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Abstract—Optimization is a procedure of finding an optimal
solution from the feasible search space. In single-objec# op-
timization, the solution gets improved iteratively based a the
objective function value. But, most of the real-world problems
involve more than one objective. In such situation, many soltions
are optimal which are known as Pareto-optimal solutions. In
this paper, we aim to solve one real-world optimization protlem
from the domain of construction equipment called as bull-daer.
We first formulate a bi-objective optimization problem with one
constraint for soil cutting and pushing by the bull-dozer and then,
solve it using genetic algorithm. We mainly target to perfom
the post-analysis of Pareto-optimal solutions which can ele
interesting relationships for the given problem.

Index Terms—Bi-objective optimization; Post-optimal analysis,
Soil Cutting and Pushing process; Soil-tool Interaction.

I. INTRODUCTION

[2]. In this paper, a real-world application has been ch@seh

a bi-objective optimization formulation is developed. \&egiet
finding optimal parameters for the soil cutting and pushing
process by the bull-dozer.

As we know, the bull-dozer is a construction and road
machinery which is mounted with a metallic blade in the front
to cut and push the soil [3]. First, the edge of the bull-dozer
blade penetrates the soil up to a certain depth and then, the
bull-dozer starts cutting and pushing the soil. This is nefgé
as soil-blade interaction in the domain literature [3]. IDgr
this interaction, the blade experience enormous resistdoe
to friction, cohesion and adhesion between the blade ahd soi
and the soil and ground. It means that the bull-dozer engine
has to supply enough power to overcome this resistance. If
we want to reduce power requirement from the bull-dozer for

Optimization is a procedure for finding an optimization Sosompleting the task, then the resistance should be reduced.
lution from the feasible search space which is construst®d f The resistance can be minimized by setting the optimal input
the problem constraints and variable bounds. The Optimizﬁarameters for the bull-dozer and its blade. In the litegatine
tion problems are generally solved for single-objectivéi-op resistance or draft force has been found either experirignta
mization. The optimization techniques developed for sa'ngl[4], [5] or by developing analytical models [6], [7], [8] and

objective optimization improve the feasible solution dtrely
by comparing the objective function value. Finally, a sengp-
timal solution is generated. But, the real-world problerfisro

numerical models [9].
Various experimental studies have been accomplished for
finding the resistance forces during the soil-blade int&vac

involve many objectives that are to be achieved simultasl@rouHowever, no emphasis has been given on setting the optimal
[1]. Although there exists many classical methods for S@Vi yajues of input parameters [10]. Moreover, finding the optim
multi-objective optimization, but many of them are unablget of input parameters experimentally may not be economic.
to generate non-convex Pareto-optimal front, discontisuo The existing analytical models can calculate the resistanc
Pareto-optimal front etc. At the same, genetic algorithmgrces during the soil-blade interaction with reasonalsieua
(GAs) can solve multi-objective optimization problems inacy when compared with the experimental outcome. These
one run. It is because GA is a stochastic population basg@dels are developed based on the soil failure zone which
algorithm in which a population of solutions gets improvegt modeled as a soil wedge [6], [11]. The model is further
iteratively based on the concept of dominance which is dtatéeveloped for three-dimensional (3D) soil failure zone [8].

that a solutionx(*) dominatesx(?) (denoted ax(?) < x(?)
fi(xM) # fi(x3)
Fi(x®) < f5(x3)),

where m is the number of objectivesf; is the objective
function value ofi—th objective.

Viel,2,....m:

d5€1,2,....m: (1)

Many real-world problems involving multiple objectivesear

The dynamic behavior has also been considered by including
velocity [12], [13] and acceleration in the model [14]. A s
observation suggests that the optimal study has not bees don
in the literature to choose or select a set of input pararmeter
However, these models can be used for finding the optimal set
of input parameters.

The numerical studies have also been performed using finite

solved using GA in the literature [1]. The advantage is that Gelement method or discrete element method. The finite elemen
evolves a set of Pareto-optimal solutions in a single rures€h models are based on the concepts of soil mechanics and the
solutions can help designers and decision makers to chofastire zone by using various models like constitutive equa

a solution based on comparison and the post-optimal asalysdns of soil failure [14], [15], [16], hypo-plastic consttive
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model [17], [18], elasto-plastic constitutive model [19) ¢, is the angle of accumulation of cut soil (radians), anis
name a few. The discrete element method is developed the angle of internal friction of soil (radians).
simulating motion of large number of small particles of soll
[9]. These models are more accurate than analytical models.i](l
But, the numerical models are computationally expensiveﬁ1 <
Therefore, the optimization procedure demands high Comp%'ubject to:
tational time to find the optimal set of input parameters for ’
the given problem.

'I_'he_models_discussed above can calculate the dr.aft for%riable bounds:
which is experienced by the bull-dozer blade. The optimal se

F' (Cutting force)
V (Blade capacity)

PR Z 07
(Power requirement of bull-dozer engine)

. 5 < D <50,

of the input parameters can reduce the draft force so that the 0.785 < o < 1.309

power requirement from the bull-dozer engine can be reduced 0.278 <1 .3897

It is observed from the literature that reducing the deptbutf N wnn
300 < B < 500,

of the bull-dozer blade can reduce the draft force [8], [BQit, 100 < H < 250

reducing depth of cut can reduce the productivity of theiegtt 90 < R < 150 ’

and pushing process. The productivity can be defined as the e ’

. . 1.047 < 6 < 1.309.
volume of soil cut by the blade in one pass. Therefore, we - T )

formulate the given application in two-objective problem s
that the optimal set of input parameters can found. Follgwin TABLE |
are the contributions of this paper: SOIL PARAMETERS[21]

1) A bi-objective optimization formulation is developed fo SoType - - o e
soil cutting and pushing process so that an optimal set of [ "wig-Stfness clay | 640.74 | 1601.85| 1019.715] 2039.43
parameters can be found that can reduce the draft force 5 Aq B Yo ©
and but also increase the soil cut volume. 216 0 23 30 27

2) The post-optimal analysis is performed so that unique
relationships among the objectives and parameters can
be found which may not be discovered in the Iiteraturé‘

The paper is organized in five sections. Section Il presentst) Soil Cutting Force: For calculating the draft or cutting

the bi-objective optimization formulation for the soil eutforce, an analytical model is adopted from [8]. Various &src
ting and pushing process. Section Il presents optimizatigonsidered in the analytical model are shown in Figs. 1 and
algorithm for solving the bi-objective optimization preph. 2- The assumptions of this model are stated in [8].

Section IV analyzes the results and observations are pesken
The paper is concluded in section V with a note on future

work. Blade\‘
a

I1. BI-OBJECTIVE OPTIMIZATION FORMULATION \

Objective Functions

The soil cutting and pushing process by the bull-dozer is
formulated in two objectives. The problem is modeled using
seven decision variables which are cutting depth, blade
cutting angle(«), speed of the bull-dozefv), blade width H, | H
(B), blade height(H), blade curvature radiusR) and the
blade curvature angl@). First three design variables represent
the operational conditions for the bull-dozer and rest are
dimensions of the bull-dozer blade. The problem formutatio

is given in (2). y D)
The flywheel power of the bull-dozer is chosen as 227.438 c
KNm/s and total weight of the bull-dozer is considered as
(G1 = 328.613 KN). The formulation is developed for the Fig. 1. Forces acting in the front of the blade [8].
flat terrain. A mid-stiffness clay soil is considered and its )
properties are given in Table |. The details of the forces are as follows,
Here,~, is the cut soil density (kg/®), v is the uncut soil 1) The forces generated by the soil pile which is acting on
density (kg/m), C, is the cohesion of cut soil (N/f), C is the ground,
the cohesion of uncut soil (NA), ¢ is the soil-metal friction « Weight of the soil pile on the ground is given as,
angle (radians)4, is the soil adhesion factor (NAh f is the
angle that the rapture plane makes with horizontal (radljans mig = (1/2)7,B(H + 2D tan ¢,)* cot o, (3)
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1774 G « Normal force acting on the interface between the

Blade edge—\ n

blade and the soil wedge is calculated as,

G = (1/6)yD?*(1 —sinp)(cot a + cot ) (12)

« Frictional force acting on the interface between the
blade and the soil wedge is calculated as,

SFy; = Gtanyp (13)

« Cohesion force acting on the interface between the
soil pile and the soil wedge is calculated as,

CF, = (1/2)CD?*(cota +cot ) (14)

« Normal force acting on the soil wedge is calculated
as,

W:Pf1+Pf2+Pad+Pc1+m2.g+m3g (15)

5) The forces occur in the soil rapture plane as shown in

Fig. 2. Forces acting on a wedge of the soil in the front of ttaeld [8]. Fig. 2,
« Cohesion force between the cut soil and the uncut
« Frictional force between the soil pile and the ground soil is calculated as,
is given as, .
Fy =CBD/s 16
Fp1 = migtang (4) CF = CBD/sinf (16)

« Frictional force between the cut soil and the uncut

« Cohesion force between the soil pile and the ground s
soil is calculated as,

is given as,
F.1 = C,B(H + 2D tan ¢,) cot ¢, (5) Sk = Qtanp, (7)
2) The forces generated by soil pile and the uncut sall, where @ is the normal force acting on the rapture

« Frictional force between the soil pile and the uncut plane.

soil is given as, 6) The forces generated by the cut soil which is acting on

the blade cutting edge,
Pp1 = (Fp1 + Fe) tangp (6) cUHing edd : .
« Adhesion force between the soil and the cutting

« Cohesion force between the soil pile and the uncut edge of the blade is given as,

soil is given as,
Foq = AqgBD/si 18
P, = C,BRA @ a=A4BD/sina (18)

« Force acting on the cutting edge of the blade is given

3) The forces generated by the cut soil which is acting on as

the blade and its cutting edge as shown in Fig. 1,
« Adhesion force between the cut soil and the blade

is qi P = si - F, <
is given as, Wsin(8 + ¢) acos(a+ B+ ¢)

+2SF5 cosp+ 2CF5 cos p + C'Fy cos (29)

Pag = AaaBRY (8) sinfa + 5+ +9)

« Frictional force between the cut soil and the blade The resultant forces acting on the blade are,

is given as, ) )
« The horizontal force is calculated as,
Pf2 = (Ffl +Fcl)tan§ (9)
F, = Psi 0)+ F F. 20
« Weight of the cut soil sliding on the blade is given sin(@ +0) + Fp + Fa (20)
as, « The vertical force (cutting force) is calculated as,
meg = 2v,BHD (20)
) ) . . F, = Pcos(a+0) — (Ps2 + FPaa) (21)
4) The forces acting on the soil wedge which are shown in
Fig. 2, The total resultant force is calculated as,
« Weight of the soil wedge is calculated as,
— 2 2
msg = (1/2)yBD%(cota + cot 3) (1) F=yra+y (22)
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f force (F') and the frictional force generated due to the weight
Blade / of te bull-dozer. The rim-pull is given as,
\a g R; = F + uG. (29)
2 Soil , - -
¥ pile Here, 1t is the coefficient of frictional between the bull-dozer

crawlers and the soilP,, is thus calculated a®&,, = R;v.

I1l. M ULTI-OBJECTIVE GENETIC ALGORITHM

Vy Vs %4 The bi-objective optimization formulated in the last senti
is solved using one of the benchmark multi-objective geneti
algorithms known as elitist non-dominated sorting genetic
algorithm (NSAG-II) [22]. From the literature, it is obsey

d Yo that NSGA-Il has successfully solved different classes of

b o Problems arising in science and engineering domains [1].
It is a population based genetic algorithm which uses non-

¢ dominated sorting operator to find non-dominated solutions

Diversity among the solutions is maintained using crowding
distance operator [22]. The NSGA-II algorithm is described
using algorithm 1.

Fig. 3. Soil pile volume.

2) The Blade Capacity: In second objective function, the
blade capacity is maximized which leads to maximizing thelgorithm 1 NSGA-II algorithm
volume of cut soil in one cycle. In this paper, we assume that: Input: Population size (N), maximum generations(7T’),
the blade is fully loaded with the soil and the blade capasity ~ Crossover probability, mutation probability, generaticounter
equal to the volume of the soil pile accumulated in the frdnt o (t=0)

. . 2: Output: Pareto-optimal solution
the blade at the end of cutting and pushing process as show Initiglize random gopulatiorﬂ' 6Pi+1)

in Fig. 3. 4: EvaluateP;;
The blade capacityV) is calculated as, 5: Assign rank using non-dominated sorting operator and siityer
using crowding distance operator %
V=WVi+VWV+V+V, (23)  6: while Generation countet < T do
7: P/ := SelectiorfP;) using crowded tournament selection
where, operator;
« 14 is the volume of (fde) which is calculated as, 8: Q¢ := Variation( P) using simulated binary crossover oper-

ator and polynomial mutation operator;
] (24) 9: EvaluateQ);
10: Merge populationR: = (P; U Q¢);
11 Assign rank using non-dominated sorting operator and diver
sity using crowding distance operator i&;

1
Vi = 0.5B(H + 2D tan ,)? Lana

« V5 is the volume of (afg) and it is calculated as,

. 2 12: P;41 := Choose bestV solutions fromR; based on rank
V2 =2BD tan ¢, (25) and crowding distance;
« V3 is the volume of (abdg) that is calculated as, 13 te=t+1
1 1 14: end while
Vs =DHB 26
3 Lana + tanﬂ] (26)

The NSGA-II algorithm initializes the population randomly
« Vj is the volume of soil inside the arc (ab) and it isThe population is then evaluated by calculating objectivet
calculated as, tions and constraint violation. The fitness is assigned th ea
_ 2 2 solution of the population using non-dominated sorting and
Vi = 05BOR" = (0.5 sinf) 27) crowding distance operators. In a standard loop of NSGA-II,
3) Constraints. Only one constraint is designed for thethe crowded binary tournament selection operator is peréor
given problem in which the bull-dozer can deliver sufficienfo select good solutions. The solutions are compared in a
power to overcome the resistance during cutting and pushipgir of two and the solution having better rank and larger
the soil. It is represented d3; which is given as, crowding distance is selected over the other. The simulated
binary crossover operator and polynomial mutation operato
Pr =085 Py = Pu. (28) [23] are performed to generate the offspring populati@p)(
Here, P, is the flywheel power of the bull-dozer engineThe parent populationpP;, and offspring population(,,
and P,, is the required power at velocity to overcome the are merged tak;, and non-dominated sorting and crowding
resistance. In the literature, a quantity is defined as nith-p distance are calculated foR;. The bestN solutions are
R;, which is described as the force required from the buléhosen fromR, based on their better rank and larger crowding
dozer engine to overcome the resistance offered by thenguttdistance. This completes one generation of NSGA-II. The
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algorithm terminates when number of generations is equal to 501 1
T. o i |
IV. RESULTS ANDDISCUSSION :g 401 i
The bi-objective optimization of the given problem is salve § 30l |
using NSGA-Il. The population siz&vn = 100, maximum 8 . _
generatiorl’ = 200, crossover probability. = 0.9, mutation ¢ 20Ff .
probabilityp,,, = 0.333, crossover operator index = 15 and & 5 1
mutation operator indey,,, = 20 are kept fixed. As NSGA-II @ 10 1
is a stochastic algorithm, we run it for 30 times with diffiere KA
initial population. Thereafter, the statistical analysfgesults 0 100 200 300 400 500 6l
is performed by using inverse generalized distance indlicat Cutting Force (KN)

This indicator is given as,

P
rap - (S )

| P]
where P* is the set of Pareto-optimal solutiond; is the Minimum force solutions. As the cutting depth increases and
Euclidean distance in the objective space between theisolut'€aches to its upper bound, the cutting force also increases

i € P* and the nearest membére P,.;. The distance is Similar trend is also seen fdr in Fig. 6 that minimum value
calculated as, of V' is observed at the lower bound of the cutting depth. The

volume of soil cut increases with increase in the cuttingtidep
[Pia] | M ( 7(;‘) _ fy(f) )2 values. It is also justified from a linear relationship ewav

Fig. 4. The Pareto-optimal solutions generated by NSGA-II.
(30)

d; = min Fmaz — fmin (31) betweenF andV showed in Fig. 4. The two transition zones
m m are also seen in Figs. 5 and 6 which suggest that many Pareto-
wherem is the number of objectivege* and f™i" are the optimal solutions are cqnverged to gither onver or uppernblog
maximum and minimum ofrn—th objective function values of D. Rest of the solutions shows increasing trend of cutting
in P*. It is noted thatP* is constructed by copying non-force and blade capacity with the cutting depth.
dominated solutions from the combined solutions of all 30 Next, we plot the second decision variable called as cutting
runs of NSGA-II. blade angle(«) against the cutting force. As a linear trend
The statistical values of IGD indicator are shown in Tabléan be seen between cutting force and blade capacity, plot fo
Il. Smaller statistical values of IGD indicator suggesttttre V' against any decision variable are not shown in the paper.
performance of NSGA-Il is consistent for solving the givelrig. 7 shows that the cutting blade angle remains same for all

m=1

problem. Pareto-optimal solutions which is observed at its lowerrzbu
This information is extremely important because it sugg st

TABLE I keepa at its lower bound for the optimal cutting and pushing

THE BEST, MEDIAN AND WORST VALUES OF IGD INDICATOR of soil by the bull-dozer. The decision maker or operator of

: the bull-dozer can be benefited, if such information is aAé

Best value| Median value| Worst value .

00267 0.0269 0.0269 in-hand.
Another interesting relationship can be observed when cut-

The Pareto-optimal solutions of a NSGA-II run corresponding force is plotted against the width of the blade of the
ing to the median IGD value are shown in Fig. 4. A clear trad&areto-optimal solution as shown in Fig. 8. It can be obskrve
off between the two objectives can be observed. It suggeats tthat many Pareto-optimal solutions are evolved at the lower
a gain in one objective can lead to a loss in another objecti@ound of B. After the transition,F" increases almost linearly
Although the mathematical equations Bf and V appeared With B for rest of the solutions.
complex, but almost a linear relationship can be seen betwee In Fig. 9, an opposite relationship is observed when the
the two objectives considered in this paper. cutting force is plotted against the height of the blade.eiler

For better understanding of the results, the post-pracgssinost of the Pareto-optimal solutions are evolved at the uppe
of the Pareto-optimal solutions is presented. In the liteen bound of H. For rest of the solutions which are very few,
[2], it is emphasized that the Pareto-optimal solutionsugdho a linear trend can be seen which says that the cutting force
be analyzed for deeper understanding of the problem. Suphreases with increase il values.

analysis can discover interesting relationships and ataled- Likewise the cutting angle of the blade, three more decision
ing to justify the specific pattern or commonality among theariables are evolved at their bounds for generating thet®ar
solutions. optimal solutions. Figs. 10, 11 and 12 show tligté and v

We start our analysis by showing variation of cutting forcare evolved at their lower bound. This information is handy
for the cutting depth in Fig. 5. The figure shows that value @nd can be used effectively by the decision maker or operator
the cutting depth is evolved at its lower bound for genegatirio make the cutting and pushing process optimal.
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Péreto‘—opti‘mal solutions

550

450

350

250

Cutting force (KN)

150

0.4

50 | | | |
0.2 0.3
Cutting depth (m)

Fig. 5. The post-optimal relationship between the cuttimmgé and the cutting
depth.

50

T T T T ]
Pareto—optimal solutions

40

30

Blade capacity (r% )

0.4

0.2 0.3
Cutting depth (m)

Fig. 6. The post-optimal relationship between the bladeaciéyp and the
cutting depth.

550 F Paréto—op‘timal solutions ©
/2 | - -
¥ 450t ]
o F i
S 350 B
> L i
S 250f 1
£ | i
© 150t 1
50 | | | | |
0.7 0.9 1 11 1.2 1.3
Cutting angle (radian)
Fig. 7. The relationship between the cutting force and theddkutting angle.

From the post-analysis of the Pareto-optimal solutions,
can be observed that, R, § and v should be kept at their

550

450

350

250

Cutting force (KN)

150

3.8

32 34 36
Width of blade (m)

Fig. 8. The post-optimal relationship between the cuttioigd and the blade
width.

550 F Pa‘reto—o‘ptima‘l solutions ©

450
350

250

Cutting force (KN)

150

50 | | | |
1 16 18 2

Height of blade (m)

22 24

Fig. 9. The post-optimal relationship between the cuttioigd and the blade
height.

The relationships have been discovered between the ob-
jective function and the decision variables. Now, we présen
the post-optimal analysis of the Pareto-optimal solutibgs
considering the decision variables only. Fig. IV shows the
width of the blade is constant at its lower bound and the mgtti
depth increases for simultaneously minimizing the cutting
force and maximizing the blade capacity. When the cutting
depth reaches to its upper bound value, then width of theeblad
starts increasing for generating the Pareto-optimal gwist In
Fig. 13, the height of the blade first increases and reaches to
its upper bound, then the cutting depth starts increasirgnF
both the figures, it can be observed that the Pareto-optimal
solutions which are clustered at the lower bound of the rogitti
depth are generated due to increase in the height of the.blade
\I¥hen the height of the blade reaches to its upper bound, then
the cutting depth increase. Finally, the cutting depth meac

lower bound for generating Pareto-optimal solutions fag tho its upper bound value, then the width of the blade starts

given problem. Moreover, it can also suggested thatB
and H are important decision variables for evolving man

increasing. This information can be useful for the decision
ynaker or operator to choose the right blade by focusing more

Pareto-optimal solutions. As per the authors knowledgeh suon the height of the blade as compared to its width to increase

relationships are not available in the literature which vae c
only be found by solving the real-world problem with mulépl
objectives.
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the capacity of the blade which signifies volume of soil cut
or productivity. The depth of cut is always a critical deoisi
variable for minimizing the cutting force.
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550 - P‘areto‘—optirﬁal solutions ©
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Fig. 10. The post-optimal relationship between the bladevature radius
and the objective functions.
T
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P‘areto‘—optirﬁal solutions ©
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Fig. 11. The

functions.
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Fig. 12.
functions.

The relationship between blade curvature angle aindctive

V. CONCLUSION

In this paper, a real-world problem of soil cutting and push-

42 T . T N T T T
Pareto—optimal solutions ©
4 1
~ a o
o 3.8 |
©
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=S 36 8 od]
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< 34r i
.-9 O o ©O
< 32r o .
O
3|68 88 o % 080 woo 00
0 0.1 0.2 0.3 0.4 0

Cutting depth (m)

Fig. 13. The relationship between the cutting depth and thihwof the
buII-dozzeé blade.
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= (o o 8 |

L 14 )
eke} B

1 Lo S o | Pareto—optimal solytions ©

0 0.1 0.2 0.3 0.4 0

Cutting depth (m)

Fig. 14. The relationship between the cutting depth and tighh of the
bull-dozer blade.

« The cutting depth was an important decision variable for
cutting and pushing the soil to make the process optimal.

An increasing trend of" andV have been observed with
increase inD.
o Similar to D, B and H also showed increasing trend for

F. However, many Pareto-optimal solutions are evolved

at the lower bound oB and at the upper bound df.
« The decision variable, R, 8 andv were evolved at their

lower bounds for generating the Pareto-optimal solutions.

In the future work, more realistic decision variables, chje
functions and constraints can be included in the formutatio
Other multi-objective algorithms can used for comparison.
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