
International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) - 2016

A Novel Multistage Genetic Algorithm Approach for

Solving Sudoku Puzzle
Haradhan chel

1
, Deepak Mylavarapu

2
 and Deepak Sharma

2

1
Central Institute of Technology Kokrajhar,Kokrajhar, BTAD, Assam, India, PIN-783370

 2
 Indian Institute of Technology Guwahati, Guwahati, Assam, India , PIN-781039

Email : h.chel@cit.ac.in, dsharma@iitg.ernet.in

Abstract: Sudoku is a NP complete combinatorial number

placement puzzle which has been solved using various algorithms

including evolutionary algorithms. In this paper, we propose a

multistage genetic algorithm (GA) for solving Sudoku. In this

algorithm, the group table concept has been incorporated. This

work progresses with a couple of cycles. In every cycle GA works

for finding better solution. The each elements of the best solution in

any particular cycle undergo through a multidirectional crosscheck

validation process and finally selected subject to a probability. After

each cycle, group table is updated depending on the chosen

elements of the best solution in the previous cycle. This algorithm

also comprises of new population generation, fitness assignment

with more penalization, crossover and mutation operators etc. The

results show that multistage GA is competitive with good successful

rate for solving various Sudoku puzzles.

Keywords—Multistage Genetic Algorithm, Group Table,

Crossover, Sudoku.

I. INTRODUCTION

Sudoku is a numbering puzzle in which integers from 1 – 9 are

placed in a grid of 9-by-9 grid. Some rules are defined for

placing integers such as, any particular integer from 1 – 9

should appear only once in a row, in a column, and also in a 3-

by-3 sub grids. An example can be seen in Fig. 1. The

difficulty or complexity of Sudoku is categorized as NP-

Complete problem [1],[2]. Sudoku puzzle solving is also

attributed with the number of minimum clues so that it should

have a unique solution. Such Sudoku are considered as well

posed puzzles. The literature suggests that minimum of 17

clues are required to have a unique solution [3] [4]. An

example can be seen in Fig. 1. A Sudoku with less than 17

clues does not exist. Several methods have been suggested in

the literature for solving Sudoku. The main aim of these

methods is to solve Sudoku in less time, and requires less

computation. Backtracking and brute force algorithms with

some other techniques like naked cell, hidden cell, naked pair

and hidden pair etc., are quite popular which are used in many

applications on mobile phone and internet [5]. However, these

methods involves several complex logics [6],[7],[3], and

sometime require human interventions for reduction the search

space. Using naked cell, hidden cell, naked pair, hidden pair

[5] [3] techniques the search space size is drastically reduced.

Later brute force backtracking algorithm can be used for all

possible combinations. EA are also popular for solving

Sudoku. Nicolau and Ryan [8] proposed genetic operators and

sequencing for genetic algorithm using grammatical evolution

(GAuGE) system such as slice and dice, column fill, row fill

and raising numbers. The method was found better than

standard GA.Moraglioet.al [9] proposed a geometric crossover

method in which swapping was done among integer cells such

that its geometric feature

Fig. 1: A Sudoku with 17 clues and its unique solution.

remains unchanged. The problem was subjected to some hard
constraints, few soft constraints, distance constraint, and
feasibility on geometric crossover and geometric mutation
operators. Mantere and Koljonen [10] proposed a mutation
based genetic algorithm (GA) in which integer values within a
grid were swapped [11]. But their efficiency was found to be
poor. Cultural Algorithm (CA) [12] was also proposed in
which a set of random integers were chosen from different
blocks within a grid. These integers were then swapped
randomly with integers from another grid. But, it showed
slower convergence. Improved GA was then proposed
[13][14] in which better selection, crossover and mutation
strategies were discussed. Hybrid GA was proposed by Deng
and Li [4] in which a solution was replaced by another
solution, if it was preserved from last four generation. This
strategy helped to maintain diversity in a population so that the
algorithm should not trap in the local optima.GA was then
coupled with particle swarm optimization (PSO) [15] at
crossover level so that changes were made at the
chromosomes. In mutation integers were swapped between
cells within a sub-block. This method was faster and accurate
than other GAs. Geem [16] proposed harmony search
algorithm for solving Sudoku which mimic phenomena of
musicians for their pitch correction when they play in a group.
Deng. et.al. [17] introduced a crossover operator which had
dual effects of self-experience and population experience. The
self-experience was originated from two selected parental
chromosomes, and the optimal chromosome in the current
population represented the population experience. Result
showed that the method was better than GA [14] and CA [12].
From the above studies it can be observed that Evolutionary
Algorithms (EA) can be viable tool for solving Sudoku puzzle.

International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) - 2016

But, EAs need some structural changes so that EAs can
perform well, and evolve feasible solution for Sudoku puzzle.

In this paper a new multistage technique is proposed which is
different in several aspects as compared to other methods. It
uses Sudoku group table for generation of population. In every
stage the group table gets updated, and also reduces size of the
population. It is found that in every cycle the fitness improves
without being trapped into the local optima.

 1 8 5

 3 1

 9 4 2

6 7 3

 8 5

9 7 2

1 5 4 2

4 8 9

 3

(a) Sudoku with 17 clues

[2,7

]

[2,4,

6]
1

[3,6,7,

9]
8 5

[2,4,6,

7,9]

[3,4,

6,9]

[3,4,6,

7]

[2,5,

7,8]

[2,4,

5,6]
3 [6,7,9] [6,7,9] 1

[2,4,6,

7,8,9]

[4,5,

6,8,9

]

[4,5,6,

7,8]

[5,7,

8]

[5,6

]
9 4 [6,7] 2

[1,6,7,

8]

[1,3,

5,6,8

]

[1,3,5,

6,7,8]

6 7
[2,

4]

[1,2,5,

8,9]

[1,2,5,

9]

[4,8,

9]
3

[1,4,

8,9]
[1,4,8]

[2,3
]

[1,2,
3,4]

8
[1,2,3,
6,7,9]

[1,2,6,
7,9]

[3,4,

6,7,9
]

5
[1,4,
6,9]

[1,4,6]

9
[1,3,

4,5]
4

[1,3,5,

6,8]
[1,5,6]

[3,4,

6,8]

[1,4,6,

8]
7 2

1
[3,6,

9]
5

[6,7,8,

9]
4

[6,7,

8,9]
[6,7,8] 2

[3,6,7,

8]

4 8

[2,

6,7
]

[1,2,5,

6,7]

[1,2,5,

6,7]
[6,7] [1,6,7]

[1,3,

5,6]
9

[2,7

]

[2,

6,9

]

[2,6,7]

[1,2,5,

6,7,8,9

]

3
[6,7,8,

9]

[1,4,

6,7,8

]

[1,4,5,

6,8]

(b) Group table for Sudoku

Fig.2: Sudoku with clues and its group table.

This paper is organized in four sections. Section II discusses
the proposed methodology. In this section, we discuss various
operators of GA that include population generation, selection,
fitness function, and crossover and mutation techniques.
Section IIII presents results and discussion on various Sudoku
puzzles. The paper is concluded in section IV.

II. PROPOSED METHODOLOGY

Solution procedure adopted in this paper for Sudoku puzzle is
different than real parameter optimization because near
optimal solution is actually infeasible. Moreover, penalty
function approach cannot yield a feasible solution.
Nevertheless, we need to choose a proper fitness function, and
also devise selection, crossover and mutation operators for
GA. In this paper we propose a multistage GA technique in
which we prepare a group table from the given clues of
Sudoku.

An example of Sudoku and its group table is shown in Fig. 2.
It can be seen from Fig. 2(a) that empty top left side grid can
take either 2 or 7, because other integers are already present
either in its column or row, or in its 3-by-3 sub-grid. Similarly
other possible integers for empty grids are identified and
stored in the group table as shown in Fig. 2(b).

Algorithm 1 presents MGA in which group table is
constructed to create an initial random population. This group
table also gets updated in each cycle which is discussed later
in section E. In the following sections, steps of algorithm 1 are
discussed.

Algorithm 1: Multistage GA

Define: Fitness function, Crossover type, Mutation type,

Group Table updating method.

Initialization: Parent Population size (μ), Offspring

generation factor (k), number of cycle(C), Number of

iterations over each cycle (N), crossover probability (pc),

mutation probability (pm), group table updating

parameters and Group Table (GT),

Output: Desired solution

 GT = Create group table.

 While fitness>=0

 While cycle<=C

1. If cycle>=1

GT=update group table, discussed in section E.

2. Define: Pop_size=μ /cycle;

 Define: Offspring_size= Pop_size*k;

3. Generate population of size Pop_size

4. For each iteration (i ≤ N) perform crossover,

evaluate population, and choose best � solutions.

5. Perform mutation over few good solutions and
evaluate them.

6. Find the best solution for updating group table.

7. cycle=cycle+1.

8. goto step 1.

 end while cycle

 end while fitness

A) POPULATION GENERATION

Population is generated using group table in each cycle as
presented in Step 3 of algorithm 1.The size of population and

International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) - 2016

its offspring are evaluated as shown in Step 2 of algorithms 1.
The 9-by-9 grid is converted into one dimensional 1-by-81
grids. Thereafter, we assign integers cell by cell from group
table. It can be seen from Fig. 2(a) that, the top left corner grid
is empty, and possible integer is either 2 or 7 from group table
shown in Fig. 2(b). We assign an integer from the group of
{2,7} at random at the first position of one dimensional 1-by-
81 grids. In case a grid is filled with a clue as shown in Fig.
2(a), we keep the same value of integer. This procedure is
followed to fill 81 grids to generate one member of population.
Similarly, we can generate a complete population from group
table. The same has been shown pictorially in Fig. 3 by
showing three members of a population.

Gro

up

Tab

le

[2,7

]

[2,4

,6]
1

[3,6

,7,9

]

8 5

[2,4

,6,7

,9]

[3,4

,6,9

]

[3,4

,6,7

]

[2,5

,7,8

]

S1 2 4 1 9 8 5 7 4 6 5

S2 2 2 1 7 8 4 6 3 4 8

S3 7 4 1 3 8 5 4 9 3 2

Fig. 3: Generation of three member population from group table of

Sudoku.S1, S2 and S3 stand for three members of initial population.

B) CROSSOVER OPERATOR

We adopt multipoint product geometric crossover operator
[18] for performing crossover mentioned in Step 4 of
algorithm 1. The main feature of geometric crossover operator
is that the hamming distance between two parent solutions is
same as hamming distance between offspring and two parent
solutions. It is done by swapping integers of every grid by
satisfying probability of crossover. If probability is satisfied,

Fig. 4: Geometric crossover operator. P1 and P2 represent parent solutions,

and C1 and C2 represent offspring solutions.

integers are swapped; otherwise we keep unchanged integer

value in the grid. An example is shown in Fig. 4, where

probability 1 indicates that it got satisfied.

C) FITNESS FUNCTION AND SELECTION

Fitness assigned in Improved GA [13] and Hybrid GA [4]
methods consider repetitions of any integer over rows and
columns. But we target fitness assignment by considering four
cases which as follows; (i) repetition of integer over its row,

(ii) repetition of integer over its column, (iii) repetition of
integer over its 3-by-3 sub-block, and (iv) total number of any
particular integer over the 9-by-9 grid should count 9. The
fitness function is given as,

� = � � ��� 	
�
�

�
�

�

�
�
+ � � ��� 	
�

�

�
�

�

�
�
+ � � ��� 	
�

�

�
�

�

�
�
 + � ���	�	
�

�

�
�
− 9� − 27

(1)

 In the above formulation, first, second and third summation
captures repetition over rows, columns and sub-blocks
respectively. The fourth summation captures the amount how
far that number deviates from 9. N stands for number of a
particular integer	
 ∶ 1 ≤
 ≤ 9) over the whole 9 x 9 sudoku.
Equation (1) is used to calculate fitness of each solution
mentioned in Step 4 of algorithm 1.

Selection presented in Step 4 of algorithm 1 is done by
choosing the better members based on their fitness value from
the combined population of parent and offspring. Here, μ and
� are the sizes of parent and offspring populations,
respectively.

D) MUTATION

Mutation is similar to crossover operator. However, the
swapping of integer for every grid is done with respect to
group table. Swapping is done when mutation probability gets
satisfied. We keep this probability low as suggested in the
literature of GA for Step 5 of algorithm 1. The fitness is then
evaluated for new solutions, and the best solution is chosen for
updating group table.

E) UPDATE GROUP TABLE

Group table has been used for creating initial population, and
for performing mutation. Therefore, we update group table
after every cycle as mentioned in Step 1 of algorithm 1. The
purpose of it is to fix integers in the grids of group table. For
Sudoku puzzle, which is shown in Fig. 1, initial group table is
shown in Fig. 2(b). The updated group table after 20 cycles is
shown in Fig. 5. It can be observed that most grids have fixed
integers as compared to initial group table.

1 7 5 6 3 4 9 8 2

8 2 4 7 1 9 3 6 5

[3,9] 9 6
[2,7,8

]

[1,2,

8]
5 1 [1,2,4] [2,7]

2 [5,8] 9 1 5 6 7 3 4

6 3 [1,5] [2,5] 4 7 [1,5] 9 8

4 [4,5]
[1,5,7

]
[3,5] [5,9] 8 2 [1,3] 6

5 6 2 9 8 1 4 7 3

7 1 3 4 6 2 8 5 9

[4,9] [4,9] 8 [3,5] 7 3 6 2 1

Fig. 5: Group table after 20 cycles.

For updating group table we need initial group table, the best
solution found in the last cycle, and group table of the last
cycle. We introduce many search directions that can help in
updating group tables. The obtained solution from the present
iteration is used for updating the group table for next cycle.
The best solution is passed through multidirectional validation
process. It means all the cell elements of the best solution is

Group

Table

[2,

7]

[2,
4,6

]

1
[3,
6,7

,9]

8 5

[2,

4,6

,7,

9]

[3,
4,6

,9]

[3,
4,6

,7]

[2,
5,7

,8]

Proba
bility

1 1 0 1 0 1 1 0 1 0

P1 2 4 1 6 8 5 9 3 7 7

P2 7 6 1 3 8 5 2 3 4 8

C1 7 6 1 3 8 5 2 3 4 7

C2 2 4 1 6 8 5 9 3 7 8

International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) - 2016

crosschecked for a invalid repetition. These search directions
successive and it means the best solution is passed through
validation of multidirectional search one after another. In this
work, four different directions are chosen and they are (1)
row-wise starting from left corner grid, (2) row-wise starting
from right corner grid, (3) column-wise starting from top to
bottom, (4) column-wise starting from bottom to top, and (5)
diagonally as shown in Fig. 6.

Fig. 6: Diagonal search direction

During the validation of the best solution and during any
direction, if any value is found to be repeated, the value is
ignored and that cell remains vacant and the algorithm
proceeds to the next cell. In such a way during every search
direction, different solutions are obtained which all are subsets
of the last best solution. Finally after multidirectional
validation, among different solutions, some cells out of 81
cells matches (clues in original Sudoku does not undergo for
validation). If all the solutions are compared cell wise, for a
particular cell where all values are found equal, it is accepted
subject to a random variable. We generate a random variable
between 0 and 1 with uniform probability density function and
if the threshold is greater than that, the value is accepted. This
is logical AND operation between i) the certainty of all the
solution values of particular cell to be equal and ii) the
occurrence of the random variable greater than the threshold.
The value of that random threshold is chosen empirically and
it is found that .3 is the best value for the threshold. Insertion
of this randomness helps the algorithm to avoid the trapping in
a local minimum during run due to a wrongly chosen value at
any particular cell.

III. RESULT AND DISCUSSION

The difficulty level of a Sudoku puzzle is defined by the
number of clues given and its unique solution. Sudoku having
less clues but unique solution is considered as hard Sudoku.
We consider Sudoku problem given in Fig. 1 in which 17
clues are given with unique solution, and it is solve using
multistage GA. The parameters of GA are given in Table 1.

Table 1: GA parameters

Population size 500

Offspring population size 500

Crossover probability 0.7

Mutation probability 0.4

Number of runs per cycle 15

Fig. 7. Convergence plot of single-stage GA fro run

We solve the given Sudoku of difficult label using single stage
and multistage GA. In single-stage GA, we consider one run
per cycle. However in multistage GA, 15 runs per cycle is
considered as shown in Table 1.Figure 7 shows convergence
of single-stage GA for hard Sudoku puzzle given in Fig. 1. It
can be observed that the single-stage GA gets stuck after 60
generations with very high fitness value. It is noted that the
optimum solution is generated when the fitness becomes zero.
The run shown in this figure corresponds to the best fitness
achieved among 10 independent runs of single-stage GA.

Fig. 8. Convergence plot of multistage GA for best run

 The same Sudoku problem is solved using proposed
multistage GA, and the convergence plot is shown in Fig. 8.
Here, it can be observed that using MGA, the fitness curve
gets converged to the optimal solution where the zero
fitness. The solution is found in three cycle as described in

0 10 20 30 40 50 60 70 80 90
20

30

40

50

60

70

80

90

100

110

120
One step GA

Iteration

F
it
n
e
s
s

International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) - 2016

the run shown in this figure correspond to the best run
among 10 independent runs of multistage GA.

Fig. 9. Convergence plot of multistage GA for worst run

Fig. 9 shows the worst run among ten independent runs of
MGA in which the algorithm is unable to converge to the
optimal solution, but the solution is quite closer to the optimal
solution. We found only one repetition of a number in the
Sudoku solution which makes the fitness of four after six
cycles. It can be concluded here that the proposed multistage
GA can generate the optimal or near optimal solution for hard
Sudoku puzzles. We test our algorithm on different Sudoku
puzzles given in [8]. The puzzles are categorized in simple,
easy, moderate, hard Sudoku’s. We consider 10 different
Sudoku for each category and run our algorithm on each
Sudoku ten times. The parameters of GA given in Table 1 are
considered. The obtained results using MGA are presented in
Table 2. Here, the success rate is defined as number of runs
generating the optimal solution vs. total number of runs of
multistage GA. Average cycle is defined as the average
number of cycles required to get the optimal or near optimal
solutions over 10 runs. Average generation is defined by
number of generations required per cycle to get the optimal or
near optimal solution. Average fitness of unsuccessful events
represents average fitness of multistage GA over 10 runs when
it is found near optimal solution.

Table 2. Performance of multistage GA on various Sudoku puzzles

Difficulty
Success
Rate (%)

Average

cycle

Average

Generation
(rounded)

Average
fitness of

unsuccessful
events

Simple 58 6.4 63 3.2

Easy 65 6.0 63 4.6

Moderate 48 8.2 8 4.8

Hard 12 16.6 166 6.7

It can be seen that the proposed MGA has good success rate
for simple, easy and moderate puzzles with marginal average
fitness of unsuccessful events. It is found that only one number

gets repeated mostly in solved unsuccessful runs/event. It’s
performance for hard Sudoku puzzle is also competitive as the
average fitness of unsuccessful runs is quite less. This
indicates that when MGA cannot generate the optimal
solution, it generates near optimal solution with repetition of
one number in Sudoku puzzle

Another experiment is done with multistage GA by creating
Sudoku puzzles randomly from the solution of Sudoku. This
procedure of generating Sudoku can generate any category of
puzzle. The performance of multistage GA is shown in Table 3
for different clue sizes. We can observe from Table 3 that
MGA shows good success rate for different clue size puzzles
with less number of cycles required to get the optimal or near
optimal solution.

IV. CONCLUSION

In this paper, we targeted solving all kinds of Sudoku puzzles

which has both with unique solutions and multiple solutions.

The results showed that multistage GA was quite successful

and competitive in solving hard Sudoku puzzle. Average

unsuccessful rate suggested that multistage GA was able to

generate the optimal or near optimal solution for different

categories of Sudoku puzzles. It was found that upgrading

group table and multidirectional crosscheck validation were

the main reason behind the success of this algorithm. A new

type of technique of generation of population from group table

is implemented. Fitness assignment scheme imposes more

penalization, and crossover and mutation operators are

carefully applied for designing a competitive algorithm. We

realized that the algorithm can be further improved by

incorporating some rules. These rules can improve the

convergence of algorithm when near optimal solutions are

generated.

0 5 10 15
0

20

40

60

80

100

120

Iteration

F
it

n
e

s
s

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 2

Cycle 1 Table 3. Performance of multistage GA for different clue sizes of Sudoku (Out of
total 15 runs)

Clue Size 15 17 19 21 23 25 27 29 31 33 35

Success
Rate

15 15 14 14 12 14 14 15 15 15 15

Success
percentage

100 100 93 93 80 93 93 100 100 100 100

Average
cycle

5.2 5.3 10.4 12.6 18.5 10.4 10.8 8.2 5.6 5.6 3.0

Average
generation

(rounded)

55 55 142 128 188 108 102 85 52 55 32

International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) - 2016

REFERENCES
[1] Yato, T., and Seta, T.: Complexity and Completeness of

FindingAnother Solution and its Application to Puzzles. IEICE

Transactions onFundamentals of Electronics, Communications and

Computer Sciences,Vol. 86, No. 5. (2003).

[2] Asif, M.,Baig, R.:Solving NP-Complete Problem Using ACO

Algorithm. International Conference on Emerging Technologies, pp-13-

16(2009)

[3] McGuire, G.,Tugemanny, B.,Civarioz,G.: There is no 16-Clue
Sudoku: Solving the Sudoku Minimum Number of Clues Problem via

Hitting Set Enumeration. arXiv:1201.0749v2 [cs.DS] 1 Sep 2013.

[4] Deng, X. Q., Li, Y.D.: A novel hybrid genetic algorithm for solving

Sudoku Puzzles. Optimization Letters7, pp. 241–257(2013).

[5] http://www.sudoku-solutions.com/index.php?page=

solvingNakedSubsets #nakedSingle, dated: 20 December 2015.

 [6] Li, H.: Algorithm and implementation for Sudoku puzzle based on

graph search algorithm. J. TonghuaNomal Technol. 30(10), 43–45

(2009)

[7] htttp://en.wikipedia.org/wiki/Mathematics_of_Sudoku

[8] Nicolau, M., Ryan, C.: Genetic operators and sequencing in the

GAuGEsystem. In: IEEE Congress on Evolutionary Computation, pp.

1561–1568 (2006)

 [9] Moraglio, A., Togelius, J.: Geometric Particle Swarm Optimization

for the Sudoku Puzzle. In: Geneticand Evolutionary Computation

Conference London, pp. 118–125 (2007)

[10] Mantere,T and Koljonen, J., Solving and Rating Sudoku Puzzles

withGenetic Algorithms.In :New Developments in Artificial Intelligence
and the Semantic Web Proceedings of the 12th Finnish Artificial

Intelligence Conference, 2006, pp. 86-92.

[11] Mantere, T., Koljonen, J.: Solving, Rating and Generating Sudoku

Puzzles with GA. In: 2007 IEEE Congresson Evolutionary Computation,

pp. 1382–1389 (2007)

[12] Mantere, T., Koljonen, J.: Solving and Analyzing Sudoku with

Cultural Algorithms. In: 2008 IEEE Congress on Evolutionary

Computation, pp. (2008) pp. 4053-4060.

[13] Li, Y.D., Deng, X.Q.: Solving Sudoku puzzles base on improved
genetic algorithm. Computer Applications and Softwares,issue- 3,pp-

68–70 (2011)

[14] Deng, D., Li, Y.,Cai, R.: Solving Sudoku with New Genetic
Algorithm, In: 2012 International conference of Artificial Intelligence

and Soft computing, Lecture Notes of Information Technology, Vol 12

[15] Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In:

proceedings of IEEE International Conference on Neural Networks.

Perth, pp. 1942–1948 (1995)..

[16] Geem, Z.W.: Harmony search algorithm for solving Sudoku.
Lecture Notes in Computational Science,4692,pp. 371–378 (2007

[17] Deng, X., Li X., Li, G.:Research on Sudoku Puzzles Based on

Metaheuristics Algorithm.Journal of Modern Mathematics Frontier.2(1),
pp. 2013, pp. 25-32 .

[18] Moraglio, A., Togelius, J., Lucas, S.: Product geometric crossover

for the Sudoku puzzle. In: 2006 IEEE Congress on Evolutionary

Computation, pp. 470–476 (2006)

