FEA procedure on 
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GPU is discussed in subsection 2.2. Since the theory of SIMP-based topology optimi-

zation is well established in the literature, the reader may refer to [4, 21] for further 

details. 

 

2.1 Preliminary Computations 

The preliminary computation includes reading the mesh information obtained from 

ANSYS and computing elemental stiffness matrices. The mesh information taken from 

ANSYS includes the nodal coordinates and the connectivity matrix. For all the elements 

[0:] is computed only once on the CPU. All three set of data is linearized following 

row-major order and copied on to the GPU global memory for further computation. 

 

2.2 Finite Element Analysis on GPU 

Once all the required data is transferred to the GPU, nodal displacements are com-

puted using FEA in each iteration of topology optimization. This typically involves 

assembling the elemental stiffness matrices into the global stiffness matrix [0] and 

the load vector >5?. However, in the present study, a matrix-free approach is used, 

where [K] is not explicitly assembled. The next step is to solve the system of linear 

equations. A matrix-free conjugate-gradient (CG) method is used for the same.  

Algo. 1 shows the steps of the CG solver. 

From the algorithm, it can be seen that each CG iteration involves one SpMV and 

multiple vector-vector multiplications. As discussed earlier, these SpMV operations- 

are the main computational bottleneck in the whole topology optimization. In the pre-

sent work, the entire CG routine is executed on GPU. For matrix-vector multiplica-

tions, custom CUDA kernels are developed. The rest of the linear algebraic operations 

are performed using the !ℎ	#$% library of CUDA toolkit, as shown in Algorithm 1. 

First, the required data is copied into GPU. The data includes [0:] of all the ele-

ments, connectivity matrix [+], and elemental densities (8). Since, in the present im-

plementation, each mesh is taken unstructured, the connectivity information is explic-

itly stored. The elemental densities are updated in every iteration, and the updated den-

sities are sent to GPU. All the data are copied into the global memory of GPU. 

 

PQRS TUVWUX: The SpMV is performed on GPU using an element-by-element (EbE) 

strategy. In this approach, [0:] of each element is multiplied with their respective >#? 

components, and by performing this operation for all elements in the mesh, the final 

product [0]>#? is achieved. This can be represented as 

#Y:Z = 0# =  B 0:#: .
DEFE

:GH
 (4) 

In the kernel design, each element of FE mesh is allocated to one compute %ℎ	�[\ of 

GPU. This thread reads the connectivity information for the nodes of this element and 

the elemental density and performs SpMV. The pseudo-code of the SpMV kernel is 

given in Algo. 2. 
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Algorithm ]. Conjugate gradient algorithm 

 
^_`_: 5, 0, .b, cdef, g 
hi`Qi`: .    

 
1. c ←  0 
2. kb  ←  5 –  0.b   /* Kernel */ 
3. sb  ←  kb                /* Thrust */ 
4. yY:Z  ←  kbzkb                                     /* Thrust */ 
5. y{  ←  yY:Z              /* Thrust */ 
6. while while while while i <  i~��  and  and  and  and  yY:Z >  g�y{ 

dodododo    
7. � ←  0s                   /* Kernel */    
8. � ←  yY:Z sz�⁄             
9. . ←  . +  �s        /* Thrust */    
10. V ←  V –  α�                                                /* Thrust */    
11. y�N� ←  yY:Z           /* Thrust */    
12. yY:Z  ←  kzk                                        /* Thrust */    
13. � ←  yY:Z y�N�⁄     
14. \ ←  	 +  �\  /* Thrust */    
15. c ←  c +  1 
16. endendendend    

Algorithm �. SpMV kernel 

 

^_`_: 0: , 8, �, ., K, M:N: 
hi`Qi`: k9� 
 
1. ��� c = (thradIdx. x +  blockIdx. x ∗

 blockDim. x); 
2. �5 ( c <  M:N:) 
3. 5���� ,� =  ,(c)C; 
4. ��� c\H  ← 0; 
5. ��� c\�  ← 0; 
6. 5�k ← � 0 �� 8 s� 
7. c\H  ← 	�[\  	4¡ � ; 
8. 5���� ¢[�#� ← 0; 

                // store result of multiplication 

9.  5�k ← � 0 �� 8 s� 
10. c\�  ← 	�[\  	4¡ � ; 
11. ¢[�#� +=  ,� ∗ (0:[�][�] ∗ #[c\�]); 

                // result of multiplication 

12. 9�s 
13. atomicAdd (&	�$[c\H], ¢[�#�); 

                // atomic operation on GPU 

14. 9�s 

The global %ℎ	�[\_c\ (c) in line 1 of Algo. 2 is the ¥�42[�_c\ of the finite element. 

The %ℎ	�[\ reads the value of the elemental density of this element from the vector 8 

and penalizes it by following the SIMP method, as shown in line 3. Next, in line 6, there 

is a loop over the nodes of this element. Inside the loop, the %ℎ	�[\ loads the index c\H 

from the connectivity matrix in line 7. It indicates the global position in the output 

vector, where the result of SpMV is to be written. The %ℎ	�[\ initializes the variable 

¢[�#�, which holds the result of the product in line 8. In line 9, there is another loop 

for all the nodes in the element. Here, another index c\� is read from [�], which indi-

cates the global position of vector (.) with which the elements of [0:] are to be multi-

plied. Finally, the SpMV is computed and the result is multiplied with the penalized 

elemental density, as shown in line 11. When the %ℎ	�[\ exits the innermost loop, the 

result of Mat-vec product for node � is stored in the variable ¢[�#�. The %ℎ	�[\ ends 

by writing this result into the output vector k9�, as shown in line 13.  

It is to be noted that every node in the mesh is shared by multiple elements. It is 

possible that at a particular time, two or more threads are attempting to write the result 

at the same location, ultimately producing incorrect results. This problem is called a 

race-condition. In order to avoid race-condition during computation, atomic operation 

in CUDA is used. The final write operation to k9� in line 13 of Algo. 2 is an atomic add 

operation. 
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3 Results and Discussion 

The proposed GPU-based topology optimization is tested on a 3D L-beam example. 

The design domain of the L-beam, along with its dimensions, supports, and load con-

ditions, are shown in Fig. 2. 

 

Table ]. The number of elements and 

nodes for the mesh sizes used. 

 

Mesh No. of elements No. of nodes 

Mesh 1 32000 39606 

Mesh 2 72000 88206 

Mesh 3 103,680 126,582 
 

Fig. � Design domain of 3D L-beam  

The performance is analyzed over three different mesh sizes, as given in Table 1. For 

topology optimization, the final volume of the structure is constrained at 6∗ = 50% of 

the original volume. The other parameters are chosen as follows: Young’s modulus 

¦ = 1, Poisson’s ratio µ =  0.3, penalty exponent K =  3.0, filter radius =  4.0, and 

the minimum density is 0.001 [5]. The termination criterion for CG is set as 10L¨, and 

the maximum no. of optimization iterations is 50. 

The CPU implementation is tested on a DELL Precision T3610 with 

Intel Xeon(R) CPU E5 1620;  3: 70 GHz x 8, and 16 GB RAM. All the GPU experi-

ments are performed on NVIDIA Tesla K40 card. It is equipped with 2880 CUDA cores 

and 12 GB of memory. 

The final topology obtained after 50 iterations is shown in Fig. 3. As it can be 

observed from the figure that the main structure is composed of high-density elements, 

while the low-density elements are on the outer surfaces. The evolved topology is 

similar to the results shown in the study [22].  
The total computation time per optimization iteration for both CPU and GPU over 

three mesh sizes are reported in Fig. 4. From the figure, it can be observed that for all 

the mesh sizes, the GPU implementation outperforms the CPU implementation. The 

ratio of the CPU and GPU time is referred to as the speedup, which is considered an 

important performance metric for parallel programming. The speedup with respect to 

the no. of elements is shown in Fig. 5. The speedup is seen to be varying between 2 × 

to 4 × for different mesh sizes. 

  
(a) Densities in final topology (b) Displacement field 

3L / 5

2L / 3

F

L
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Fig. ±. Final topology of the L-beam obtained after 50 optimization iterations. 

  

 
 

Fig. ². Computation time for mesh 

sizes 
Fig. ³. Speedup for different mesh sizes 

4 Conclusions 

An implementation of SIMP-based topology optimization for a 3D linear elastic con-

tinua on GPU has been presented. In the implementation, the entire FEA computation 

has been performed on the GPU using the matrix-free CG solver. SpMV was performed 

using the EbE strategy, where each %ℎ	�[\ was assigned to one element of the finite 

element mesh. In order to avoid the race condition, the atomic operation was used. 

!ℎ	#$% library of the CUDA toolkit was used for accelerating the linear algebraic oper-

ations. For performance analysis, an L-shaped beam was taken as an example with three 

different mesh sizes. Comparison to the CPU implementation showed 2 × - 4 × 

speedup for different mesh sizes. In future work, a more fine-grained parallel compu-

ting strategies [23, 24] can be used to increase speedup further. 

References 

1. Sharma, D., Deb, K.: Generation of compliant mechanisms using hybrid genetic algo-

rithm. Journal of The Institution of Engineers (India): Series C, 95(4), 295-307(2014). 

2. Aage, N., Lazarov, B. S.: Parallel framework for topology optimization using the method of 

moving asymptotes. Structural and multidisciplinary optimization, 47(4), 493-505(2013). 

3. Kennedy, G., J., Martines, J. R.: Hybrid-parallel methods for large-scale gradient-based struc-

tural design optimization. 10th World Congress on Structural and Multidisciplinary Optimiza-

tion (2013). 

4. Bendsøe, M. P., Kikuchi, N.: Generating optimal topologies in structural design using a ho-

mogenization method. Computer methods in applied mechanics and engineering 71(2), 197-

224(1988). 

5. Schmidt, S., Schulz, V.: A 2589-line topology optimization code written for the graphics 

card. Computing and Visualization in Science, 14(6), 249-256(2011). 

6. Wadbro, E., Berggren, M.: Megapixel topology optimization on a graphics processing 

unit. SIAM review, 51(4), 707-721(2009). 

7. Duarte, L. S., Celes, W., Pereira, A., Menezes, I. F., Paulino, G. H.: PolyTop++: an efficient 

alternative for serial and parallel topology optimization on CPUs & GPUs. Structural and Mul-

tidisciplinary Optimization, 52(5), 845-859(2015). 



8 

8. Wu, J., Dick, C., Westermann, R.: A system for high-resolution topology optimization. IEEE 

transactions on visualization and computer graphics, 22(3), 1195-1208(2015). 

9. Suresh, K.: Efficient generation of large-scale pareto-optimal topologies. Structural and Multi-

disciplinary Optimization, 47(1), 49-61(2013). 

10. Zegard, T., Paulino, G. H.: Toward GPU accelerated topology optimization on unstructured 

meshes. Structural and multidisciplinary optimization, 48(3), 473-485(2013). 

11. Martínez-Frutos, J., Herrero-Pérez, D.: Large-scale robust topology optimization using multi-

GPU systems. Computer Methods in Applied Mechanics and Engineering, 311, 393-

414(2016). 

12. Martínez-Frutos, J., Martínez-Castejón, P. J., Herrero-Pérez, D.: Efficient topology optimiza-

tion using GPU computing with multilevel granularity. Advances in Engineering Soft-

ware, 106, 47-62(2017). 

13. Challis, V. J., Roberts, A. P., Grotowski, J. F.: High resolution topology optimization using 

graphics processing units (GPUs). Structural and Multidisciplinary Optimization, 49(2), 315-

325(2014). 

14. Martínez-Frutos, J., Herrero-Pérez, D.: GPU acceleration for evolutionary topology optimiza-

tion of continuum structures using iso-surfaces. Computers & Structures, 182, 119-136(2017). 

15. Ram, L., Sharma, D.: Evolutionary and GPU computing for topology optimization of struc-

tures. Swarm and Evolutionary Computation, 35, 1-13(2017). 

16. Kiran, U., Sharma, D., Gautam, S. S.,: GPU-warp based finite element matrices generation and 

assembly using coloring method. Journal of Computational Design and Engineering, 6(4), 705-

718(2019). 

17. Sanfui, S., Sharma, D.: Exploiting Symmetry in Elemental Computation and Assembly Stage 

of GPU-Accelerated FEA. In: Liu, G. R., Cui, F., Xiangguo, G. X. (eds.) 10th International 

Conference on Computational Methods (ICCM2019), 9–13 July 2019, pp. 641 – 651, Sci-

enTech Publisher ,Singapore. 

18. Kiran, U., Sanfui, S., Ratnakar, S. K., Gautam, S. S., Sharma, D.: Comparative Analysis of 

GPU-Based Solver Libraries for a Sparse Linear System of Equations. In Advances in Compu-

tational Methods in Manufacturing, pp. 889-897, Springer, Singapore(2019). 

19. Nvidia, C.U.D.A.: Nvidia CUDA C programming guide. Nvidia Corporation, 120(18), 

8(2011). 

20. Bell, N., Hoberock, J.: Thrust: A productivity-oriented library for CUDA. In GPU computing 

gems Jade edition, 359-371(2012). Morgan Kaufmann. 

21. Bendsoe, M. P., Sigmund, O.: Topology optimization: theory, methods, and applications. 

Springer Science & Business Media (2013). 

22. Valdez, S. I., Botello, S., Ochoa, M. A., Marroquín, J. L., Cardoso, V.: Topology optimization 

benchmarks in 2d: Results for minimum compliance and minimum volume in planar stress 

problems. Archives of Computational Methods in Engineering, 24(4), 803-839(2017). 

23. Subhajit Sanfui and Deepak Sharma, "GPU Acceleration of Local Matrix Generation in FEA 

by Utilizing Sparsity Pattern", In 1st International Conference on Mechanical Engineering 

(INCON 2018), 4–6 January 2018, Jadavpur University, India. 

24. Subhajit Sanfui and Deepak Sharma, "A Two-Kernel based Strategy for Performing Assembly 

in FEA on the Graphic Processing Unit", In IEEE International Conference on Advances in 

Mechanical, Industrial, Automation and Management Systems, 3-5 February 2017, MNNIT 

Allahabad, India. 

 

 


