

Lab Sessions Drawing halls: 1205 and 1206, Core 1				
FN Lab session (9-12noon)	AN Lab session (2-5PM)			
ME111 (L8)	ME111 (L3)			
ME111 (L6)	ME111 (L1)			
ME111 (L9)	ME111 (L4)			
ME111 (L7)	ME111 (L2)			
ME111 (L10)	ME111 (L5)			
 Tables in both drawing with registration numb Details of seating arra 	y halls will be arranged er on it. ngement will be			
uploaded on http://shilloi.iitg.ernet.i	n/~dsharma/me111.htm			

Deeme	Monday			
Rooms	9 – 12 Noon	2 – 5 PM		
1205	Dr. Nandakishore (CL)	Prof. S. K. Dwivedy (ME)		
1206	Dr. V. Prabu (CL)	Dr. Senthil Murugan (CL)		
	Tuesday	,		
1205	Dr. Pankaj Tiwari (CL)	Dr. S. S. Gautam (ME)		
1206	Dr. Ajay Kalamdhad (CE) Dr. Sreedeep S. (CE			
	Wednesda	ау		
1205	Dr. D. Sharma (ME)	Dr. D. N. Basu (ME)		
1206	Dr. R. Prasanna (CL)	Prof. Jawed (CE)		
	Thursday	1		
1205	Dr. Nageswara Rao Peela (CL)	Dr. Nageswara Rao Peela (CL) Dr. M. Das (ME)		
1206	Dr. G. Indu (CE)	Prof. M. Pandey (ME)		
	Friday			
1205	Dr. Abhishek Sharma (CE)	Dr. Raghvendra Gupta (CL)		
1206	Dr. R. Anandalakshmi (CL)	Dr. Mallikarjuna (CE)		

Why Drawing for Engineers?

Engineering is the profession in which a knowledge of the mathematical and natural sciences gained by study, experience and practice is applied with judgment to develop ways to utilize economically the material and forces of nature for the benefit of mankind-**ABET** (Accreditation Board for Engineering and Technology).

- In a process of product development, two steps are involved:
 - ➢Product specification
 - Product drawing

Although the works of artists (or photography and other method of reproduction) may provide pictorial representation, they cannot serve as engineering descriptions.

Why this Banyan tree drawing is not engineering drawing?

A new machine, structure, product must exist in the mind of the engineers before it can become a reality.

- Original concept or idea is usually placed on paper or as an image on a computer screen and,
- Communicated to others by way of the graphic language in the form of freehand sketches.
- These free hand sketch are followed by other, more exact, sketches as the idea is developed more fully.

The engineer must understand how to read and write in the graphic language

Engineers must be able to create idea sketches, calculate stresses, analyze motions, size parts, specify materials and production methods, make design layouts and supervise the preparation of drawings and specifications that will control the numerous details of product manufacture, assembly and maintenance

Although people around the world speak different language(about 7000), a universal graphic language has existed since the earliest of times.

The earliest forms of writing were through picture forms such as *Egyptian hieroglyphics*. Later these forms were simplified and became the abstract symbols used in our writing today

Drawing is a graphic representation of:

- a real thing,
- an idea or,
- a proposed design for later manufacture or construction.

Graphic representation:

- 1. Artistic: to express aesthetic, philosophic or other abstract ideas
- 2. Technical: to represent the design of objects to be built or constructed

What Engineering Students Should Know?

- For any product design or development, graphical language is always required with technical knowledge
 - Today the intimate connection between engineering and science, and the universal graphic language is more vital that even before
- Artistic talent is no longer a prerequisite to learning the fundamentals of the graphic language.
 - Instead today's graphics student needs the same aptitudes, abilities and computer skills that are needed in science and engineering courses
- A well trained engineers must be able to make and read correct graphics representations of engineering structures, designs and data relationships.
 - Understand the fundamental principles or the grammar of the language and be able to execute the work with reasonable skill ¹⁵

What Engineering Students Should Know?

- Students will learn the meaning of neatness, speed, and accuracy for the first time in a drawing course. These are basic and necessary habits for every successful engineer
- The ability to think in three dimensions
 - Learning to visualize objects in space, to use the constructive imagination is one of the principal values to be obtained from a study of the graphic language

Engineering Drawing M

ME 111 1-0-3-5

Syllabus: Importance of engineering drawing; Conventions and standards: ISO; Scales; Curves; Orthographic projections: points, lines, planes and solids; Sections of solids; Isometric projections; Development of surfaces; Intersection of solids

Texts:

N. D. Bhatt, Engineering drawing, Charotar Publishing, 50th Edition, 2011
Dhananjay A. Jolhe, Engineering Drawing, Tata McGraw Hill,2011
M. B. Shah and B. C. Rana, Engineering Drawing, 2nd Ed., Pearson Education,2009

References:

T E French, C J Vierck and R J Foster, Graphic Science and Design,4th Ed., McGraw Hill,1984

W J Luzadder and J M Duff, Fundamentals of Engineering Drawing,11th Ed., PHI,1995 K Venugoapl, Engineering Drawing and Graphics,5th Ed, New Age International,2011

Lab No	Торіс
1	Lettering, Dimensioning and Engineering Curves: Parabola, Ellipse
	Hyperbola, Cycloids and Involutes
2	Scales: Plain, Vernier and Diagonal scales
3	Orthographic projections:
4	Projection of straight lines I: Lines inclined to any one of the plane
5	Projection of straight lines II: lines inclined to both HP and VP, traces
6	Projection of solids I: Projections of solids in simple positions
7	Projection of solids II: Solids inclined in to one and both the planes
8	Sections of solids: Section of standard solids and True shape Section of
	standard machine elements
9	Development of surfaces: Development of standard solids full and
	sectioned solids
10	Isometric projections: Isometric projections of simple solids, simple and
	complex positions

_	Monday Lecture: 11-12 noon/ 2-3 PM Lab: 9-12 AM / 2-5 PM	Tuesday No Lecture Lab:9-12 AM / 2-5 PM	Wednesday No Locture Lab: 9-12 AM/2-5 PM	Thursday Lecture: 9-10 AM/ 4-5 PM Lab: 9-12 AM / 2-5 PM	Friday Lecture: 10-11 AMJ 3-4 PM Lab:9-12 AM / 2-5 PM]
Week			30.07.14	31.07.14 Lecture 1 Introduction, Lettering and Dimensioning	01.08.14 Lecture 2 Engineering Curves]
283		2	No-Lab	No-Lab	No-Lab	
Week	04.08.14 Lecture 3 Engineering Curves	05.08.14	06.08.14 (Friday Time Table)	07.08.14 Lecture 4 Scales	08.08.14 Lecture 5 Orthographic Projections	
2	04.08.14 No-Lab	05.08.14 Lab 1 Engineering Curves	06.08.14 (Friday Time Table) Lab 1 Engineering Curves	07.08.14 Lab 1 Engineering Curves	08.08.14 Lab 2 Scales	
Week	11.08.14 Lecture 6 Orthographic Projections	12.08.14	13.08.14	14.08.14 Lecture 7 Orthographic Projections	15.08.14	
3	11.08.14 Lab 1 Engineering Curves	12.08.14 Lab 2 Scales	13.08.14 Lab 1 Engineering Curves	14.08.14 Lab 2 Scales	Holiday	
Week	18.08.14 Lecture 8 Projection of Lines 1	19.08.14	20.08.14	21.08.14 Lecture 9 Projection of Lines I	22.08.14	
1	18.08.14 Lab 2 Scales	19.08.14 Lab 3 Orthographic Projections	20.08.14 Lab 2 Scales	21.08.14 Lab 3 Orthographic Projections	22.08.14 Lab 3 Orthographic projections	
Week	25.08.14 Lecture 10 Projection of Lines 1	26.08.14	27.08.14	28.08.14 Lecture 11 Projection of Lines-II	29.08.14	
5	25.08.14 Lab 3 Orthographic Projections	26.08.14 Lab 4 Projection of Lines-1	27.08.14 Lab 3 Orthographic Projections	28.08.14 Lab 4 Projection of Lines-I	29.08.14 Lab 4 Projection of Lines-I	
Week	01.09.14 Lecture 12 Projection of Lines-II	02.09.14	03.09.14	04.09.14 Lecture 13 Projection of Solids I	05.09.14	
6	Projection of Lines I	Projection of Lines II	Projection of Lines I	Projection of Lines II	1 conside	
Week	08.09.14 Lecture 14 Projection of Solids I	09.09.14	10.09.14	11.09.14 Lecture 15 Projection of Solids I	12.09.14	
1	08.09.14 Lab 5 Projection of Lines II	09.09.14 No-Lab	10.09.14 Lab 5 Projection of Lines II	11.09.14 No-Lab	12.09.14 Lab 5 Projection of Lines II	
Week	15.09.14 Lecture 16 Projection of Solids II	16.09.14	17.09.14	18.09.14 Lecture 17 Projection of Solids II	19.09.14 Lecture 18 Section of Solida	
	15.09.14 Lab 6 Projection of Solids I	16.09.14 Lab 6 Projection of Solids I	17.09.14 Lab 6 Projection of Solida I	18.09.14 Lab 6 Projection of Solids I	19.09.14 Lab 6 Projection of Solids I	1
Week		ME 111 Mid-seme	ster examination (20)	09/2014, Saturday)		
Week	22 to 29 September	30.09.14	01.10.14 (Thursday Time Table) Lecture 19 Section of Solids	02.10.14	1.54 03.30.54 Jany Hobiday	
10	Mid semester week	30.09.14 No-Lab	01.10.14 (Thursday Time Table) Lab 7 Projection of Solida II	Holiday		
Week	06.10.14	07.10.14	08.10.14	09.10.14	10.10.14	11.10.14 (Friday Time Table)
		Projection of Solids II	Projection of Solids II	Section of Solids	Projection of Solids II	Time Table) No-Lab
Week	13.10.14 Lecture 20 Development of Surfaces	14.10.14	15.10.14	16.10.14 Lecture 21 Isometric Projections	17.10.14	18.10.14 (Friday Time Table)
	13.10.14 Lab 7 Projection of Solids II	14.10.14 Lab 8 Section of Solids	15.10.14 Lab 8 Section of Solida	16.10.14 Lab 9 Development of Surfaces	17.10.14 Lab 8 Section of Solids	18.10.14 (Friday Ti Table) No-Lab
Week	20.10.14 Lecture 22 Isometric Projection	21.10.14	22.10.14	23.10.14	24.10.14	
	Section of Solids	of Surfaces	Development of Surfaces	TIDECKY	Tioncay	
Week	27.10.14 Lecture 23 Isometric Projection	28.10.14	29.10.14	30.10.14 Lecture 24 Intersection of surfaces	31.10.14	
14	27.10.14 Lab 9 Development of Surfaces	28.10.14 Lab 10 Isometric Projection	29.10.14 Lab 10 Isometric Projection	30.10.14 Lab 10 Isometric Projection	31.10.14 Lab 9 Development of Surfaces	
Week	03.11.14 Lecture 25 Intersection of surfaces	04.11.14	05.11.14	06.11.14	07.11.14 Lecture 26 Computer Aided Drawing]
15	03.11.14 Lab 10 Isometric Projection	TIOLOGY	05.11.14 No-Lab	monday	07.11.14 Lab 10 Isometric Projection	
	End semester exam: 0	08/11/2014 (Saturday) Sem 09/11/2014 (Sunday) Sem	ion 1: 08:30AM-10:30A1 tion 4: 08:30AM-10:30A	M, Section 2: 11:00AM-12 M, Section 5: 11:00AM-11	M, Service 5: 2PM-4PM PM, Service 6: 2PM-4PM	

<section-header><section-header><text><text><text>

Lettering Rules

- 1. Draw letters as simple as possible. Artistic or cursive lettering should be strictly avoided.
- 2. Draw letters symmetrical about the vertical axis or horizontal axis. Asymmetric letters like, F, R, Z, 4, etc., may be drawn as they are.
- 3. Round-off the sharp corners wherever necessary, e.g., D, P, S, etc.
- 4. Draw all letters legible and uniform.
- 5. The height of all the letters in one line should be the same.
- 6. Use single stroke vertical CAPITAL letters as much as possible.

A	Continuous thick or Continuous wide	Visible outlines, visible edges; crests of screw threads; limits of length of full deph thread,lines of cuts and section arrows; parting lines of moulds in views; main representation in diagrams, maps, flow charts; system lines(structural metal engg.)
B	Continuous thin (narrow) (straight or curved)	Imaginary lines of intersection; grid, dimension, extension, projection, short centre, leader, reference lines; hatching; outlines of revolved section root of screw threads; interpretation lines of tapered features; framing of details; indication of repetitiv details;
c	Continuous thin (narrow) freehand	Limits of partial or interrupted views and sections, if the limit is not a chain thin line
D / /	Continuous thin (narrow) with zigzags (straight)	Long-break line
E	Dashed thick (wide)	Line showing permissible of surface treatment
F	Dashed thin (narrow)	Hidden outlines; hidden edges
G	Chain thin Long-dashed dotted (narrow)	Centre line; lines of symmetry; trajectories; pitch circle of gears, pitch circle of holes,
H THICK THIN THICK	Chain thin (narrow) with thick (wide) at the ends and at changing of position	Cutting planes
J	Chain thick or Long-dashed dotted (wide)	Indication of lines or surfaces to which a special requirement applies
к	Chain thin double-dashed or long-dashed double-dotted (narrow)	Outlines of adjacent parts Alternative and extreme positions of movable parts Centroidal lines Initial outlines prior to forming

Dimension line: Dimension line is a thin continuous line. It is terminated by arrowheads touching the outlines, extension lines or centre lines

Extension lines: An extension line is also a thin continuous line drawn in extension of on outline. It extends by about 3 mm beyond the dimension line

Arrowheads: An arrowhead is placed at each end of a dimension line. Its pointed end touches an outline, an extension line or a center line. The size of an arrowhead should be proportional to the thickness of the outlines. The length of the arrowhead should be about three times its maximum width

Leader: A leader or a pointer is a thin continuous line connecting a note or a dimension figure with the feature to which it applies.

- Dimension lines should be drawn at least 10 mm away from the outlines
- Smaller dimensions should be placed nearer the view and the larger further away so that extension lines do not cross dimension lines
- As far as possible, all the dimensions should be placed outside the views. Inside dimensions are preferred only if they are clearer and more easily readable

All the dimensions on a drawing must be shown using either Aligned System or Unidirectional System. Two systems be mixed on the same drawing.

15

15

50

50

40

60

 $\emptyset 20$

S

 $\emptyset 20$

1 15

+

15

Aligned System: <u>D</u>imensions are placed perpendicular to the dimension line so that they may be read from the bottom or right-hand side of the drawing sheet. Dimensions are placed at the middle and above of the dimension lines.

Unidirectional System: <u>D</u>imensions are placed in such a way that they can be read from the bottom edge of the drawing sheet. Dimension lines are broken near the middle for inserting the dimensions.

Overall dimension shall be placed outside the intermediate dimensions. i.e smaller dimensions shall be placed nearer the view and the larger farther away so that extension lines do not cross dimension lines

(V) 21		Section overlap the dimension 21.
(vi) 90°	90°	The outlines of the object are used as the extension lines.
		 Smaller circle is designated with radius. Convention 'Ø' for diameter is placed after dimension. Leader has arrow and it is drawn horizontal.

Summary

- Course Information
- Introduction to ED
- Drawing instruments
- Lettering
- Lines
- Dimensioning

Reading task: revise all above contents from the book.