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Abstract. Topology optimization has been used to generate light-weight struc-

tures. However, the main issue with its implementation is a large computation 

time because it involves finite element (FE) simulations coupled with optimiza-

tion. From the last few years, the graphics processing unit (GPU) has been used 

for reducing computation time by performing the computation in parallel and, 

thus, becomes an active research area. In this paper, a fine-grained node-by-node 

GPU computing strategy is proposed for the matrix-free conjugate gradient FE 

solver. The strategy is implemented with a customized nodal connectivity strat-

egy. The performance of the proposed implementation is analyzed using three 

different mesh sizes on an elasticity problem. Results demonstrate 3 × of GPU 

speedup over a standard CPU implementation. 

Keywords: Topology Optimization, Matrix-Free FEM Solver, GPU, Connec-

tivity. 

1 Introduction 

Structural topology optimization is a method of finding the optimal layout of a structure 

within a specified region, which is subjected to a set of applied loads and boundary 

conditions [1]. The topology optimization formulation for the elasticity problem is 

given in Eq. (1).  

min � =  	 
��������������
���   

���. ��: ���� =  ∑ 
������������� , ∑ 
����� �� ≤  !∗, 0 <  
�%&' ≤  
� ≤ 1 

 

 

 

(1) 

Here, ) is the total no. of elements in the mesh, 
�  is the elemental density, ���� is the 

elemental stiffness matrix of * −th element, ,-� is the set of nodal displacements for * −th element, !∗ is the user-defined volume limit on a structure, ��] is the global 

stiffness matrix, .� is the global force vector, �� is the elemental volume, and / is the 

penalization parameter. 
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 It has been observed from the literature that the topology optimization is a compute-

intensive problem primarily due to the FEA of structures in each iteration of optimiza-

tion [2, 3, 4]. Performing FE computations in parallel is the first choice in the majority 

of GPU-based implementations in the literature. Since a �*01*2 for parallel computa-

tion can be designed in different ways, the strategies such as element-by-element (EbE) 

[5, 6, 11], node-by-node (NbN) [7, 8, 9] and degree-of-freedom (DbD) [10] have been 

proposed in the literature. In the EbE strategy, a compute �ℎ0*45 of GPU is assigned 

to an element of FE mesh to perform the FEA computation [5]. With this �*01*2, a 

race-condition is observed when more than one �ℎ0*456 try to write values at the same 

location and at the same time. This problem can be handled using the coloring method 

or by using the atomic operation of CUDA with GPU. In the NbN strategy, a compute �ℎ0*45 of GPU is assigned to a node of FE mesh [8]. Since a node can be shared among 

different elements, this �ℎ0*45 does all required computation accordingly. In the DbD 

strategy, a compute �ℎ0*45 is assigned to a degree-of-freedom (DOF) of a system for 

performing the required computations [10]. 

Wadbro et al. [7] used the EbE strategy to solve a heat conduction topology optimi-

zation problem and showed 20 × speedup over single-core CPU and speedup of 3 × 

over OpenMP-based parallel implementation. The NbN strategy with a matrix-free con-

jugate gradient-based solver on GPU was presented by Schmidt et al. [8] that achieved 

a significant speedup over a shared memory CPU system. The DbD strategy was used 

by Martínez-Frutos et al. [9] to parallelized matrix-free PCG solver and filtering, sen-

sitivity computation, and density updates were performed using the EbE strategy. A 

maximum speedup of 22.5 ×  with respect to the CPU implementation was reported 

for a heat conduction problem. The elemental stiffness matrix generation and its assem-

bly on GPU have also been explored [12, 13, 14].  

Most of the studies discussed above used the density-based topology optimization 

method. However, in the literature, other topology optimization methods have also been 

used with the GPU. Ram et al. [2] used GPU to accelerate topology optimization in 

which FE simulations were performed on GPU and multi-objective evolutionary algo-

rithm on CPU.  

From the literature, it can be seen that various strategies for performing parallel com-

putations for FE analysis for topology optimization have been proposed. However, 

these strategies need further modifications to exploit GPU maximally. The following 

are the contributions of the paper. 

• Development of fine-grained parallelism using the NbN strategy for performing 

matrix-free FE solver using conjugate gradient method on GPU for topology op-

timization of 3D linear elastic continuum structure.  

• Development of a customized connectivity storage system for efficient storage 

and access for matrix-vector multiplication with the NbN strategy.  

• Comparative analysis of the proposed strategy on three different meshes with a 

standard CPU implementation. 

The paper is organized as follows. The preliminaries of the structural topology opti-

mization are explained in Section 2. The implementation details of the present work are 

discussed in Section 3. In Section 4, the results and discussions are presented. The con-

clusions are presented in Section 5 with a scope of future work. 
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2 Preliminaries for Structural Topology Optimization 

In structural topology optimization, the final topology is obtained by optimizing the 

problem given in Eq. (1). Solid isotropic material with penalization (SIMP) [2] is the 

most widely used density-based method, which is used in this paper. The computational 

steps involved in the SIMP-based topology optimization method are given in Algo.1. 

Algorithm 1. The SIMP-based structural topology optimization method 

  9:;,<:   ����,   ���, ��>�,   /, ?�*0,   @, 0ABC ,   !D . E,<;,<: F. 
1. G2�4� , = 0.0, F =  !D , HIJK = 0.0, ?1� ? = 1; 
2. , = .M:M<-_-O-P-:<_J:JOQRMR (,, F, /, �, @); 
3. HIJK =  UVP;,<-_R-:RM<MWM<Q (HIJK, ,, F, /, �); 
4. Xℎ?2* (? < ?�*0) 5� 

5.     HIJK = P-RY_M:K-;-:K-:UQ_.MO<-I(HIJK, ,, F, 0ABC, �, �>); 
6.    F = K-RMH:_WJIMJZO-_,;KJ<-[F, !D , HIJK\; 
7.    , = .M:M<-_-O-P-:<_J:JOQRMR(,, F, /, �, @); 
8.    HIJK = UVP;,<-_R-:RM<MWM<Q(HIJK, ,, F, /, �); 
9.    ? + +; 
10. *15 

The inputs are ����, connectivity matrix ���, nodal coordinate matrix ��>�, penalty 

factor (/), maximum no. of iterations (?�*0), termination criterion for FEA solver (@), 

filter radius for mesh-independency filter (0ABC), and the limit on final structural vol-

ume (!D). The output is given in the form of the updated elemental densities (F). At 

the start of the algorithm, the vector F is initialized with a value. The vector , declared 

in line no. 1 is used to store the nodal displacements values, and the gradient of com-

pliance with respect to the densities are stored in the vector HIJK. The rest of the steps 

in the algorithm are as follows. .M:M<-_-O-P-:<_J:JOQRMR (,, F, /, �, @). The first major step in topology opti-

mization is to compute the nodal displacements using FEA. The design domain is dis-

cretized into finite elements, and the local stiffness matrices are computed. The dis-

placements are computed by solving the elasticity equation ��(F)�,� = .�,  where ��� is the global stiffness matrix, and .� is the global load vector. There are many FE 

solvers available in the literature to solve the elasticity equation. The conjugate gradient 

(CG) method is used to solve the system of linear equations. The output of this step is 

the nodal displacement vector ,.   UVP;,<-_R-:RM<MWM<Q (HIJK, ,, F, /, �). The compliance of the structure and its 

gradient with respect to the densities (sensitivity) are computed in lines 3 and 9 of Algo. 

1 by using Eq. (2) and (3), respectively. 

_(
) =  	(
�)� ����������� ,�
���  

 

(2) 

`_`
� =  −/ 
��a������������ ,  

(3) 

The values of sensitivities for all elements are then stored in the vector HIJK as the 

output of this function. 
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P-RY_M:K-;-:K-:UQ_.MO<-I(HIJK, ,, F, 0ABC , �, �>). The filtering is a step 

towards ensuring the existence of the solution to topology optimization. The mesh-in-

dependency filter in step 5 of Algo.1 work by modifying the elemental sensitivities 

over a patch of elements. A user-defined filtering radius decides the patch of elements (0ABC) [1]. The filtered sensitivities are stored in the vector HIJK. K-RMH:_WJIMJZO-_,;KJ<-[F, !D , HIJK\. At each iteration, the design variable 

(elemental densities) are updated using Eq. (4). 


� =  cmax(
f, 
� − g )
�h�imin(1, 
� + g)  

?G 
�h�i ≤ max(
f, 
� − g ) ?G max(
f, 
� − g ) < 
�h�i < min (1, 
� + g) ?G min(1, 
� + g) ≤  
�h�i  , 
 

(4) 

where g is a positive move-limit, j = 0.5 is a numerical damping coefficient and h� 

is computed using Eq. (5). h� =  − `_`
� k `!`
�l  , (5) 

where k is the Lagrangian multiplier, which is obtained by a bi-sectioning algorithm 

[8]. The updated densities are saved in the vector F. These updated densities are the 

used in the next FEA iteration. 

Some of the steps discussed above can be computationally expensive. In order to ana-

lyse them, the CPU implementation is profiled and the percentage of total computation 

time taken by each step is presented in Table 1. It can be seen that 96.5% of the total 

computation time is taken by FEA step. Therefore, FEA needs to be performed on GPU 

in order to reduce the total computation time.  

Table 1. The percentage of total computation time taken by each computational step of Algo. 1. 

Computational step Percentage Computational step Percentage .M:M<-_-O-P-:<_J:JOQRMR( ) 96.5% UVP;,<-_R-:RM<MWM<Q( ) 1.413% P-RY_M:K-;-:K-:UQ_.MO<-I( ) 1.003% K-RMH:_WJIMJZO-_,;KJ<-( ) 1.002% 

3 NbN Strategy for FEA on GPU 

3.1 Customized Nodal Connectivity Storage 

The customized nodal connectivity is explained with an example case of 4 − noded 

quadrilateral FE with two DOF per node for simplicity. In Fig. 1 (a), elements are num-

bered as *f, *�, etc. and the nodes are numbered as )f, … , )p�. A local numbering for 

each element can also be seen in Fig. 1 (a). It can be observed that each node is part of 

multiple elements (up to 4 in the given mesh). Fig. 1(b) shows the connectivity matrix ��� for the patch of elements shown in Fig. 1(a). The first row of [C] represents the 

connectivity of the nodes with the first element. Similarly, other rows represent con-

nectivity with other elements. For the NbN computation, the list of elements that are 

shared by a node )B  is needed. 

The connectivity detail is customized so that the data can be read efficiently on GPU. 

This customized connectivity is referred to as the reverse-connectivity matrix ��q�r�. 
The matrix ��q�r� is created by performing a search operation through ��� for each FE  
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(a) Nodal connectivity (b) Connectivity matrix 

Fig. 1. A 2D Patch of finite elements and nodes. 

 

 

Fig. 2. Construction of [Crev] from [C] 

for one node N4. 
Fig. 3. Linearization of a 2D matrix into a 1D 

array following the row-major order. 

node. Let us consider a single element )u from Fig. 1(a). The process of constructing ��q�r� from ��� is shown in Fig. 2. The search operation through ��� will show that the 

node )u is part of four elements  *f, *�, *w, *v�. The local positioning of )u in these 

elements is 2, 3, 0, 1� respectively. Both sets of data are copied in �q�r�|  as shown in 

Fig. 2. The columns 1 − 4 of �q�r�|  stores the elements and its local positioning in these 

elements is stored in columns 6 − 9, respectively. Column 5 contains the total no. of 

elements shared with )u. The same process is carried out for each node in the mesh to 

create ��q�r�. Since FE mesh does not change during topology optimization, the matrix ��q�r� needs to be created only once at the beginning of the computation. The elemental 

stiffness matrix is computed on CPU and stored in a single matrix ���� at the beginning 

of Algo 1. Both ��q�r� and ���� are copied into the GPU global memory in 1D arrays 

following the row-major order as shown in Fig. 3. This is done to simplify the memory 

read operations on GPU. 

3.2 Matrix-Free FE Solver using CG on GPU 

The present implementation uses a matrix-free conjugate gradient method as the finite 

element solver. The algorithm of the CG solver is briefly explained in the Algo. 2. 

Referring to line no. 5 of Algo. 2, it can be noticed that inside the loop there is a matrix-

vector multiplication (Mat-vec) between � and ;}. Apart from the Mat-vec, there are 

a number of linear algebraic operations involved.  

 In present work, the entire FEA is carried out on GPU. The Mat-vec operation is 

performed on GPU by using our custom-developed CUDA kernel, which is based on 

the NbN strategy. The rest of the linear algebraic operations are parallelized using 

CUDA toolkit’s Thrust library.  
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 Algorithm 2. Conjugate gradient 

(CG) algorithm 9:;,< ∶ �, ., ,�, @, �A�� E,<;,<: ,} 

1. 0f  ← . − �,� 

2. ;�  ←  I� 

3. � ← 0 

4.   while � <  �A�� do 

5. ��  ←  q�� q���� ��� 

6. ,}��  ←  ,} +  ��;} 

7. I}��  ←  I} − ���;} 

8.     if |I}��| ≤  @ then 

9.      exit 

10.     end if 

11. ��  ←  q����  q���q�� q�  

12. ;}��  ←  I}�� + ��;} 

13. � ← � + 1 

Algorithm 3. NbN Mat-vec Kernel  9:;,<:    �-, �, �q�r , ,, F, /, )�5*. E,<;,<: 0*6 
1. ?1� 1 = �ℎ0*45�5�. � + �2�_��5�. � ∗�2�_��?g. �; 
2. if  (1 < )�5*) 

3.    G2�4� �42 = 0.0; 
4.    ?1� *2*_6ℎ40*5 ← 0*45 G0�g �q�r; 
5.    G�0 ← ? = 1 �� *2*_6ℎ40*5  5�  
6.     ?1� ?5�  ← 0*45 G0�g �q�r;  

7.     G2�4� 
� =  F(*)�; 
8.     G�0 ← � = 1 �� 8 5� 

9.      ?1� ?5w  ← 0*45 G0�g �; 
10.      �42 +=  
� ∗ (���?���� ∗ ,�?5w�); 
11.     *15    

12.    *15 

13.    I-R�?5�� = �42; 
14. *15 

Mat-vec Kernel using NbN Strategy: In this kernel, each compute �ℎ0*45 is assigned 

to one node. This �ℎ0*45 reads the required data from GPU memory, performs the 

computations, and finally writes back result into the output array. The steps of the NbN 

Mat-vec kernel are shown in Algo.3. All the input data are copied into the global 

memory of GPU. In line 1 of Algo. 3, the global �ℎ0*45 index refers to the global 

number of a node in FE mesh. In line 3, the �ℎ0*45 initializes the variable �42, which 

stores Mat-vec result for one element. Next, the �ℎ0*45 loads a value *2*_6ℎ40*5, 

which is extracted from ��q�r�. Essentially, *2*_6ℎ40*5 stores all those elements which 

share the current node 1. For each element in *2*_6ℎ40*5, the �ℎ0*45 loads an index ?5� in line 6. The index ?5� indicates the position in the output array I-R, where the �ℎ0*45 will be writing the result of Mat-vec. In line 7, the �ℎ0*45 reads elemental 

density and penalizes it with /. This penalized density will be later multiplied with the 

result of Mat-vec. The �ℎ0*45 then reads another index ?5w from the matrix ��� . The 

index ?5w signifies the components of elemental displacement vector , with which the 

elements of ���� will be multiplied. Finally, the Mat-vec is computed in line 10, and 

after multiplying it with the penalized density, the result is temporarily stored in varia-

ble �42. When both for loop ends, the final value of �42 is copied into the output vector I-R, as shown in line 13. 

4 Results and Discussion 

The proposed NbN strategy with customized nodal connectivity implementation is 

tested on a 3D cantilever beam example as shown in Fig. 3. The ratio L:B:H of the 

beam is taken as 2:1:1. The meshing is done using 8 − noded hexahedral elements using �)��� �16.1 FE package. Three different mesh sizes are used for performance anal-

ysis. Table 2 shows the details of these meshes. 

A fraction of 30% of the total volume is taken that acts a constraint over the final 

volume of the structure. The other parameters are taken as; Young’s modulus � = 1, 
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Poisson’s ratio µ = 0.3, penalty exponent / = 3.0, filter radius = 4.0, and minimum 

density =  0.001. The maximum no. of iterations is 50, and the termination criterion 

of CG is taken as  10av. An NVIDIA Tesla K40 card is used for performing computa-

tions in parallel, which has 2880 cores, and 12 GB memory. The serial code is run on 

Intel Xeon(R) CPU E5 1620 (3:70 GHz × 8, and 16 GB RAM). 

 

Table 2. The number of nodes and ele-

ments for the mesh sizes. 

Mesh No. of nodes No. of elements 

Mesh 1 128,000 120,159 

Mesh 2 182,250 172,304 

Mesh 3 250,000 237,699 
 

Fig. 3. 3D cantilever beam  

  The final topology is shown in Fig. 4(a) in which only the elemental densities higher 

than 0.8 are plotted. The final topology is found to be similar obtained by Schmidt et 

al. [8]. The displacement field in Fig. 4(b) shows that the deflection is higher at the end 

where the load is applied. The comparison of computation time of one iteration between 

CPU and GPU implementations is shown in Fig. 5. It can be noticed that for all mesh 

sizes, GPU implementation outperforms the CPU implementation. The speedup with 

respect to the no. of nodes in the mesh sizes is shown in Fig. 6. It can be observed that 

GPU speedup is varying between 2.5 × - 3 × over CPU. 

  
(a) Topology (b) Displacement field 

Fig. 4. The optimal topology obtained and its displacement field 

5. Conclusion 

The NbN strategy with the customized nodal connectivity was proposed for GPU im-

plementation and tested on a 3D cantilever problem. Three meshes were used and a 

speedup up to 3 × was observed against the CPU. The optimum topology was found to 

be similar reported in the literature. It can be concluded that the customized nodal con-

nectivity storage minimizes the data transfer between the �ℎ0*45 and GPU memory, 

F

L

H

B

  
Fig. 5. Computation time per optimization 

iteration for three mesh sizes used. 

Fig. 6. CPU-GPU speedup for three mesh 

sizes. 
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resulting in a significant speedup over the CPU. In the future, the customized nodal 

connectivity storage can be modified and tested with unstructured meshes. A GPU-

kernel using the DOF-by-DOF strategy can be designed to exploit fine-grained paral-

lelism further. Lastly, the proposed NbN strategy can be explored for the topology op-

timization of problems other than the linear elasticity. 
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