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Abstract—Optimization is a procedure of finding an optimal
solution from the feasible search space. In single-objective op-
timization, the solution gets improved iteratively based on the
objective function value. But, most of the real-world problems
involve more than one objective. In such situation, many solutions
are optimal which are known as Pareto-optimal solutions. In
this paper, we aim to solve one real-world optimization problem
from the domain of construction equipment called as bull-dozer.
We first formulate a bi-objective optimization problem with one
constraint for soil cutting and pushing by the bull-dozer and then,
solve it using genetic algorithm. We mainly target to perform
the post-analysis of Pareto-optimal solutions which can evolve
interesting relationships for the given problem.

Index Terms—Bi-objective optimization; Post-optimal analysis,
Soil Cutting and Pushing process; Soil-tool Interaction.

I. I NTRODUCTION

Optimization is a procedure for finding an optimization so-
lution from the feasible search space which is constructed from
the problem constraints and variable bounds. The optimiza-
tion problems are generally solved for single-objective opti-
mization. The optimization techniques developed for single-
objective optimization improve the feasible solution iteratively
by comparing the objective function value. Finally, a single op-
timal solution is generated. But, the real-world problems often
involve many objectives that are to be achieved simultaneously
[1]. Although there exists many classical methods for solving
multi-objective optimization, but many of them are unable
to generate non-convex Pareto-optimal front, discontinuous
Pareto-optimal front etc. At the same, genetic algorithms
(GAs) can solve multi-objective optimization problems in
one run. It is because GA is a stochastic population based
algorithm in which a population of solutions gets improved
iteratively based on the concept of dominance which is stated
that a solutionx(1) dominatesx(2) (denoted asx(1) ≺ x

(2))

∀i ∈ 1, 2, . . . ,m : fi(x
(1)) � fi(x

(2))

∃j ∈ 1, 2, . . . ,m : fj(x
(1)) < fj(x

(2)),
(1)

where m is the number of objectives,fi is the objective
function value ofi−th objective.

Many real-world problems involving multiple objectives are
solved using GA in the literature [1]. The advantage is that GA
evolves a set of Pareto-optimal solutions in a single run. These
solutions can help designers and decision makers to choose
a solution based on comparison and the post-optimal analysis

[2]. In this paper, a real-world application has been chosenand
a bi-objective optimization formulation is developed. We target
finding optimal parameters for the soil cutting and pushing
process by the bull-dozer.

As we know, the bull-dozer is a construction and road
machinery which is mounted with a metallic blade in the front
to cut and push the soil [3]. First, the edge of the bull-dozer
blade penetrates the soil up to a certain depth and then, the
bull-dozer starts cutting and pushing the soil. This is referred
as soil-blade interaction in the domain literature [3]. During
this interaction, the blade experience enormous resistance due
to friction, cohesion and adhesion between the blade and soil,
and the soil and ground. It means that the bull-dozer engine
has to supply enough power to overcome this resistance. If
we want to reduce power requirement from the bull-dozer for
completing the task, then the resistance should be reduced.
The resistance can be minimized by setting the optimal input
parameters for the bull-dozer and its blade. In the literature, the
resistance or draft force has been found either experimentally
[4], [5] or by developing analytical models [6], [7], [8] and
numerical models [9].

Various experimental studies have been accomplished for
finding the resistance forces during the soil-blade interaction.
However, no emphasis has been given on setting the optimal
values of input parameters [10]. Moreover, finding the optimal
set of input parameters experimentally may not be economic.

The existing analytical models can calculate the resistance
forces during the soil-blade interaction with reasonable accu-
racy when compared with the experimental outcome. These
models are developed based on the soil failure zone which
is modeled as a soil wedge [6], [11]. The model is further
developed for three-dimensional (3D) soil failure zone [7], [8].
The dynamic behavior has also been considered by including
velocity [12], [13] and acceleration in the model [14]. A close
observation suggests that the optimal study has not been done
in the literature to choose or select a set of input parameters.
However, these models can be used for finding the optimal set
of input parameters.

The numerical studies have also been performed using finite
element method or discrete element method. The finite element
models are based on the concepts of soil mechanics and the
failure zone by using various models like constitutive equa-
tions of soil failure [14], [15], [16], hypo-plastic constitutive
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model [17], [18], elasto-plastic constitutive model [19],to
name a few. The discrete element method is developed by
simulating motion of large number of small particles of soil
[9]. These models are more accurate than analytical models.
But, the numerical models are computationally expensive.
Therefore, the optimization procedure demands high compu-
tational time to find the optimal set of input parameters for
the given problem.

The models discussed above can calculate the draft force
which is experienced by the bull-dozer blade. The optimal set
of the input parameters can reduce the draft force so that the
power requirement from the bull-dozer engine can be reduced.
It is observed from the literature that reducing the depth ofcut
of the bull-dozer blade can reduce the draft force [8], [20].But,
reducing depth of cut can reduce the productivity of the cutting
and pushing process. The productivity can be defined as the
volume of soil cut by the blade in one pass. Therefore, we
formulate the given application in two-objective problem so
that the optimal set of input parameters can found. Following
are the contributions of this paper:

1) A bi-objective optimization formulation is developed for
soil cutting and pushing process so that an optimal set of
parameters can be found that can reduce the draft force
and but also increase the soil cut volume.

2) The post-optimal analysis is performed so that unique
relationships among the objectives and parameters can
be found which may not be discovered in the literature.

The paper is organized in five sections. Section II presents
the bi-objective optimization formulation for the soil cut-
ting and pushing process. Section III presents optimization
algorithm for solving the bi-objective optimization problem.
Section IV analyzes the results and observations are presented.
The paper is concluded in section V with a note on future
work.

II. B I-OBJECTIVE OPTIMIZATION FORMULATION

The soil cutting and pushing process by the bull-dozer is
formulated in two objectives. The problem is modeled using
seven decision variables which are cutting depth(D), blade
cutting angle(α), speed of the bull-dozer(v), blade width
(B), blade height(H), blade curvature radius(R) and the
blade curvature angle(θ). First three design variables represent
the operational conditions for the bull-dozer and rest are
dimensions of the bull-dozer blade. The problem formulation
is given in (2).

The flywheel power of the bull-dozer is chosen as 227.438
KNm/s and total weight of the bull-dozer is considered as
(G1 = 328.613 KN). The formulation is developed for the
flat terrain. A mid-stiffness clay soil is considered and its
properties are given in Table I.

Here,γo is the cut soil density (kg/m3), γ is the uncut soil
density (kg/m3), Co is the cohesion of cut soil (N/m2), C is
the cohesion of uncut soil (N/m2), δ is the soil-metal friction
angle (radians),Ad is the soil adhesion factor (N/m2), β is the
angle that the rapture plane makes with horizontal (radians),

ϕo is the angle of accumulation of cut soil (radians), andϕ is
the angle of internal friction of soil (radians).

min F (Cutting force),
max V (Blade capacity),
subject to:

PR ≥ 0,
(Power requirement of bull-dozer engine)

variable bounds:
5 ≤ D ≤ 50,
0.785 ≤ α ≤ 1.309,
0.278 ≤ v ≤ 1.389,
300 ≤ B ≤ 500,
100 ≤ H ≤ 250,
90 ≤ R ≤ 150,
1.047 ≤ θ ≤ 1.309.

(2)

TABLE I
SOIL PARAMETERS[21]

Soil type γo γ Co C

Mid-Stiffness clay 640.74 1601.85 1019.715 2039.43
δ Ad β ϕo ϕ

21.6 0 23 30 27

A. Objective Functions

1) Soil Cutting Force: For calculating the draft or cutting
force, an analytical model is adopted from [8]. Various forces
considered in the analytical model are shown in Figs. 1 and
2. The assumptions of this model are stated in [8].
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Fig. 1. Forces acting in the front of the blade [8].

The details of the forces are as follows,

1) The forces generated by the soil pile which is acting on
the ground,

• Weight of the soil pile on the ground is given as,

m1g = (1/2)γoB(H + 2D tanϕo)
2 cotϕo (3)
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Fig. 2. Forces acting on a wedge of the soil in the front of the blade [8].

• Frictional force between the soil pile and the ground
is given as,

Ff1 = m1g tanϕ (4)

• Cohesion force between the soil pile and the ground
is given as,

Fc1 = CoB(H + 2D tanϕo) cotϕo (5)

2) The forces generated by soil pile and the uncut soil,
• Frictional force between the soil pile and the uncut

soil is given as,

Pf1 = (Ff1 + Fc1) tanϕ (6)

• Cohesion force between the soil pile and the uncut
soil is given as,

Pc1 = CoBRθ (7)

3) The forces generated by the cut soil which is acting on
the blade and its cutting edge as shown in Fig. 1,

• Adhesion force between the cut soil and the blade
is given as,

Pad = AadBRθ (8)

• Frictional force between the cut soil and the blade
is given as,

Pf2 = (Ff1 + Fc1) tan δ (9)

• Weight of the cut soil sliding on the blade is given
as,

m2g = 2γoBHD (10)

4) The forces acting on the soil wedge which are shown in
Fig. 2,

• Weight of the soil wedge is calculated as,

m3g = (1/2)γBD2(cotα+ cotβ) (11)

• Normal force acting on the interface between the
blade and the soil wedge is calculated as,

G = (1/6)γD3(1− sinϕ)(cotα+ cotβ) (12)

• Frictional force acting on the interface between the
blade and the soil wedge is calculated as,

SF2 = G tanϕ (13)

• Cohesion force acting on the interface between the
soil pile and the soil wedge is calculated as,

CF2 = (1/2)CD2(cotα+ cotβ) (14)

• Normal force acting on the soil wedge is calculated
as,

W = Pf1 + Pf2 + Pad + Pc1 +m2g +m3g (15)

5) The forces occur in the soil rapture plane as shown in
Fig. 2,

• Cohesion force between the cut soil and the uncut
soil is calculated as,

CF1 = CBD/ sinβ (16)

• Frictional force between the cut soil and the uncut
soil is calculated as,

SF1 = Q tanϕ, (17)

whereQ is the normal force acting on the rapture
plane.

6) The forces generated by the cut soil which is acting on
the blade cutting edge,

• Adhesion force between the soil and the cutting
edge of the blade is given as,

Fad = AdBD/ sinα (18)

• Force acting on the cutting edge of the blade is given
as,

P = W sin(β + ϕ)− Fad cos(α+ β + ϕ)
+2SF2 cosϕ+ 2CF2 cosϕ+ CF1 cosϕ

sin(α + β + ϕ+ δ)
(19)

The resultant forces acting on the blade are,

• The horizontal force is calculated as,

Fx = P sin(α + δ) + Ff1 + Fc1 (20)

• The vertical force (cutting force) is calculated as,

Fy = P cos(α+ δ)− (Pf2 + Pad) (21)

The total resultant force is calculated as,

F =
√

F 2
x + F 2

y (22)
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Fig. 3. Soil pile volume.

2) The Blade Capacity: In second objective function, the
blade capacity is maximized which leads to maximizing the
volume of cut soil in one cycle. In this paper, we assume that
the blade is fully loaded with the soil and the blade capacityis
equal to the volume of the soil pile accumulated in the front of
the blade at the end of cutting and pushing process as shown
in Fig. 3.

The blade capacity(V ) is calculated as,

V = V1 + V2 + V3 + V4, (23)

where,
• V1 is the volume of (fde) which is calculated as,

V1 = 0.5B(H + 2D tanϕo)
2

[

1

tanα

]

(24)

• V2 is the volume of (afg) and it is calculated as,

V2 = 2BD2 tanϕo (25)

• V3 is the volume of (abdg) that is calculated as,

V3 = DHB

[

1

tanα
+

1

tanβ

]

(26)

• V4 is the volume of soil inside the arc (ab) and it is
calculated as,

V4 = 0.5BθR2 − (0.5R2sinθ) (27)

3) Constraints: Only one constraint is designed for the
given problem in which the bull-dozer can deliver sufficient
power to overcome the resistance during cutting and pushing
the soil. It is represented asPR which is given as,

PR = 0.85Pbull − Pw. (28)

Here,Pbull is the flywheel power of the bull-dozer engine,
andPw is the required power at velocityv to overcome the
resistance. In the literature, a quantity is defined as rim-pull,
Ri, which is described as the force required from the bull-
dozer engine to overcome the resistance offered by the cutting

force (F ) and the frictional force generated due to the weight
of te bull-dozer. The rim-pull is given as,

Ri = F + µG1. (29)

Here,µ is the coefficient of frictional between the bull-dozer
crawlers and the soil.Pw is thus calculated asPw = Riv.

III. M ULTI -OBJECTIVE GENETIC ALGORITHM

The bi-objective optimization formulated in the last section
is solved using one of the benchmark multi-objective genetic
algorithms known as elitist non-dominated sorting genetic
algorithm (NSAG-II) [22]. From the literature, it is observed
that NSGA-II has successfully solved different classes of
problems arising in science and engineering domains [1].
It is a population based genetic algorithm which uses non-
dominated sorting operator to find non-dominated solutions.
Diversity among the solutions is maintained using crowding
distance operator [22]. The NSGA-II algorithm is described
using algorithm 1.

Algorithm 1 NSGA-II algorithm
1: Input: Population size (N), maximum generations(T ),

crossover probability, mutation probability, generationcounter
(t=0)

2: Output: Pareto-optimal solutions(Pt+1)
3: Initialize random populationPt;
4: EvaluatePt;
5: Assign rank using non-dominated sorting operator and diversity

using crowding distance operator toPt

6: while Generation countert < T do
7: P ′

t := Selection(Pt) using crowded tournament selection
operator;

8: Qt := Variation(P ′

t ) using simulated binary crossover oper-
ator and polynomial mutation operator;

9: EvaluateQt;
10: Merge populationRt = (Pt ∪Qt);
11: Assign rank using non-dominated sorting operator and diver-

sity using crowding distance operator toRt;
12: Pt+1 := Choose bestN solutions fromRt based on rank

and crowding distance;
13: t := t+ 1;
14: end while

The NSGA-II algorithm initializes the population randomly.
The population is then evaluated by calculating objective func-
tions and constraint violation. The fitness is assigned to each
solution of the population using non-dominated sorting and
crowding distance operators. In a standard loop of NSGA-II,
the crowded binary tournament selection operator is performed
to select good solutions. The solutions are compared in a
pair of two and the solution having better rank and larger
crowding distance is selected over the other. The simulated
binary crossover operator and polynomial mutation operator
[23] are performed to generate the offspring population (Qt).
The parent population,Pt, and offspring population,Qt,
are merged toRt, and non-dominated sorting and crowding
distance are calculated forRt. The bestN solutions are
chosen fromRt based on their better rank and larger crowding
distance. This completes one generation of NSGA-II. The
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algorithm terminates when number of generations is equal to
T .

IV. RESULTS AND DISCUSSION

The bi-objective optimization of the given problem is solved
using NSGA-II. The population sizeN = 100, maximum
generationT = 200, crossover probabilitypc = 0.9, mutation
probabilitypm = 0.333, crossover operator indexηc = 15 and
mutation operator indexηm = 20 are kept fixed. As NSGA-II
is a stochastic algorithm, we run it for 30 times with different
initial population. Thereafter, the statistical analysisof results
is performed by using inverse generalized distance indicator.
This indicator is given as,

IGD =
(
∑|P∗|

i=1 d2i )
1/2

|P ∗|
, (30)

where P ∗ is the set of Pareto-optimal solutions,di is the
Euclidean distance in the objective space between the solution
i ∈ P ∗ and the nearest memberk ∈ Pt+1. The distance is
calculated as,

di =
|Pt+1|

min
k=1

√

√

√

√

M
∑

m=1

(

f
(i)
m − f

(k)
m

fmax
m − fmin

m

)2

, (31)

wherem is the number of objectives,fmax
m andfmin

m are the
maximum and minimum ofm−th objective function values
in P ∗. It is noted thatP ∗ is constructed by copying non-
dominated solutions from the combined solutions of all 30
runs of NSGA-II.

The statistical values of IGD indicator are shown in Table
II. Smaller statistical values of IGD indicator suggest that the
performance of NSGA-II is consistent for solving the given
problem.

TABLE II
THE BEST, MEDIAN AND WORST VALUES OF IGD INDICATOR

Best value Median value Worst value
0.0267 0.0269 0.0269

The Pareto-optimal solutions of a NSGA-II run correspond-
ing to the median IGD value are shown in Fig. 4. A clear trade-
off between the two objectives can be observed. It suggests that
a gain in one objective can lead to a loss in another objective.
Although the mathematical equations ofF and V appeared
complex, but almost a linear relationship can be seen between
the two objectives considered in this paper.

For better understanding of the results, the post-processing
of the Pareto-optimal solutions is presented. In the literature
[2], it is emphasized that the Pareto-optimal solutions should
be analyzed for deeper understanding of the problem. Such
analysis can discover interesting relationships and understand-
ing to justify the specific pattern or commonality among the
solutions.

We start our analysis by showing variation of cutting force
for the cutting depth in Fig. 5. The figure shows that value of
the cutting depth is evolved at its lower bound for generating
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Fig. 4. The Pareto-optimal solutions generated by NSGA-II.

minimum force solutions. As the cutting depth increases and
reaches to its upper bound, the cutting force also increases.
Similar trend is also seen forV in Fig. 6 that minimum value
of V is observed at the lower bound of the cutting depth. The
volume of soil cut increases with increase in the cutting depth
values. It is also justified from a linear relationship evolved
betweenF andV showed in Fig. 4. The two transition zones
are also seen in Figs. 5 and 6 which suggest that many Pareto-
optimal solutions are converged to either lower or upper bound
of D. Rest of the solutions shows increasing trend of cutting
force and blade capacity with the cutting depth.

Next, we plot the second decision variable called as cutting
blade angle(α) against the cutting force. As a linear trend
can be seen between cutting force and blade capacity, plot for
V against any decision variable are not shown in the paper.
Fig. 7 shows that the cutting blade angle remains same for all
Pareto-optimal solutions which is observed at its lower bound.
This information is extremely important because it suggests to
keepα at its lower bound for the optimal cutting and pushing
of soil by the bull-dozer. The decision maker or operator of
the bull-dozer can be benefited, if such information is available
in-hand.

Another interesting relationship can be observed when cut-
ting force is plotted against the width of the blade of the
Pareto-optimal solution as shown in Fig. 8. It can be observed
that many Pareto-optimal solutions are evolved at the lower
bound ofB. After the transition,F increases almost linearly
with B for rest of the solutions.

In Fig. 9, an opposite relationship is observed when the
cutting force is plotted against the height of the blade. Here,
most of the Pareto-optimal solutions are evolved at the upper
bound ofH . For rest of the solutions which are very few,
a linear trend can be seen which says that the cutting force
increases with increase inH values.

Likewise the cutting angle of the blade, three more decision
variables are evolved at their bounds for generating the Pareto-
optimal solutions. Figs. 10, 11 and 12 show thatR, θ and v
are evolved at their lower bound. This information is handy
and can be used effectively by the decision maker or operator
to make the cutting and pushing process optimal.
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Fig. 5. The post-optimal relationship between the cutting force and the cutting
depth.
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Fig. 7. The relationship between the cutting force and the blade cutting angle.

From the post-analysis of the Pareto-optimal solutions, it
can be observed thatα, R, θ and v should be kept at their
lower bound for generating Pareto-optimal solutions for the
given problem. Moreover, it can also suggested thatD, B
and H are important decision variables for evolving many
Pareto-optimal solutions. As per the authors knowledge, such
relationships are not available in the literature which we can
only be found by solving the real-world problem with multiple
objectives.
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Fig. 8. The post-optimal relationship between the cutting force and the blade
width.
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Fig. 9. The post-optimal relationship between the cutting force and the blade
height.

The relationships have been discovered between the ob-
jective function and the decision variables. Now, we present
the post-optimal analysis of the Pareto-optimal solutionsby
considering the decision variables only. Fig. IV shows the
width of the blade is constant at its lower bound and the cutting
depth increases for simultaneously minimizing the cutting
force and maximizing the blade capacity. When the cutting
depth reaches to its upper bound value, then width of the blade
starts increasing for generating the Pareto-optimal solutions. In
Fig. 13, the height of the blade first increases and reaches to
its upper bound, then the cutting depth starts increasing. From
both the figures, it can be observed that the Pareto-optimal
solutions which are clustered at the lower bound of the cutting
depth are generated due to increase in the height of the blade.
When the height of the blade reaches to its upper bound, then
the cutting depth increase. Finally, the cutting depth reaches
to its upper bound value, then the width of the blade starts
increasing. This information can be useful for the decision
maker or operator to choose the right blade by focusing more
on the height of the blade as compared to its width to increase
the capacity of the blade which signifies volume of soil cut
or productivity. The depth of cut is always a critical decision
variable for minimizing the cutting force.
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Fig. 10. The post-optimal relationship between the blade curvature radius
and the objective functions.
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V. CONCLUSION

In this paper, a real-world problem of soil cutting and push-
ing by the bull-dozer was presented in terms of two objectives,
seven decision variables and one constraint. The problem was
solved using NSGA-II. The Pareto-optimal solutions generated
from the study and their post-optimal analysis suggested the
following conclusions:

• The two-objective developed in this paper showed a trade-
off with almost a linear relationship between them.
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Fig. 13. The relationship between the cutting depth and the width of the
bull-dozer blade.
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Fig. 14. The relationship between the cutting depth and the height of the
bull-dozer blade.

• The cutting depth was an important decision variable for
cutting and pushing the soil to make the process optimal.
An increasing trend ofF andV have been observed with
increase inD.

• Similar toD, B andH also showed increasing trend for
F . However, many Pareto-optimal solutions are evolved
at the lower bound ofB and at the upper bound ofH .

• The decision variableα, R, θ andv were evolved at their
lower bounds for generating the Pareto-optimal solutions.

In the future work, more realistic decision variables, objective
functions and constraints can be included in the formulation.
Other multi-objective algorithms can used for comparison.
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