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Abstract—In this paper, an improved initial random pop-
ulation strategy using a binary (0-1) representation of con
tinuum structures is developed for evolving the topologiesof
path generating complaint mechanism. It helps the evolutioary
optimization procedure to start with the structures which are
free from impracticalities such as ’'checker-board’ pattem and
disconnected ‘'floating’ material. For generating an improwed
initial population, intermediate points are created randamly and
the support, loading and output regions of a structure are
connected through these intermediate points by straight fies.
Thereafter, a material is assigned to those grids only wherthese
straight lines pass.

In the present study, single and two-objective optimizatia

compliant mechanisms are in the area of product design, off-
shore structures, smart structures, MEMS [3] etc.

Based on continuum mechanics approach, studies have
been made by considering homogenization method [4], [5] or
material density approach [6] in which the discrete nature o
problem is converted into continuous one with some threkhol
value. In an another approach, a discrete nature is prasbge
using a binary (0-1) representation of material for defining
structure [7], [8], [9], [10], [11]. In this paper, a few impant
studies using binary representation of material for thelsysis
of compliant mechanisms are discussed which are modeled

problems are solved using a local search based evolutionary using either truss/frame ground structures or two-dimamesli

optimization (NSGA-II) procedure. The single objective ofti-
mization problem is formulated by minimizing the weight of
structure and a two-objective optimization problem deals vith the
simultaneous minimization of weight and input energy suppiked to
the structure. In both cases, an optimization problem is sufected
to constraints limiting the allowed deviation at each precsion
point of a prescribed path so that the task of generating a uge
defined path is accomplished and limiting the maximum stress
to be within the allowable strength of material. Non-dominged
solutions obtained after NSGA-II run are further improved by a
local search procedure. Motivation behind the two-objectie study
is to find the trade-off optimal solutions so that diverse nomn

continuum structures and are optimized using an evolutiona
optimization. In truss/frame ground structures, preseuica
truss/frame element depends on the value of a binary bit.
With an additional approaches of flexible building blocks
[12], spanning tree theory [13] and load path synthesis,[14]
topologies of compliant mechanisms are generated which are
well-connected and free from gray scale and hence, results
in an improved designs. Large displacement [15] compliant
mechanisms and path generating [16], [17] compliant mecha-
nisms are also designed using a binary approach and optimize

dominated topologies of complaint mechanism can be evolved using NSGA-II algorithm [18].

in one run of optimization procedure. The obtained results 6
two-objective optimization study is compared with an usual
study in which material in each grid is assigned at random for
creating an initial population of continuum structures. Due to the
use of improved initial population, the obtained non-domirated
solutions outperform that of the usual study. Different shapes and
nature of connectivity of the members of support, loading ad
output regions of the non-dominated solutions are evolved khich
will allow the designers to understand the topological chages
which made the trade-off and will be helpful in choosing a
particular solution for practice.

. INTRODUCTION

For representing a two-dimensional continuum structure
using a Boolean variables, a design domain is discretizeed in
guadrilateral elements and each element of a structuréhisrei
represented by material or void depending on corresponding
to Boolean variable value. Using a modified evolutionary
structural optimization (ESO) procedure [19], genetic -pro
gramming [20] and genetic algorithms [21], [22], [23], [24]
[25], [26], [27], [28], compliant mechanisms are designed
with different objectives and tasks. Using a morphological
technique of representing a structure, various problems of
compliant mechanisms and structural optimization areexblv
in which Bezier curves are used to represent the structurg [2

Compliant mechanisms are flexible elastic structures whi¢22], [23], [24].
can deform to transmit the force and/or generating someUsing a Boolean representation of continuum structures,
desired path on the application of applied load. Compliaatthors of this paper have introduced a new formulation for
mechanisms have shown many advantages over pseudo-rigath generating compliant mechanisms [26], [27], [28]. Wit

body mechanisms as jointless and monolithic structures,

wifferent sets of bi-objective problems in which consttaiare

volved less friction, wear and noise [1], ease of manuféiotur imposed on the maximum stress and at the precision points of a

without assembly, light weight devices [2] etc. Applicatsoof

user-defined path with some allowed deviation, topologies a
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points on an actual path traced by a structure is evaluated
éﬁ)_m geometrical non-linear FE analysis based on equal

the designs but its performance is dependent on the nt A F hvsicall ¢ the f lati
dominated solutions of the applied NSGA-II algorithm [18] ime - steps. For physically representing he formuiation,
first an euclidean distance (say;) between the current

In an usual way of generating an initial population, NSGA:. ) ) A . .
[l algorithm emphasizes non-dominated solutions iteedyiv (i) and previous i — 1) precision points representing the

However, due to sparse placement of feasible solutions,pc’%sznbed ”pathd|sd e\_/atl_uate_(lj_hand mutltt:phed % a fﬁr
random initial population fails to find a diverse set of nonca'€d as allowed devialion. Then, anoher euclidean a

dominated solutions and prematurely converges close tba sEFay d2) bdgtween_ tth? Cu;riﬂt pretms:on frf'?‘) (aTd Itfled
optimal feasible solutions. In this paper, an improvediahit corresponding pointi¢) of the actual path is calculated.

random population strategy using a binary (0-1) represiomta Base_d_ on tr_\ese c_alculation, a constraint is imposed ‘Tﬂ each
of continuum structures is developed for evolving the topol precision point which ensures théf < d,. The mathematical

gies of path generating complaint mechanism. Single and tv\;gpresentanon of constraints at eadh precision points is

objective optimization problems are solved using a locatde given in quaﬂon 1. Any structure .Wh'Ch satisfies thgse
based evolutionary optimization (NSGA-II) procedure an pnstraints W_'” guarantee to accomplish th‘? tf”‘Sk of trgcin
obtained results are also compared with a study in whictalnit "' dpath W'tgl?t_the :Jser-dteﬂnidl_all_gwedthdeV|athm. (n th;

population is created at random. The detailed descriptio iy, an additional constraint limiting the maximum ssres

about the problem formulation, local search based NSGA- Fveloped i_n the structure .is also taken _inFo the consihimat
procedure with an improved initial population strategy an r the feasible PGCM designs. For providing some resiganc

obtained results are reported in subsequent sections. at t.he output region .and for some work meant to be done, a
spring of constant stiffness:) is also attached.

In the present study, a strategy is developed for generating
[I. PROBLEM FORMULATION an initial random population for the NSGA-II algorithm whic
o ) ) ) helps in evolving the topologies of compliant mechanism
For designing the complaint mechanism, a design domaj@nerating a user-defined path. Motivation behind the ptese
of 50 mm by 50 mm is divided into three regions of interesigy,qy is to generate topologies of compliant mechanism whic
as shown in Figure 1. The first region is called SUPPOferform the same task of generating a prescribed trajec-
region where the structure is supported (restrained, Wéto Z 1o in one run of an optimization procedure. Both single
displacement) whereas, in the second region (loading mgiqyng two-objective optimization problems are solved using a
some specified load (input displacement) is applied. Thpuiut |oc4) search based evolutionary multi-objective optirticza
region is the third region of interest, that is, a fixed point Oprocedure. The single objective study minimizes the weight
the structure which traces out the desired path defined by u$g siructure whereas, the two-objective optimization fieab
Authors of this paper thought that it is a compulsory taskimultaneous minimizes the weight and input energy sugplie
of the compliant mechanisms to trace the prescribed path.
Therefore, a formulation based on the precision points rep-

Deformation in X direction (mm)
Fig. 1. Design space with loading, output and support region

generated using a local search based evolutionary opfiimiza
procedure. A local search method is used for further imprgvi

resenting the prescribed path was proposed using the eiffer \ 625 [ 5 [ 3] a |=es
bi-objective sets [26], [27], [28]. These studies show the ~—— " <2 o2 1E
competency and efficiency of the proposed formulation of Structure representative bits §§ §§ £8E
designing the CM to trace the different sets of prescribed 55 55 ﬁ’é‘g
paths, for example, curvilinear or straight line, withirethser- g ¢

defined allowed deviation at the precision points. Fig. 3. A binary string representation.
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to the structure. Both optimization problems as shown in 1)rjoj1joj1
Equation 1 are subjected to constraints on stress and allowe ! ojojrjojoj1
deviation at the precision points of a prescribed path. @) [l o
Finite tjojojojojt

elements |1 1|0 1| 0| 1

Single-objective optimization 1]1]0] 0| o]0

Minimize: Welght of structure Fig. 4. Representation of structure using binary string araderial connec-

tivity.
Two-objective optimization settys of five, three and four bits. First five bits indicate the
Minimize: Weight of structure, support region’s element number, whereas the three bigsihel
Minimize: Supplied Input energy to structure, (1) determining the loading region’s element number. The dedod
value of last four bits are used to evaluate the range of input
Both problems are subjected to: displacement magnitude which varies frdmmm to 16 mm

NG L p— > N at step ofl mm.
nxy/(@i—xi—1)2+(yi—yi—1)?
O flezural — 0 > 0, A. Representation Scheme

wheren = 15% is the permissible deviation (kept fixed in Continuum structure is disgretized by node _rectangular
this paper), ands fi...-o. and o are flexural yield strength €lements and each element is represented eithei by 1,
of material and maximum stress developed in the structutéhere 1 signifies the presence of material afdrepresents

1=1,2

3 ) 3

respectively. the void. This makes a binary string which is copied to two
dimensional array as per the sequence shown in Figure 4. In

I1l. ALOCAL SEARCH BASED NSGA-II the present study, one bit of the binary string represenis fo
PROCEDURE elements for FE analysis with same gene value as shown in

Popularly used elitist non-dominated sorting genetic a|gg|gure 4.
rithm (known as NSGA-II which is developed by secon
author of this paper and his students) is used in the paper
which has shown to have a good convergence property toln the later studies [29], [30], [26], [27], [28], an initial
the global Pareto-optimal front as well as to maintain th&ndom population is generated by flipping a coin and decided
diversity of population on the Pareto-optimal front for twovhether an element is filled with the material. Similarlyeth
objective problems. A detailed description of NSGA-Il cagene value (0-1) is assigned at random which results in im-
be found from [18]. In short, NSGA-II is population basegracticalities such as 'checker-board’ pattern and disected
evolutionary optimization procedure which uses matheradti 'floating’ material in an initial population. The connedtiv
partial-ordering principle to emphasize non-dominateg-poamong the three regions of interest (refer Figure 1) is also
ulation members and a crowding distance scheme to enfecked before FE analysis of a structure.
phasize isolated population members in every iteration. Anin the present work, a strategy of generating an initial
elite-preserving procedure also ensures inclusion of iprevandom population using a (0-1) binary representation of
ously found better solutions to further iterations. Theralle continuum structures is developed in which the three region
procedure withN population members has a computationalf interest are connected through the intermediate poihts.
complexity of O(NlogN) for two and three objectives probkempictorial view is drawn in Figure 5 to show a connectivity
and has been popularly used in many studies. NSGA-II is albetween the support and loading region’s elements. A random
adopted by a few commercial softwares (such as iSIGHT andmber is generated first to decide the number of intermediat
modeFRONTIER). A code implementing NSGA-I1 is availablgoints through which the two regions are connected and it
at http://mwwiiitk.ac.in/kangal/codes.shtml website. varies froml to 5. Depending upon the number of intermediate

As topology optimization of compliant mechanism problerpoints (four in this case), coordinates of each intermediat
is non-linear and discrete in nature, NSGA-II with locapoint within the desighs domain is randomly generated. 18oin
search procedure is used in the present study. A populati®h, P2, P3 and P4 in Figure 5 shows the location of interme-
of 240, crossover probability 08.95 and mutation probability diate points and, the support and loading region’s elemenets
of (1/string length) are assigned and NSGA-II is run for @onnected through these points by straight lines. Thereait
maximum of100 generations. For each NSGA-II populatiormaterial is assigned to those elements only where thesgtstra
member, a binary string length of 637 bits is used in whiclnes pass. A material connectivity of the above mentioned
first 625 bits are used to represent a structure (representiregions is also shown in Figure 5. Similarly, a set of piedsew
25 x 25 grids of material or void) and additiondl2 bits linear line segments between the support and output regions
are decoded to determine the support and loading regionisd another set between the loading and output regions are
elements, and the magnitude of input displacement boundarplained. Therefore depending on the randomly generated
condition. Figure 3 shows a pictorial view of a binary stringintermediate points, an initial population for the NSGA-II
Here, the12 additional bits are further divided into threealgorithm is generated.

Custom Initialization
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Fig. 6. Clustering Procedure.

Loading region element

s1
Support region element

Fig. 5. Connectivity between support and loading regions. E. Clustering Procedure

The number of feasible solutions after the NSGA-II run is

A repairing scheme is also employed in which if tWOequal to or less than the population size. But actually aétite

. : . f NSGA-II run, there are not many distinct solutions. Scsit i
elements generate a point connection, then the given puoee . .
; ) ot advisable to represent all solutions to the end users. Bu
puts one extra material at the nearby element (accordingeto

nature of connectivity) to eliminate the problem of highess or the convergence near to the global Pareto-.optlmal front
. 7 a GA needs a fairly large number of population members
at the point connectivity.

and generations depending on the problem complexity. To get
a meaningful idea of the type of solutions at the end of a
NSGA-II run, a clustering procedure is used. The neighlgprin
A distributed computing platform is used to reduce theolutions are grouped together and solutions from eachpgrou
computational time of designing and synthesis of compliargpresenting that zone of the Pareto-optimal front arectade
mechanisms. In this parallelization process, the rootgssar as representative solutions [33]. Figure 6 shows the proeed
initializes a random population and performs the NSGA-pictorially.
operators,_hke selectlon,_crossover and mutatlo_n opesatoF_ Local Search Method
Pareto-optimal front ranking etc. on the population and re- ) o
places it with good individuals. Slave processors caleulat The local search method used here is a combination of
the values of objective function and constraints and sefyolutionary and classical methods. Itis a variant of otzss
them to the root processor. The above process is repedidhclimbing process. As a single objective function is ded
till the termination criterion of NSGA-Il is met. The par-for the hill climbing, the multi-objective problem is rededt to
allel implementation of NSGA-Il is done in the context oft Single objective problem. This is done by taking a weighted
FE analysis througMNSY'S software which consumes theSum of different objectives. The scaled single objectiviecfu
maximum time of the optimization procedure [26], [27]’tion is_ minimized in the present study and it is shown in
[28]. A MPI based Linux cluster witie4 processors is used Equation 2:

C. Parallel Computing

in the present study to solve the computationally extensive nwE(fE )

evaluation procedure of compliant mechanisms. A detailed F(z) = Z%a (2

specification and configuration of Linux cluster is given at j=1 “Jmaec  Jjmin

http:/mww.iitk.ac.infkangal/facilities.shtm. where, /7 is j*" objective function, frand fr are
minimum and maximum values gft" ogiéctive function in

D. GA Operators the population respectively, is number of objectives ana?

A two-dimensional crossover is used in the present stud§.the corresponding weight to thé€" objective function which
This operator has shown a successfully applications ineshdp computed as:

optimization [29], [30] and in compliant mechanism design (fe2  —fN(fE  —f* )
problems by the authors of this paper [26], [27], [28]. In W) = g e (3)
the present recombination operator, two parent solutions a ko Sias = SN e = Tioi)

selected and a coin is flipped to decide for row or column-wisehere M is the number of representative solutions after
crossover. If a row crossover is done, a row is chosen withustering procedure.

an equal probability of B.,..-/no. of rows) for swapping. In the Equation 2, the values of the objective functions are
The same is done if a column-wise crossover has to hermalized to avoid bias towards any objective function. In
done. During crossover, a random number is generatedthis approach, the weight vector decides the importance of
identify the number of rows (columns) to be swapped ardifferent objectives, in other words it gives the directioh
then, another generated random number helps in getting theal search in the objective space.

first row (column) number of patches. A range of row (column) First the weighted sum of the scaled fitness of a selected
index is calculated and swapped with other parent. Mutatisepresentative solution after the clustering procedurexis-

is done with a low probability on the each bit of a stringuted as given in Equation 2. One bit of representative swlut

to change from a void to a filled or from a filled to a voidis mutated at a time and the design is extracted from the
element. Detailed discussion of these crossover and rantathew string. This new string is now ready for FE analysis and
operators are given elsewhere [31], [32]. after anANSYS simulation, objective functions and constraint



functions are evaluated. If the new design does not satisfy
the constraints, then the change in the new string is dischard
and old values are restored. Otherwise, the weighted sum of
scaled fitness of new string is calculated and compared with ¥
the old string. In case of mutating & ’to '1’ , a change

is only accepted when the weighted sum of scaled fitness of
new string is strictly better than that in the old string,eels

is rejected. For the case of mutating to ' 0, if the weighted
sum of scaled fithess of new string is better than or equal to
the old strings weighted sum value, then it is accepted else (@) Undeformed topology (b) Deformed topology
discarded the change. In the case of rejection, the pretibus
values are restored.

Before mutating any bit, a binary string is converted into a
two-dimensional array and checked for the elements havitgading regions at the bottom and right-hand side of a design
a material. Then, one by one, all nine neighboring bitdomain of structure respectively.
including its own bit value are mutated. If a change bring
an improvement in scaled fitness, then the change is accepted
This process is repeated till all bits are mutated oncedfehis A single objective study of minimizing the weight of struc-
no change in the values of weighted sum of scaled fitness, tHee subjected to constraints limiting the allowed dewiati
local search is terminated. In the same way, all repredeetatat €ach precision point of a used-defined path and limiting
solutions are mutated to achieve a local search. As disdus§ee maximum stress developed within the flexural strength of
in Section llI-A, that one binary bit represents four elensenmaterial is solved using the given optimization proceduaie (
for FE analysis, therefore the local search is performed &gribed in Section Ill). It evolves ainimum weight design of
these elements. A detailed discussion of the local search0i§247 gms which is supported 20"" element and loaded at

Fig. 7. A minimum weight design.

Minimum Weight Design

given in the literature [32], [34]. 32" element with7 mm of input displacement. The deformed
and undeformed design of minimum weight study is presented
IV. CURVILINEAR PATH GENERATING in Figure 7. It shows the shapes and connectivity between the
COMPLIANT MECHANISM TOPOLOGIES members of support, loading and output regions in which the

Using an improved initial population strategy, topologigs members of loading and output regions get deformed by which
curvilinear path generating compliant mechanism are exblvthe minimum weight design accomplishes the task of tracing
using a local search based NSGA-II procedure. The desigrPrescribed path, as shown in Figure 7(b).
domain of compliant mec_:hanism is.disgretized Wﬁh.by B. Non-Dominated Topologies
50 rectangular elements in and y directions respectively. _ ) _ _ .

A material with Young's modulus 08.3 GPa, flexural yield !N this section, non-dominated topologies of compliant
stress 0f6.9 MPa, density ofl.114 gm/cn and Poisson ratio Mechanism generating curvilinear path are evolved by sglvi
of 0.40, is assumed for synthesis of compliant mechanisift [Wo-Objective problem (refer Equation 1) using a locafsea
Here, a prescribed path is divided into five precision poinf2Sed evolutionary (NSGA-II) optimization procedure. Aotw
and the trajectory traced by output point of a structure bjective Space IS drawn in Flgure 8 to display the Iocatnﬁns
evaluated through a geometric nonlinear FE analysis usifgPresentative NSGA-II solutions and local search sofstio
ANSYS software. During the FE analysis, a small regioH reveals that out of six representative solutions of NSIBEA-

near the support position is declared as plastic zone afiyg of them become a part of non-dominated front as listed
is not considered for stress constraint evaluation. A gprin

of constant stiffnessx( = 0.4 KN/m) is attached to the N er07 _ | | ‘
output port for providing some resistance to simulate a real 4 | ! 4. Minimum weight design + |
application. Among the non-dominated solutions of NSGA-Il £ a . NSGA-II'solutions™ *
six solutions are selected as representative solutiorts tive % 8e+06 | S ]
help of a clustering procedure. 3 F b x 3 e
As a compliant mechanism is designed to have any sup- ‘g 6e+06- ¢ A
port and loading regions with varying input displacement < L |
magnitude, GA operations oh2 bits assist in developing §4e+os— ! |
the non-dominated topologies. During the whole study, the & L, 6
structures are subjected to fixed output region, directibn o 3 I 7 LR R =]
input displacement magnitude and a prescribed path. Here, a £ 26*%%, 05 06 07 08 09

input displacement is applied in equal steps at the loading Weight of structure (gms)

region in z direction as shown in Figure 1. It also showsig. 8. NSGA-II solutions before and after local search anpared with
the coordinates of output poiri50, 32), and the support and the single-objective 'minimum-weight design.
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from solution1 to 5 after the local search. These solutions o ;sei0el P* -
show a trade-off between the objectives of weight and sedpli 3 c xl% o
. . . 5 r e 7
input energy to the structures. The given figure also shows a 2 d -

" .. . . . . () L | 4
position of minimum weight design solution corresponding = &5¢+0§ S
i i i i _ i i [=3 | | | | | |
to its input energy supplied value in two-objective spade. | £ 06 08 1 " 14 1

indicates that solutiong and 2 are evolved as the lighter
weight solutions and also required less supplied energy in
comparison with the minimum weight design solution. Hence,
these solutions dominate the minimum weight solution of
single-objective study. It reveals a fact that the secondar . .
objective of minimizing supplied input energy not only helpthe form_ulanon [26] used in the_ present stud_y succe;sfglly
in evolving diverse topologies in one run of optimizatioiccOMPplishes the task of generating a user-defined patimwith
but also generates non-dominated solutions with the pyimdhe allowed deviation o = 15% at the precision points. The
objective of minimizing the weight of structures. On thearth OUtPut point of these structures is deformedi®486% in
hand, a single objective study only deals with the optiniizat dlrectl(_)n and17..72% in y direction with respect to the size
of one objective and may result in a premature sub-optim@j design domain.
solution. The times taken by the given optimization procedure for
A pictorial view of paths generated by the solutions obtdine®©Ving the single and bi-objective optimization problems
after the local search of single and two-objective studi@d® Shown in Table Il. In the parallel computing, the max-
is shown in Figure 9 along with a prescribed path. Fdfum time is consumed in the function evaluations of an
quantitative study of these paths, a Table I is drawn in whi@ptimization procedure whereas, the communication among
the values of maximum allowed dit each precision point andth€ Processors takes a smaller time. Therefore, the phralle
distance d between the precision point and correspondirfgiPlémentation of NSGA-II helps in reducing the computa-
point on the actual path are given. It can be seen here t@pal time almost in proportion to the number of processors
the value of d increases as the designs follow the precisigivilable, that is24 in the present study. The local search is
points from1 to 5 for all evolved solutions. This shows thatP€rformed individually in different processors which taae
the precision points defining the extreme parts of presdribgonsiderable amount of time of a given procedure to improve

path become critical. Both Figure 9 and Table | show thi€ representative NSGA-II solutions.
In the present study, a comparison is also made between

the solutions of two-objective studies which are obtaingd b

Weight of structure (gms)
Fig. 10. NSGA-II solutions of both initial population irafizations.

TABLE | incorporating a custom improved initial population strpte
DEVIATION AT PRECISION POINTS and by an usual way of creating an initial population of
— continuum structures in which the material in each element
Precision points (PP)] 1 [ 2 [ 3 1 4 1 5 . . .
Maximum allowedd, | 0.3196 | 0.3142 | 0.3074 | 0.3084 | 0.3092 of a structure is assigned at random (authors refer this as
Single-objective study 'Minimum weight solution’ a 'Random Initialization’). Therefore, another two-oljee
dz [ 0.1032 | 0.1739 | 0.2127 | 0.2470 | 0.3091 tudy i i | f i nitial
Two-objective study study incorporating an usual way of creating an initia plapu
Solution 1:d; 0.0290 | 0.0301 | 0.0324 | 0.1047 | 0.3058 tion with a local search based NSGA-II procedure is perfame
Solution 2:ds 0.0531 | 0.0829 | 0.1220 | 0.1979 | 0.3091 ; : :
Solution 3-do 00761 | 0.1082 | 0.1262 | 0.1812 | 0.3001 for comparison. Figure 10 shows the representative NSGA-II
Solution 4:ds 0.0226 | 0.0407 | 0.0256 | 0.1064 | 0.3091 solutions of both two-objective studies and it clearly rage
Solution 5:ds 0.0278 | 0.0516 | 0.0939 | 0.1766 | 0.3091 : : Fe :
Solution 6-d. 0.0161 | 0.0217 | 0.0588 | 0.1502 | 0.3083 that the NSGA-II solutions of an improved initial populatio

strategy dominate and explore the larger area of two-olbgect



3.6e+06 KT T T T T T T T
Local'search: Random injtialization+
Fol Local search: Custom Initialization x

3.4e+06] ! 1

3.2e+06- | R

3e+06 ,'x Foeen 1

3 :
2.8e+06- X 5 do T 6 1

Input energy to structure (10E-7

1 1 1 1
0.5 0.7 0.9 1.1 1.3 1
Weight of structure (gms) (

a) Solution 1: Undeformed (b) Solution 1: Deformed
Fig. 11. Local search solutions of both initial populatignitializations. [

space as well, in comparison with the NSGA-II solutions of
an usual way of generating an initial population.

The performance of a local search procedure is dependent
on the position of representative NSGA-I1I solutions in the o
jective space. As a good platform is provided by an improved
initial population strategy, the non-dominated local skar
solutions outperform that of the usual study of generating a (¢) Solution 2: Undeformed (d) Solution 2: Deformed
initial population as shown in Figure 11. Therefore, saos .

1 to 5 become the part 'Pareto-optimal’ front and their /
respective deformed and undeformed topologies are pedent
in Figure 12 in which solution is supported at0t" element

and remaining non-dominated solutions are supportetf’at
element. Solutior6 is a dominated solution and hence, it is
not a part of 'Pareto-optimal’ front. All the non-dominated
topologies show the different shapes and connectivity ef th
members of three regions of interest. When the deformed
topologies of extreme solutions are observed then Figufie)12
reveals that the members of support and loading regions get
deformed such that the output point of the design tracesra use
defined path whereas, Figure 12(j) indicates that a 'winding
shape of support region’s member near to the junction of the
members of three regions helps in deforming the topology to
trace a prescribed path by the output point. Thereforeethes
solutions will allow the designers to understand the topial
changes which will be helpful in choosing a particular siolat
among the trade-off solutions for practice.

The progress of non-dominated feasible solutions with
respect to the support region for both two-objective stsidie
is shown in Figure 13. The figure helps us in understand
the evolution of compliant mechanisms during the NSGA-
Il run. Using an improved strategy of generating the ini-
tial population, structures with diverse support regioms a ==
obtained during NSGA-Il run and after the completion of :
its run, representative solutions supported4&t, 10** and
3274 elements are found to be present. Similar diversities are
also observed when the progress of non-dominated feasible ===
solutions are drawn with respect to the loading region and
input displacement magnitude. But finally, all structures a
loaded at32™¢ element with an input displacement Bfimm.

It is interested to note that NSGA-II procedure finds ideaitic 7'9- 12.  Non-dominated topologies of compliant mechanigeserating
. . . . . . urvilinear path. Solution 6 is dominated, hence not shown.

loading location and an identical input displacement fdr al

obtained trade-off solutions. The only way the solutiorfiedi
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Fig. 13. Progress of non-dominated feasible solutionsnguNSGA-II run. Some diversity is maintained in the improwschtegy

from each other is by altering their topologies, as shown Bignificantly improved the NSGA-II solutions in a considali
Figure 12. The minimum weight structure seems to be a quaenount of time of the given optimization procedure.

rigid and requires a larger amount of supplied energy (refer
Figure 12(b)). To reduce the supplied energy, NSGA-II finds
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that the structures should have a 'winding’ shape so that the Authors acknowledge the support from the Academy of Finland
are more elastic (refer Figure 12(j)). Although this incges and Foundation of Helsinki School of Economics under thengra
the weight of the structure but the saving in supplied enerdy8319-

is also significant and hence, results as a trade-off salutio
Similarly, the topologies of Figures 12(d), 12(f) and 12450
become a part of compromised solutions. Using an usual wéy
of generating an initial population, all obtained struetuare
supported a”¢ and loaded a60'" elements, and requires [2]
9 mm of input displacement for accomplishing the task 0f3]
generating a prescribed path. As Figure 13 shows that all
structures are supported with identical location in thelyear [4]
iterations of NSGA-II for the usual study, therefore it risu
in a set of similar solutions and prematurely convergesecloss)
to a sub-optimal feasible solutions. The key change neemled t
get better and diverse solutions is to alter the locationthef
support and loading elements as well as loading displacemep;
magnitude.
V. CONCLUSIONS 7
A successful attempt of incorporating an improved initial[s]
population strategy was made for evolving the topologies
of path generating complaint mechanism. The two-objective
problem of primary and secondary objectives not only eviblve [9]
the diverse topologies but also provided a flexibility toigas
ers for understanding the topological changes in the dssign
X ) : - q10]
and choosing a particular solution from a set of non-doneidat
solutions in one run of a local search based evolutionary
(NSGA-II) optimization procedure. The shape and nature
of connectivity of the members of three regions helped %1]
generating diverse topologies and resulted in the trafle-gf2]
between the two-objectives. The comparison between the two
strategies of generating an initial population also showed
that the obtained non-dominated solutions of improvedaihit [13]
population strategy outperformed that of the usual studhe T
formulation used for designing the path generating complia[14]
mechanism also helped in evolving the topologies which
accomplish the task of generating a user-defined path.lé’larjlé
implementation of NSGA-II in the present study also help
in reducing the computational time, whereas the local $earc
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