
Computations of Binomial Ideals

A Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Deepanjan Kesh

to the

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

February, 2012

mailto:deepkesh@cse.iitk.ac.in
http://www.cse.iitk.ac.in
http://www.iitk.ac.in

ii

CERTIFICATE

It is certified that the work contained in the thesis entitled “Computations of

Binomial Ideals”, by “Deepanjan Kesh”, has been carried out under my supervision

and that this work has not been submitted elsewhere for a degree.

(Dr. Shashank K Mehta)

Professor,

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

February, 2012

iv

Synopsis

Consider the polynomial ring k[x1, . . . , xn], where k is a field. A binomial in

such a ring is a polynomial of the form

c · xα + d · xβ,

where c, d ∈ k and α, β ∈ Zn
≥0. A binomial of the form

xα − xβ

is called a pure difference binomial. An ideal in the polynomial ring k[x1, . . . , xn]

which has a generating set comprising only of binomials is called a binomial ideal. If

a basis has only pure difference binomials, then the ideal is called a pure difference

binomial ideal. In this thesis, we will be concerned with the computations of various

binomial ideals.

One of the most useful ideas in computational commutative algebra is the notion

of Gröbner basis of an ideal in a polynomial ring k[x1, . . . , xn]. Most algorithms

in commutative algebra are based on the computation of Gröbner bases of ideals,

for example equality of ideals, ideal membership, intersection of ideals, elimination

ideals, computing varieties (CLO07; AL94). In most cases, the computational cost

of the problem is dominated by the computational cost of these bases. Computation

of Gröbner basis is very sensitive to the number of variables in the underlying

polynomial ring (MM82). This suggests that computations, if possible, should be

delegated to rings of fewer variables.

This idea has been exploited in the computation of toric ideal by Hemmecke and

Malkin (HM09). Computation of toric ideals, which are a sub-class of pure difference

binomial ideals, involve the computation of saturation. There are several well known

algorithms to compute toric ideals (HS95; CT91; BSR99). In all of these algorithms,

all Gröbner basis computations are performed in the original ring k[x1, . . . , xn], to

which the ideal belongs. Hemmecke and Malkin proposed the Project and Lift

algorithm in which bulk of the computation is performed in rings of lesser number

of variables, namely, k[x1, . . . , xi]. In their approach , they use the projection map

π : k[x1, . . . , xn]→ k[x1, . . . , xi] given by π(f) = f |xi+1=1,...,xn=1. In order to lift the

ideals back to the original ring it is essential that π induces an isomorphism of the

relevant class of ideals in the two rings. Their algorithm locates situations, if any,

where such isomorphism exists. There it maps the ideal to an ideal in the lower

ring, computes its saturation and lifts it back to the original ring.

In this thesis, motivated by Project and Lift algorithm, we develop new projection

homomorphisms and apply it to a variety of computations.

In Chapter 2 of the thesis, we present an algorithm for computing toric ideals

where, unlike Project and Lift, we symbolically project the ideal to k[x1, . . . , xi]. This

in turn amounts to the computation of one Gröbner basis in k[x1, . . . , xi] for each i.

This symbolic projection allows us to compute the saturation of all pure-difference

binomial ideals, not just toric ideals.

In Chapter 3, we further develop the idea of projection into rings with lesser

number of variables using a more sound approach based on localization. The local-

ization of polynomial rings in our case leads to rings which are polynomial rings

over localized rings. As Gröbner basis is not defined for ideals in such rings, we

propose the concept of pseudo Gröbner basis for binomial ideals in these rings. We

also adopt Buchberger’s algorithm to compute pseudo Gröbner basis and generalize

a crucial result about Gröbner basis to pseudo Gröbner basis. Using this machinery,

we devise a saturation algorithm for homogeneous binomial ideals (not just pure

difference binomial ideals).

A Divide and Conquer Method

In Chapter 4, we further extend the idea of projecting into rings of fewer variables

and propose a general framework to a variety of computation related to binomial

ideals. We propose a divide-and-conquer technique to solve the computational prob-

lems in the domain of binomial ideals.

I k[x1, . . . , xn]

A(I + 〈 x1 〉)

k[x2, . . . , xn]

A(I : x∞
1)

k[x±
1 , x2, . . . , xn]

f(I)

k[x1, x2, . . . , xn]

Figure 1: Reducing the problem in smaller rings.

The essence of the strategy has been described in Figure 1.1. Consider the

polynomial ring R[x1, . . . , xn], a binomial ideal I ⊆ R[x1, . . . , xn] and A(I) denotes

the object to be computed. Here R is a Laurent polynomial ring. The pseudo

Gröbner bases are well defined in R[x1, . . . , xn]. As the figure suggests, we reduce

the problem into three subproblems –

A (I+ 〈 x1 〉) – Ideal I + 〈 x1 〉 is mapped into the ring R[x2, . . . , xn] by the nat-

ural modulo map from R[x1, . . . , xn] → R[x2, . . . , xn], the computations are

performed in this smaller ring, and the solution is mapped back to the parent

ring.

A (I : x∞
1) – Ideal I : x∞

1 is mapped into the ring R[x±
1 , x2, . . . , xn]. The ± sign over

the variable x1 denotes that we allow negative indices for x1. For the purposes

of the computations involved, we will be treating the ring as polynomial ring

in variables {x2, . . . , xn} over the Laurent polynomial ring R′ = R[x±
1].

f(I) – This subproblem is to be solved in the original ring R[x1, . . . , xn], where the

function f depends on the problem we are tackling. This approach becomes ef-

fective only if f(I) computation does not involve the computation of a Gröbner

basis.

Solutions of these subproblems are lifted to the original ring and combined to

compute the solution of the original problem. This combination step depends on

the problem under consideration. The first two subproblems are solved recursively.

In this thesis, we have applied this framework on the following four problems –

radical, minimal primes, cellular decomposition, and saturation of binomial ideals.

Acknowledgement

I am deeply indebted to my thesis supervisor Prof. Shashank K Mehta for his

guidance throughout my Ph.D. tenure. His enthusiasm and sincerity is infectious.

Almost all of the work that have been carried out towards this thesis has been the

result of my discussions with him. He has spent countless hours with me whenever I

was bereft of ideas and I was not making any discernible progress towards my thesis.

His guidance and generosity was not restricted to the academic sphere, but he has

also lend an immense helping hand in my social life. I will forever be indebted to

him.

I would also like to express my gratitude towards my family - my mother for her

ceaseless, sometimes if not foolish, optimism; my father for his relentless support;

and my sister forever believing in me. It would be a fool’s errand to describe the role

they have played in my life, because no matter how much I try I cannot do justice.

My only wish is to justify their support and try to live up to their expectations.

I, humbly, would like to thank Prof. Sumit Ganguly for introducing me to the

world of scientific research and for allowing me to work with him resulting in my

first academic publication. I wish I could have worked harder to repay his faith

in me. I would also like to thank various faculties of our department including

Prof. Somenath Biswas and Prof. Manindra Agrawal for instilling the right kind of

attitude towards problem solving and research in general.

Life as a Ph.D. scholar would be an ordeal if not for the presence of one’s friends.

I was fortunate enough to be blessed with a myriad of friends, and I would like to

thank all of them for their support. I would especially like to thank Ramprasad

Saptharishi, Suman Guha and Chandan Saha for always being there for me, and

for the countless hours of counselling I received from them. I would also take this

x Acknowledgement

oppurtunity to thank Sagarmoy Dutta for his honesty which has always helped me

find perspective, when I needed it the most.

I would also like to thank Microsoft Research India and IMPECS for funding

parts of my Ph.D. programme. I would also like to thank Department of Computer

Science and Engineering at IIT Kanpur for funding my trips to attend conferences

which has helped me immensely in my thesis work.

To my family

xii Acknowledgement

Contents

Acknowledgement ix

1 Introduction 1

1.1 Why Study Binomial Ideals? . 1

1.2 Focus of the thesis . 2

1.3 Computing Toric Ideals . 4

1.3.1 Problem Statement . 4

1.3.2 Solution . 5

1.3.2.1 Previous work . 5

1.3.2.2 Our Approach . 6

1.4 Saturating Binomial Ideal . 7

1.4.1 Problem Description . 7

1.4.2 Solution . 7

1.5 A General Framework . 8

2 Generalized reduction to compute toric ideals 11

2.1 Introduction . 11

2.1.1 Problem Description . 11

2.2 Surjective ring homomorphism . 12

2.3 Homogeneous polynomials and saturation 14

2.3.1 Homogenization . 14

2.3.2 Ideal Saturation . 15

2.4 Shadow algorithms under a surjective homomorphism 16

2.4.1 Shadow S-polynomial . 17

2.4.2 Shadow division . 18

xiv CONTENTS

2.4.3 Shadow Gröbner Basis . 21

2.4.4 Shadow reduced Gröbner basis 23

2.5 Binomial ideals . 26

2.6 Projection Homomorphism . 27

2.7 A fast algorithm for computing toric ideals 29

2.8 Experimental Results . 33

3 A Saturation Algorithm for Homogeneous Binomial Ideals 35

3.1 Introduction . 35

3.1.1 Problem Description . 35

3.1.2 Our Approach . 36

3.1.3 Refined Problem Statement 38

3.2 Chain and chain-binomial . 38

3.3 Decomposition into chains . 41

3.4 Reduction of U -binomials . 44

3.5 Pseudo-Gröbner Basis . 47

3.6 Saturation with respect to xi . 50

3.7 Final Algorithm . 52

3.8 An Application: Computing kernels 55

3.9 Preliminary Experimental Results . 58

4 A Divide-and-Conquer Method to Compute Binomial Ideals 61

4.1 Introduction . 61

4.2 Rings and Ideal Basics . 62

4.2.1 Irreducible decompositions . 63

4.2.2 Primary Ideals . 64

4.3 Two Ring Homomorphisms . 66

4.3.1 Modulo Map . 66

4.3.2 Localization map . 68

4.4 The Algorithm . 71

4.4.1 Computing Modulo . 74

4.4.2 Computing Localization . 75

4.4.3 pseudo-Gröbner Basis . 75

4.5 Computing A(I) . 76

CONTENTS xv

4.5.1 Radical Ideal . 76

4.5.2 Cellular Decomposition . 78

4.5.3 Prime Decomposition . 80

4.5.4 Saturation . 82

Index 83

A Ring Basics 85

A.1 Rings . 85

A.2 Ideals . 86

A.3 Rings homomorphisms . 88

B Gröbner basis 89

B.1 Introduction . 89

B.2 Polynomial Rings . 89

B.2.1 Basics . 89

B.2.2 Polynomial Division . 92

B.2.3 Gröbner Basis . 94

B.2.4 Gröbner basis in action . 96

References 97

xvi CONTENTS

Chapter 1

Introduction

Consider the polynomial ring k[x1, . . . , xn], where k is a field. A binomial in such

a ring is a polynomial of the form

c · xα + d · xβ,

where c, d ∈ k and α, β ∈ Zn
≥0. An ideal in the polynomial ring k[x1, . . . , xn], which

has a generating set comprising only of binomials, is called a binomial ideal . In

this thesis, we will be concerned with the computations of various binomial ideals.

1.1 Why Study Binomial Ideals?

Binomial ideals, unlike general polynomial ideals, possess rich combinatorial struc-

ture which can be exploited while computing various structures derived from them,

for example Gröbner bases, primary decomposition, and associated primes (Tho95;

ES96; Kah10). Pure difference binomials are binomials of the form xα − xβ. The

varieties of pure difference prime binomial ideals are exactly the toric varieties.

Hence, such ideals are also known as toric ideals (Ful93). Moreover, quotients of

polynomial rings by pure difference binomial ideals form commutative semigroup

rings (Gil84). There is a large literature studying applications and computations of

toric ideals (Stu95; BSR99).

Apart from a purely academic interest in the subject of binomial ideals, their

study is also motivated by the fact that they are often encountered in interesting

problems in diverse fields. These include solving integer programs (HS95; CT91;

2 Introduction

UWZ97a; TW97), computing primitive partition identities (Stu95, Chapters 6,7),

and solving scheduling problems (TTN95). In algebraic statistics, closures of discrete

exponential families have been identified with nonnegative toric varieties (GMS06).

Primary decomposition of binomial ideals enter algebraic statistics while modelling

conditional independences among random variables (DSS09).

The theory of binomial ideals was developed in a seminal paper by Eisenbud and

Sturmfels (ES96). Their paper not only showed various properties of binomial ideals

– for example, the radicals and associated primes of binomial ideals are themselves

binomial ideals – but they also show how to compute these structures.

1.2 Focus of the thesis

One of the most useful ideas in computational commutative algebra is the notion

of Gröbner basis of an ideal in a polynomial ring, say k[x1, . . . , xn]. It has found

many applications in computations related to these ideals – equality of ideals, ideal

membership, intersection of ideals, elimination ideals, computing varieties, to name

a few (CLO07; AL94). Presently every non-trivial algorithm for computation of

ideals is based on the computation of some Gröbner basis. The first and perhaps the

most popular algorithm to compute a Gröbner basis is due to Buchberger (Buc76).

Recently, Faugére (Fau99; Fau02) has presented much faster algorithms to compute

Gröbner bases. A more detailed discussion of the properties of Gröbner bases and

the Buchberger algorithm can be found in Appendix B.

We now state two crucial observations which motivated this thesis –

• Most of the computations involving binomial ideals compute one or more

Gröbner bases (ES96), and

• Any algorithm to compute Gröbner basis is very sensitive to the number of

variables in the underlying polynomial ring. (MM82)

So, it would seem judicious if part of the computations can be done in rings having

smaller number of variables, and use this result to arrive at a solution for the original

problem.

1.2 Focus of the thesis 3

This idea has been exploited in the computation of toric ideal by Hemmecke

and Malkin (HM09). Computation of toric ideals, which are a subclass of pure

difference binomial ideals, involve the computation of saturation. There are several

well known algorithms to compute toric ideals (HS95; CT91; BSR99). In all of

these algorithms, all Gröbner basis computations are performed in the original ring

k[x1, . . . , xn], to which the ideal belongs. Hemmecke and Malkin (HM09) proposed

the Project and Lift algorithm in which bulk of the computation is performed in

rings of lesser number of variables, namely, k[x1, . . . , xi]. In their approach, they use

the projection map π : k[x1, . . . , xn]→ k[x1, . . . , xi] given by π(f) = f |xi+1=1,...,xn=1.

In order to lift the ideals back to the original ring it is essential that π induces an

isomorphism of a relevant class of ideals. Their algorithm locates situations, if any,

where such isomorphism exists. There it reduces the ideal to a lower ring, computes

its saturation and lifts it back to the original ring.

In this thesis, motivated by Project and Lift algorithm, we develop new projection

homomorphisms which can be applied to the computation of a variety of binomial

ideals.

In Chapter 2 of the thesis, we present an algorithm for computing toric ideals

where, unlike Project and Lift, we symbolically project the ideal to k[x1, . . . , xi].

This in turn amounts to the computation of one Gröbner basis in k[x1, . . . , xi] for

each i. While the algorithm due to Hemmecke and Malkin (HM09) is specifically

designed to compute toric ideals, our algorithm can compute saturation of arbitrary

pure difference binomial ideals.

In Chapter 3, we further develop the idea of projection onto rings with lesser

number of variables using a more sound approach based on localization of polyno-

mial ring. As Gröbner basis is not defined for ideals in such rings, we propose the

concept of pseudo Gröbner basis for binomial ideals in localized polynomial rings.

An algorithm to compute the saturation of homogeneous binomial ideals is proposed

based on pseudo Gröbner basis.

In the final chapter, a general framework is proposed for a divide and conquer

based algorithm in which a problem on i-variable polynomial ring is reduced to

problems in (i − 1)-variable polynomial rings. We apply this approach to compute

radical, prime decomposition, and cellular decomposition of a binomial ideal.

4 Introduction

1.3 Computing Toric Ideals

When it comes to applications, toric ideals are by far the most useful of all binomial

ideals. They are used in model selection tasks and integer programming (Tho95).

The applications of binomial ideals that we have seen earlier, like computing prim-

itive partition identities, and solving scheduling problem have all to do with toric

ideals.

1.3.1 Problem Statement

Let A ∈ Zm×n be an integer matrix –

A =


a11 a21 · · · an1
a12 a22 · · · an2
...

... · · · ...
a1m a2m · · · anm

 .

The lattice kernel of such a matrix is defined as –

kerA , { u ∈ Zn | A · u = 0 } .

i.e., integer solutions of Au = 0. For any u ∈ kerA, we further define the vectors

u+ and u− as –

u+[i] ,
{
u[i], u[i] > 0

0, otherwise

u− , u+ − u

The toric ideal of a matrix A, denoted by IA is defined to be the ideal

IA , 〈 { xu+ − xu− | u ∈ kerA } 〉.

Here, xv for any non-negative integer vector v ∈ Zn
≥0, is the monomial x

v[1]
1 x

v[2]
2 · · · x

v[n]
n .

Pure difference binomials are binomials of the form

xα − xβ.

So, toric ideals are pure difference binomial ideals. It was shown in (ES96), Corollary

2.2 that over algebraically closed field, toric ideals are also prime.

1.3 Computing Toric Ideals 5

Generating sets of toric ideals are known as “Markov Bases” in statistics. Chap-

ter 2 addresses the problem of computing a generating set of IA, which we loosely

call the problem of computing a toric ideal.

1.3.2 Solution

Suppose V is a lattice kernel basis, i.e., a basis of kerA which generates the kernel

vectors with integer coefficients. Let JV be the ideal

JV = 〈 { xu+ − xu− | u ∈ V } 〉.

It is easy to show that (Stu95, Chapter 4)

IA =
{
f ∈ k[x1, . . . , xn] | xαf ∈ JV , α ∈ Zn

≥0

}
.

The set on the right hand side is an ideal which is called the saturation of JV with

respect to all the variables in the ring k[x1, . . . , xn], and is defined as

JV : (x1 · · · xn)
∞ ,

{
f ∈ k[x1, . . . , xn] | xαf ∈ JV , α ∈ Zn

≥0

}
.

Then IA = JV : (x1 · · · xn)
∞.

We see that the computation of a toric ideal has two steps: computation of

lattice kernel basis, V and the saturation of JV . The first step has a polynomial

time solution by computing the Hermite normal form of A (KB79; CC82). The

more complicated and expensive step is the saturation computation.

1.3.2.1 Previous work

An early algorithm to compute IA involved computation of a Gröbner basis in a

polynomial ring of m + n + 1 variables (Stu95, Chapter 4), where A is the m × n

matrix.

An algorithm for saturation, working in n variables, is due to Biase and Urbanke

(BU95). It transforms the matrix A to another matrix A′ by negating some columns

such that one of the rows has all non-negative entries. If V ′ is the lattice basis of

A′, then they have shown that IA′ = JV ′ , i.e. no saturation is required. Now, to

compute the original ideal, they replace one negated column at a time by the original

6 Introduction

one and compute the toric ideal for the corresponding matrix from the generating

set of the previous matrix. Each step involves the computation of one Gröbner basis.

Another algorithm which also works in n variables is due to Sturmfels (HS95; Stu95).

It computes the toric ideal iteratively, computing the saturation with xi in the i-

th iteration. Each iteration involves the computation of one Gröbner basis. The

performances of the two algorithms are comparable, see (HS95). Bigatti et. al.

(BSR99) parallelized the Sturmfels’ algorithm.

As mentioned earlier, Hemmecke and Malkin (HM09) presented an entirely new

approach called Project and lift. Given σ ⊆ {1, . . . , n}, they define a projective map

πσ : Zn → Z|σ|

by setting components in σ to 1. Here, σ is the set {1, . . . , n} \ σ. Let L be the

lattice generated by kerA. Their algorithm starts with computing a set σ such that

kerπσ

∩
L = {0} and Lσ

∩
N|σ| = {0} .

The algorithm then perform |σ| Gröbner basis computations in a ring with |σ| vari-
ables and one Gröbner basis computation each in rings with variables |σ|+ 1, |σ|+
2, . . . , n, respectively. As it is evident, the bulk of the computation is performed in

rings having less than n variables.

1.3.2.2 Our Approach

We present an algorithm that requires the computation of one Gröbner basis in

k[x1, . . . , xi] for each i. Unlike Project and Lift, we symbolically project the ideal to

k[x1, . . . , xi].

While the algorithms due to Biase-Urbanke (BU95) and Hemmecke-Malkin (HM09)

is specifically designed to compute toric ideals, our algorithm can compute satura-

tion of arbitrary pure difference binomial ideals. On the other end of the spectrum,

Sturmfels’ algorithm is less efficient but it can compute saturation of arbitrary poly-

nomial ideal.

1.4 Saturating Binomial Ideal 7

1.4 Saturating Binomial Ideal

This problem finds applications in computing the radicals, minimal primes, cellular

decompositions, etc., of a homogeneous binomial ideal, see (ES96). As observed

earlier, it is also the key step in the computation of a toric ideal. Chapter 3 is

devoted to this problem.

1.4.1 Problem Description

Let

b = cxα + dxβ

be a binomial, and ~d ∈ Zn
≥0 be a vector. b is a said to be homogeneous w.r.t. ~d, if

~d · α = ~d · β.

Vector ~d is called the grading vector. An ideal with at least one homogeneous

binomial basis is called a homogeneous binomial ideal.

We describe a fast algorithm to compute the saturation, I : (x1 · · · xn)
∞, of a

homogeneous binomial ideal I. Every binomial ideal in a n-variable polynomial ring

can be “homogenized” using an additional variable.

1.4.2 Solution

There are algorithms to compute the saturation of any ideal in k[x1, . . . , xn] (not

just binomial ideals). One such algorithm is described in exercise 4.4.7 in (CLO07).

It involves a Gröbner basis computation in n+ 1 variables. Another solution is due

to Sturmfels (Stu95) which involves n Gröbner basis computations in n variables.

Our approach is the same as in the previous case, doing bulk of our computation

in rings with less number of variables compared to the original ring. In this case,

we propose a more sound approach to project an ideal to a ring of lesser number of

variables using localization. We also propose the concept of pseudo Gröbner basis for

binomial ideals in localized rings. This generalization of Gröbner bases is essential

for our saturation algorithm.

8 Introduction

1.5 A General Framework

In Chapter 4, we extend the ideas of the previous two chapters and propose a

general framework to compute several binomial ideals. We restate the two crucial

observations behind this work

• most of these computations involve computing Gröbner basis of some ideals,

and

• Buchberger’s algorithm to compute Gröbner basis is very sensitive to the num-

ber of variables in the underlying polynomial ring.

In light of these observations, we propose a divide-and-conquer technique to solve the

computational problems in the domain of binomial ideals. We apply this technique to

the computation of saturation, radical, minimal primes, and cellular decomposition

of binomial ideals.

The essence of the strategy has been described in Figure 1.1. Consider the

polynomial ring R[x1, . . . , xn], a binomial ideal I ⊆ R[x1, . . . , xn] and A(I) denotes

the object to be computed. As the figure suggests, we divide the problem into three

subproblems –

A (I+ 〈 x1 〉) – This ideal is mapped onto the ring R[x2, . . . , xn] by the natural

modulo map from R[x1, . . . , xn] → R[x2, . . . , xn], the computations are per-

formed in this smaller ring, and the solution is mapped back onto the parent

ring.

A (I : x∞
1) – This ideal is mapped onto the ring R[x±

1 , x2, . . . , xn]. The ± sign over

the variable x1 denotes that we allow negative indices for x1. For the purposes

of the computations involved, we will be treating the ring as polynomial ring

in variables {x2, . . . , xn} over the Laurent ring R[x±
1]. As we will see, the most

expensive computation in this ring is pseudo Gröbner basis and it involves one

less variable.

f(I) – This subproblem is to be solved in the original ring R[x1, . . . , xn], where the

function f depends on the problem we are tackling. This approach becomes

effective only if f(I) computation does not involve the computation of any

Gröbner basis.

1.5 A General Framework 9

R[x1, x2, . . . , xn]

I

I + 〈 x1 〉

R[x2, . . . , xn]

I : x∞
1

R[x±
1 , x2, . . . , xn]

f(I)

R[x1, x2, . . . , xn]

Figure 1.1: Reducing the problem in smaller rings.

Solutions of these subproblems are lifted to the original ring and combined to com-

pute the solution of the original problem. This combination step depends on the

problem under consideration. The first two subproblems are solved recursively.

In this thesis, we have applied this framework on the following four problems –

Radical Given a binomial ideal I in a polynomial ring k[x1, . . . , xn], radical of I,

denoted by
√
I, is defined as

√
I , 〈 { f | fm ∈ k[x1, . . . , xn] } 〉.

Minimal Primes Given a binomial ideal I in a polynomial ring k[x1, . . . , xn], com-

pute the set of minimal primes P such that

√
I =

∩
P∈P

P.

Cellular decomposition A binomial ideal I ⊆ k[x1, . . . , xn] is cellular if in

k[x1, . . . , xn]/I every variable is either a nonzero divisor or a nilpotent. We

want to compute a set of cellular ideals C such that

I =
∩
C∈C

C.

Saturation This problem is the same as the problem that has been dealt with in

the previous chapters – given a homogeneous binomial ideal I ⊆ k[x1, . . . , xn],

we want to compute I : (x1 · · · xn).

10 Introduction

Chapter 2

Generalized reduction to compute

toric ideals

2.1 Introduction

Toric ideals have many applications including solving integer programs (HS95; CT91;

UWZ97b; TW97), computing primitive partition identities (Stu95, Chapters 6,7),

and solving scheduling problems (TTN95).

As described earlier, the key step in the computation of a toric ideal involves

the saturation of a pure difference binomial ideal. Several algorithms are available

in the literature for saturation computation. Since it is an NP hard problem, all

approaches can only solve relatively small problems. We propose a new approach

which improves upon a well known saturation technique. This chapter is based on

the work (KM09; KM10),

2.1.1 Problem Description

We have come across the definition of toric ideals in section 1.3. Recall that, for a

given matrix A ∈ Zm×n, the computation of the toric ideal of A, denoted by IA, has

two steps:

• Computation of a lattice kernel basis of A, which has a polynomial time solu-

tion by computing the Hermite normal form of A (KB79; CC82), and

12 Generalized reduction to compute toric ideals

• Saturation of a pure difference binomial ideal. This is the more complicated

and expensive step is the saturation computation.

In this chapter we will concentrate on the second step, that is, the saturation of a

pure difference binomial ideal.

So, given an ideal I = 〈 xα1 − xβ1 , . . . ,xαm − xβm 〉, we want to compute a

generating set of

〈 xα1 − xβ1 , . . . ,xαm − xβm 〉 : (x1 . . . xn)
∞ .

2.2 Surjective ring homomorphism

Let φ denote a surjective ring homomorphism from k[x1, . . . , xn] to k[y1, . . . , ym].

Definition 2.1. Let S ⊆ k[x1, . . . , xn] be a set of polynomials. Then we define φ(S)

as -

φ(S) = { φ(f) | f ∈ S } .

Lemma 2.2. Let f1, . . . , fs ∈ k[x1, . . . , xn]. Then

φ(〈 f1, . . . , fs 〉 = 〈 φ(f1), . . . , φ(fs) 〉.

Proof. Let f ′ ∈ φ (〈 f1, . . . , fs 〉). Then ∃f ∈ 〈 f1, . . . , fs 〉 such that φ(f) = f ′. So

we have

f =
∑
i

gifi

=⇒ f ′ = φ(f) =
∑
i

φ(gi)φ(fi)

Here g1, . . . , gs ∈ k[x1, . . . , xn]. Hence, f
′ ∈ 〈 φ(f1), . . . , φ(fs) 〉.

Conversely, let f ′ ∈ 〈 φ(f1), . . . , φ(fs) 〉. Then ∃g′1, . . . , g′s ∈ k[y1, . . . , ym] such

that

f ′ =
∑
i

g′iφ(fi)

=
∑
i

φ(gi)φ(fi)

= φ(
∑
i

gifi)

2.2 Surjective ring homomorphism 13

The last two equalities follow from the fact that φ is surjective. Hence f ′ ∈
φ(〈 f1, . . . , fs 〉). �

The kernel of a homomorphism φ, denoted as kerφ, is

kerφ = { f ∈ k[x1, . . . , xn] | φ(f) = 0 } .

The first isomorphism theorem states that –

Theorem 2.3 (First isomorphism theorem). Let R and S be rings, and let φ : R→
S be a ring homomorphism. Then:

• The kernel of φ is an ideal of R.

• The image of φ is a subring of S, and

• The image of φ is isomorphic to the quotient ring R/ kerφ.

In particular, if φ is surjective then S is isomorphic to R/ kerφ.

From Theorem 2.3, k[x1, . . . , xn]/ kerφ is isomorphic to k[y1, . . . , ym]. We shall

denote this isomorphism by Φ.

Let T be a subset of k[y1, . . . , ym]. Then we define φ−1 as –

φ−1(T) = { f ∈ k[x1, . . . , xn] | φ(f) ∈ T } .

Observation 1. Let J be an ideal in k[y1, . . . , ym]. Then, φ
−1(J) is an ideal. Also,

J and φ−1(J)/ kerφ are isomorphic.

Projections are examples of surjective ring homomorphisms. We will use these

maps in all of the algorithms discussed in this chapter.

Definition 2.4. Let the set of variables {x1, . . . , xn} be denoted by X, and let

X ′ ⊂ X. Then, the map φ : k[X]→ k[X \X ′] is said to be a projection map where

φ(f) = f |x=1,∀x∈X′ .

14 Generalized reduction to compute toric ideals

It is easy to verify that projections are surjective ring homomorphisms. Next,

we will define some symbols to denote specific projective maps. We will use πi to

denote the projection k[x1, . . . , xn] → k[x1, . . . , xi−1, xi+1, . . . , xn]. In other words,

in this map, we set xi to 1. We will use πz for the projective map k[xi, · · · , xi+j, z]→
k[xi, · · · , xi+j]. Here, we set z to 1. Finally, to denote the projection from k[x1, . . . , xn]

to k[xi+1, . . . , xn], we will use the symbol Πi. In this case, we set the variables

x1, . . . , xi to 1.

Observation 2. πi, πz and Πi are surjective ring homomorphisms.

2.3 Homogeneous polynomials and saturation

2.3.1 Homogenization

Let f ∈ k[x1, . . . , xn] be a polynomial, and ~d ∈ Zn
≥0 be a vector. We say f is

homogeneous w.r.t. ~d, if for all monomials xα appearing with non-zero coefficient

in f , ~d · α’s are equal. We call the vector ~d, the grading vector. If f is not

homogeneous, then it can be homogenized using an extra variable z. The new

polynomial, though homogeneous, will belong to the ring k[x1, . . . , xn, z].

Let ~d ∈ Nn+1 be a 0/1 vector such that dn+1 = 1. We define a map h~d :

k[x1, . . . , xn] → k[x1, . . . , xn, z] such that h~d(f) will be homogeneous with respect

to ~d for every f ∈ k[x1, . . . , xn]. Let f =
∑

i cαi
xαi ∈ k[x1, . . . , xn]. Consider the

polynomial

f ′ =
∑
i

cαi
xαizbi ∈ k[x1, . . . , xn, z]

where bi’s are so chosen that f ′ is homogeneous with respect to ~d. Let m be the

largest integer such that zm | f ′. Then, we define

h~d(f) =
f ′

zm
.

We shall denote h~d(f) by f̃ when ~d is known from the context. Observe that πz(f̃) =

f . If B = {fi}i is a set of polynomials of k[x1, . . . , xn], then by homogenization of

B we would mean the set B̃ ⊆ k[x1, . . . , xn, z] given by {f̃i}i. An ideal is said to be

homogeneous with respect to a grading vector ~d, if the ideal has a generating set

which is homogeneous with respect to ~d.

2.3 Homogeneous polynomials and saturation 15

2.3.2 Ideal Saturation

Let R be a ring, r ∈ R be a non-zero-divisor and I ⊆ R be an ideal. Then,

I : r , { s | srn ∈ I } .

The saturation of I w.r.t. r is the ideal

I : r∞ ,
{
s | srj ∈ I, for some j ≥ 0

}
.

Let I ⊆ k[x1, . . . , xn] be an ideal. Saturation of I with respect to r = x1 · x2 · · · xi,

I : (x1 · x2 · · · xi)
∞ is equal to{
f ∈ k[x1, . . . , xn] | xαf ∈ I for some α ∈ Zn

≥0

}
,

which is also an ideal. The following observation is immediate from the definition.

Observation 3. (. . . ((I : x∞
1) : x∞

2) . . .) : x∞
n = I : (x1 · · · xn)

∞.

In general, the computation of I : x∞
i is expensive, see Section 4 in Chapter 4 of

(CLO07). It involves computing a Gröbner basis in n+1 variables. But in a special

case when I is a homogeneous ideal, an efficient algorithm to compute I : x∞
i is

known from Lemma 12.1 of (Stu95). The Sturmfels’ algorithm involves computing

a Gröbner basis in n variables.

Before going into the details of the algorithm to compute J : x∞
i , let us define

the following notation. Let f be a polynomial, and a be the largest integer such that

xa
i divides f . Then, we denote the quotient of the division of f by xa

i as f ÷ x∞
i . If

B is a set of polynomials, then B ÷ x∞
i denotes the set { f ÷ x∞

i | f ∈ B }.
We will define one more notation. This is related to Gröbner basis. Let ~d ∈ Zn

≥0

be a grading vector for polynomials in the ring k[x1, . . . , xn]. Then ≺~d,i denotes the

graded reverse lexicographic term ordering with ~d as the grading vector and xi as

the least variable. So if I ∈ k[x1, . . . , xn] is an ideal, then G≺~d,i
(I) denotes a Gröbner

basis of I with respect to ≺~d,i.

Sturmfels’ lemma follows.

Lemma 2.5. (Stu95, lemma 12.1) Let J ⊆ k[x1, . . . , xn] be a homogeneous ideal

w.r.t. the grading vector ~d. Also let G≺~d,j
(J) = {fi}i. Then

{
fi ÷ x∞

j

}
i
is a Gröbner

basis of J : x∞
j .

16 Generalized reduction to compute toric ideals

Algorithm 2.1: (Sturmfels’ Algorithm) Computation of 〈 B 〉 : x∞
i

Data:

• A finite generating set, B, of an ideal J ⊆ k[x1, . . . , xn]

• a variable xi

Result: The Gröbner basis of 〈 B 〉 : x∞
i

1 ~d← (1, . . . , 1)︸ ︷︷ ︸
n+1 components

;

2 B̃ ←
{
f̃ | f ∈ B

}
/* ⊆ k[x1, . . . , xn, z] */

3 Compute G≺~d,i

(
〈 B̃ 〉

)
;

4 G←
{
f ÷ x∞

i | f ∈ G≺~d,i

(
〈 B̃ 〉

) }
;

5 return πz (G).

Algorithm 2.1 computes J : x∞
i for arbitrary ideal J using the following lemma.

The following is a useful lemma which shows the relation between the projection

homomorphism πi and the saturation of an ideal.

Lemma 2.6. Let I ⊆ k[x1, . . . , xn] be any ideal. Then πi(I : x∞
j) = πi(J) : x

∞
j .

One can verify this lemma from the definitions of saturation ideals and projec-

tions.

2.4 Shadow algorithms under a surjective homo-

morphism

Let I be an ideal in k[x1, . . . , xn] and φ : k[x1, . . . , xn]→ k[y1, . . . , ym] be a surjective

ring homomorphism. We know from Lemma 2.2 that φ(I) is an ideal in k[y1, . . . , ym].

In this section, we show how to compute a basis B of I such that φ(B) is a Gröbner

basis of φ(I).

Let α and β be two vectors in Zn
≥0, and let α[i] and β[i] denote their ith compo-

nents, respectively. Then, by α ∨ β, we denote the vector whose ith component is

2.4 Shadow algorithms under a surjective homomorphism 17

given by -

(α ∨ β)[i] , max {α[i], β[i]} .

This is also called the LCM of α and β.

In this section, we will assume the existence of an oracle which computes any

one element h of φ−1(m) for any monomial m ∈ k[y1, . . . , ym]. With an abuse of the

notations, we shall use

h← φ−1(m)

as a step in the algorithms given below.

2.4.1 Shadow S-polynomial

Let ≺ denote a term order in k[y1, . . . , ym]. Consider any two polynomials, h1, h2 ∈
k[y1, . . . , ym]. Let

c1y
α1 = in≺ (h1) , and c2y

α2 = in≺ (h2)

be the leading terms of h1 and h2, respectively. Define two vectors β1 and β2 as –

β1 = (α1 ∨ α2)− α1, and β2 = (α1 ∨ α2)− α2.

Then the S-polynomial of h1, h2 is defined as –

S≺(h1, h2) = c2y
β1h1 − c1y

β2h2.

Observe that, if in≺ (h2) divides in≺ (h1), then S≺(h1, h2) is the first step in the

reduction of h1 by h2.

We will now define S-polynomials over a surjective ring homomorphism φ, and

refer to it as Shadow S-polynomial.

Definition 2.7. Given two polynomials f, g ∈ k[x1, . . . , xn], a surjective ring ho-

momorphism φ : k[x1, . . . , xn]→ k[y1, . . . , ym], and a term order ≺ on k[y1, . . . , ym],

the Shadow S-polynomial is defined as

ShadowSpolyφ,≺(f, g) , h1f − h2g

where h1, h2 ∈ k[x1, . . . , xn] such that

φ(h1f − h2g) = S≺(φ(f), φ(g)).

18 Generalized reduction to compute toric ideals

Algorithm 2.2: ShadowSpoly(f, g, φ,≺)
Data:

• Two polynomials f, g ∈ k[x1, . . . , xn] such that φ(f) 6= 0 and φ(g) 6= 0

• a surjective ring homomorphism φ : k[x1, . . . , xn]→ k[y1, . . . , ym]

• a term order ≺ over k[y1, . . . , ym]

• an oracle that computes any one member of φ−1(m) for any monomial m of

k[y1, . . . , ym]

Result: Two polynomials h1, h2 ∈ k[x1, . . . , xn] such that

h1f − h2g = ShadowSpolyφ,≺(f, g).

1 Let c1y
α1 = in≺ (φ(f)) , and c2y

α2 = in≺ (φ(g)) ;

2 β1 ← (α1 ∨ α2)− α1 ;

3 β2 ← (α1 ∨ α2)− α2 ;

4 return h1 ← φ−1(c2y
β1), and h2 ← φ−1(c1y

β2) ;

Algorithm Algorithm 2.2 computes h1, h2 ∈ k[x1, . . . , xn] for any pair of polyno-

mials f, g ∈ k[x1, . . . , xn] such that h1f − h2g = ShadowSpolyφ,≺(f, g).

Observation 4. (h1, h2) = ShadowSpoly(f, g, φ,≺)⇒ φ(h1f−h2g) = S≺(φ(f), φ(g)).

2.4.2 Shadow division

Let g, g1, · · · , gs be polynomials in k[x1, . . . , xn] and≺ be a term order in k[x1, . . . , xn].

Then, the polynomial expression

g =
∑
i

qigi + r

is said to be a standard expression for g if

• in≺(qigi) � in≺ (g) , ∀i

2.4 Shadow algorithms under a surjective homomorphism 19

• No monomial of r is divisible by in≺ (gi) for any i. More formally, no monomial

of r belongs to the initial ideal 〈 { in≺ (gi) | 1 ≤ i ≤ s } 〉.

Here, r is called the remainder and qi’s are called the quotients of the division of

g by {g1, . . . , gs}.
Standard expression generalizes the concept of divisoin of a polynomial by an-

other polynomial to the concept of division of a polynomial by a set of polynomials.

The algorithm to perform such a division is well known (CLO07, Chapter 2, Section

3).

Next we define polynomial division over a ring homomorphism φ. We will call it

Shadow Division.

Definition 2.8. Given a polynomial f and a set of polynomials B = {g1, . . . , gs} of
k[x1, . . . , xn], a surjective ring homomorphism φ : k[x1, . . . , xn]→ k[y1, . . . , ym], and

a term order ≺ in k[y1, . . . , ym], the Shadow standard expression of f w.r.t. B is

f̄f =
∑
i

qigi + r,

where

• f̄ , q1, . . . , qs, r ∈ k[x1, . . . , xn].

• φ(f̄) = constant.

• The following expression is a standard expression of φ(f) w.r.t. φ(B)

φ(f) =
1

φ(f̄)

(∑
j

φ(qj)φ(fj) + φ(r)

)

Here, r is called the remainder and qi’s are called the quotients of the division of

g by {g1, . . . , gs}.

Algorithm 2.3 computes the Shadow standard expression of f w.r.t. B.

In step 4, ShadowSpoly(p, gi, φ,≺) is the first reduction step of φ(p) by φ(gi), since

in≺ (φ(gi)) divides in≺ (φ(p)). Hence, the leading term of φ(p) strictly decreases after

each pass of the while loop. Combining this with the fact that ≺ is a well-ordering,

20 Generalized reduction to compute toric ideals

Algorithm 2.3: Shadow-Division(f, {g1, . . . , gs} , φ,≺)
Data:

• A polynomial f ∈ k[x1, . . . , xn]

• A set B = {g1, . . . , gs} ∈ k[x1, . . . , xn]

• A surjective ring homomorphism φ : k[x1, . . . , xn]→ k[y1, . . . , ym]

• A term order ≺ over k[y1, . . . , ym]

• An oracle to compute one member of φ−1(m) for any monomial m of

k[y1, . . . , ym].

Result: Polynomials f̄ , q1, . . . , qs, r ∈ k[x1, . . . , xn] such that

f̄f =
∑
i

qifi + r

is a Shadow standard expression of f w.r.t. B.

1 f̄ ← 1; q1 ← 0, . . . , qs ← 0; r ← 0; p← f ;

2 while φ(p) 6= 0 do

3 if ∃i such that φ(gi) 6= 0 and in≺ (φ(gi)) | in≺ (φ(p)) then

4 (h1, h2)← ShadowSpoly(p, gi, φ,≺) ; // φ(h1) is a constant

5 f̄ ← f̄ ∗ h1; q1 ← q1 ∗ h1, . . . , qs ← qs ∗ h1; r ← r ∗ h1 ;

6 p← p ∗ h1 − gi ∗ h2 ;

7 qi ← qi + h2 ;

8 else

9 h← φ−1(in≺ (φ(p))) ;

10 r ← r + h; p← p− h ; /* φ(p) = 0 */

11 end

12 end

13 r ← r + p ;

14 return f̄ , q1, . . . , qs, r ;

2.4 Shadow algorithms under a surjective homomorphism 21

we observe that the Shadow-Division algorithm terminates. Reduction of φ(p) by

φ(gi) also ensures that φ(h1) = constant, and consequently

φ(f̄) = constant

One also observes that

f̄ · f =
∑
j

qjgj + r + p

is an invariant of the while loop. Thus we have the following claim –

Lemma 2.9. Algorithm 2.3, Shadow-Division (f,B, φ,≺), terminates to give

f̄ · f =
∑
j

qj · gj + r,

and

φ(f) =

(
1

φ(f̄)

)(∑
j

φ(qj)φ(gj) + φ(r)

)
is a standard expression for φ(f) under ≺, where φ(f̄) is a non-zero constant.

2.4.3 Shadow Gröbner Basis

We will now present the notion of Shadow-Gröbner basis, and an algorithm to com-

pute such a basis.

Definition 2.10. Let B = {f1, . . . , fs} ⊆ k[x1, . . . , xn] be a set of polynomials,

φ : k[x1, . . . , xn] → k[y1, . . . , ym] be a surjective ring homomorphism, and ≺ be a

term order in k[y1, . . . , ym]. Then a subset G ⊂ k[x1, . . . , xn] such that

• 〈 G 〉 = 〈 B 〉, and

• φ(G) is a Gröbner basis of φ(〈 B 〉);

is called a Shadow-Gröbner basis of the ideal generated by B.

Algorithm 2.4 to computes Shadow-Gröbner basis, which is a modification of the

Buchberger’s algorithm (Algorithm B.2).

The following claims ensure that the algorithm terminates, and that it correctly

computes Shadow-Gröbner basis.

22 Generalized reduction to compute toric ideals

Algorithm 2.4: Shadow-Buchberger(B, φ,≺)
Data:

• B = {f1, . . . , fs} ⊆ k[x1, . . . , xn]

• a surjective ring homomorphism φ : k[x1, . . . , xn]→ k[y1, . . . , ym]

• a term order ≺ in k[y1, . . . , ym]

Result: A Shadow-Gröbner basis of 〈 B 〉
1 Bnew ← B ;

2 repeat

3 Bold ← Bnew ;

4 for each pair f1, f2 ∈ Bnew such that f1 6= f2 and φ(f1) 6= 0, φ(f2) 6= 0

do

5 (g1, g2)← ShadowSpoly(f1, f2, φ,≺) ;
6 Compute Shadow-Division(g1f1 − g2f2, Bnew, φ,≺) ;
7 if φ(r) 6= 0 then

8 Bnew ← Bnew

∪
{r} ;

9 end

10 end

11 until φ(Bnew) = φ(Bold);

12 G← Bnew ;

13 return G ;

Lemma 2.11. Algorithm 2.4 terminates.

Proof. The repeat loop iterates only if we detect that φ(Bnew) 6= φ(Bold). And this

can only happen if a polynomial r gets added to Bnew in step 8. The polynomial r

has the property that it is the remainder of Shadow-Division of g1f1 − g2f2 by Bnew.

Thus, from Lemma 2.9, we have

in≺ (φ(r)) /∈ 〈 { in≺ (φ(g)) | g ∈ Bnew } 〉.

So, in each iteration of the repeat loop, as r gets added to Bnew, the initial ideal of

Bnew in the image space grows. But k[y1, . . . , ym] is Noetherian so the ideal cannot

grow indefinitely. Hence the repeat loop must terminate. �

2.4 Shadow algorithms under a surjective homomorphism 23

Lemma 2.12. 〈 B 〉 = 〈 G 〉.

Proof. The remainder r is appended to the basis in the successive iterations of the re-

peat loop (step 8). r is the output of the Shadow-Division algorithm (Algorithm 2.3).

So, from Lemma 2.9, we have

f̄ (g1f1 − g2f2) =
∑
i

qifi + r,

where fi’s are in Bnew. This shows that r is in the ideal generated by the Bnew.

Hence 〈 Bold 〉 = 〈 Bnew 〉, i.e., 〈 Bnew 〉 remains constant throughout the algorithm.

Since initial value of Bnew is Bold and the final value is G, 〈 B 〉 = 〈 G 〉. �

Lemma 2.13. G is the shadow-Gröbner basis of 〈 B 〉.

Proof. Upon termination of the repeat loop, the set of polynomialsBnew has the prop-

erty that the remainder of Shadow-Division(ShadowSpoly(f1, f2, φ,≺), Bnew, φ,≺) is
zero for every f1, f2 ∈ Bnew, where Shadow-Division is computed using Algorithm 2.3.

This shows that φ(G) satisfies the Buchberger’s Criterion (CLO07, Chapter 2, Sec-

tion 7) and hence φ(G) is a Gröbner basis of 〈 φ(B) 〉. This, combined with the fact

that 〈 G 〉 = 〈 B 〉 (Lemma 2.12), we have that G is the Shadow-Gröbner basis of

〈 B 〉. �

Here a remark on the time complexity of Shadow-Buchberger algorithm (Algo-

rithm 2.4) is in order. We have assumed that there exists an oracle which gives us

one member of φ−1(m), for any monomial m. If the computation of φ and φ−1 re-

quire times proportional to the size of the input then, Shadow-Buchberger algorithm

and Buchberger’s algorithm have the same time complexity.

2.4.4 Shadow reduced Gröbner basis

In this section, we will define Shadow reduced Gröbner basis, and present an algo-

rithm to compute it.

Definition 2.14. Let B = {f1, . . . , fs} ⊆ k[x1, . . . , xn] be a set of polynomials,

φ : k[x1, . . . , xn] → k[y1, . . . , ym] be a surjective ring homomorphism, and ≺ be a

term order in k[y1, . . . , ym]. A subset G ⊂ k[x1, . . . , xn] such that

• φ(G) is the reduced Gröbner basis of φ(〈 B 〉), and

24 Generalized reduction to compute toric ideals

Algorithm 2.5: reduced-Shadow-Gröbner(B, φ,≺)
Data:

• B = {f1, . . . , fs} ⊆ k[x1, . . . , xn]

• a surjective ring homomorphism φ : k[x1, . . . , xn]→ k[y1, . . . , ym]

• a term order ≺ in k[y1, . . . , ym]

Result: A set G ⊆ k[x1, . . . , xn], such that it is the reduced

Shadow-Gröbner basis of I.

1 G← Shadow-Buchberger(B, φ,≺) ;
2 Bold ← G ;

3 Bnew ← G ;

4 for each f ∈ Bold do

5 Compute Shadow-Division(f,Bnew \ {f} , φ,≺) ;
6 Bnew ← Bnew \ {f} ;
7 if r 6= 0 then

8 Bnew ← Bnew

∪
{r} ;

9 end

10 end

11 G← Bnew ;

12 return G ;

• 〈 G 〉 ⊆ 〈 B 〉.

• for each f ∈ 〈 B 〉 such that φ(f) 6= 0, there is h ∈ φ−1(1) such that hf ∈ 〈 G 〉

is called a reduced Shadow-Gröbner basis .

Algorithm 2.5 shows how to compute Shadow reduced Gröbner basis of an ideal

in k[x1, . . . , xn] from a generating set of the ideal.

Observation 5. Algorithm 2.5 terminates.

Proof. The for loop in the steps 4 through 10 iterates over the fixed finite set Bold,

hence the algorithm terminates. �

Lemma 2.15. φ(G) is the reduced Gröbner basis of φ(〈 B 〉).

2.4 Shadow algorithms under a surjective homomorphism 25

Proof. Consider an iteration of the for loop in the steps 4 through 10. Let f ∈ Bold

be the member currently being reduced by Bnew \ {f} (step 5). Also, let r be a

member added to Bnew (step 8) and yα be any term of φ(r). Then from Lemma 2.9,

we have yα /∈ in≺ (φ(Bnew \ {f})). So no term of φ(r) is divisible by the leading

terms of φ(Bnew). If in an iteration of the for loop (steps 4 to 10) f is replaced

by r, then φ(r) is irreducible by φ(Bnew). Since the initial ideal of 〈 φ(Bnew) 〉 is
an invariant of the loop (φ(Bnew) is Gröbner Basis), φ(r) remains irreducible in all

subsequent iterations. After the for loop terminates, this holds for all the members

of Bnew. Hence φ(G) is the reduced Gröbner basis of 〈 B 〉. �

Lemma 2.16. 〈 G 〉 ⊆ 〈 B 〉.

Proof. The initial value of Bnew is a Shadow-Gröbner basis of 〈 B 〉, and from

Lemma 2.12, it is a basis of 〈 B 〉. In the following for loop (steps 4 through 10), let

f ∈ Bold be the polynomial that is currently being reduced. We replace f ∈ Bnew

by the r, which is the result of shadow reduction of f by Bnew \ {f} (step 5). Thus,

Lemma 2.9 implies that the ideal generated by Bnew before the replacement of f by

r contains the ideal generated by Bnew after the replacement. The final value of Bnew

is G and the initial value is a Shadow-Gröbner basis of 〈 B 〉, so 〈 G 〉 ⊆ 〈 B 〉. �

Lemma 2.17. For every f ∈ 〈 B 〉 such that φ(f) 6= 0, there exists h ∈ φ−1(1) such

that hf ∈ 〈 G 〉.

Proof. Consider an arbitrary iteration of the for loop, and let f ∈ Bold be the

polynomial that is currently being reduced, and r is its shadow reduction. Then

using the notations from Lemma 2.9, we have

f̄f =
∑
i

gifi + r,

where fi’s belong to Bnew \ {f}. Since φ(f̄) = c (a constant), the ideal generated by

Bnew after the substitution contains hf where h = f̄/c ∈ φ−1(1). �

Combining Lemmas 2.15, 2.16 and 2.17, we have that the output of reduced-

Shadow-Gröbner indeed computes reduced Shadow-Gröbner basis.

26 Generalized reduction to compute toric ideals

2.5 Binomial ideals

In this section, we will prove a few useful results about binomials ideals.

Lemma 2.18. Let I ⊆ k[x1, . . . , xn] be an ideal generated by a set of binomials B.

Let a binomial xα − xβ in I have an expression

xα − xβ = c1x
δ1
(
xα1 − xβ1

)
+ · · ·+ csx

δs
(
xαs − xβs

)
,

where xαi − xβi ∈ B for all i. Then, there is an expression for xα − xβ

xα − xβ = xδj1
(
xαj1 − xβj1

)
+ · · ·+ xδjt

(
xαjt − xβjt

)
where the binomials on the R.H.S. are members of the first expression and

(i) xδj1 · xαj1 = xα

(ii) xδjt · xαjt = xβ

(iii) xδji · xβji = xδji+1 · xαji+1 , 1 ≤ i < t.

Such an expression for a binomial will be called a chain expansion .

Proof. From the given expression of xα − xβ, we construct a weighted undirected

graph (V,E) as follows. The monomials in the R.H.S. of the expression form the

set of vertices V . There is an edge (xα,xβ) in the graph if there exists j such that

bj = xα − xβ. The weight of the edge is the coefficient of bj. We observe that the

sum of the binomials in the graph with edge weights is equal to xα − xβ.

We claim that this graph is connected. If not, it has atleast two disconnected

components. The sum of the coeffiecients of the binomials forming a component is 0.

So, either the polynomial due to a component is 0 or has even number of terms. The

set of vertices of the components are also disjoint. So, the sum of the components

has atleast 4 distinct terms. But this is absurd as the L.H.S. has only two terms.

Thus, the graph is connected.

Now that the graph is connected, a path from xα to xβ gives a desired chain

expansion of xα − xβ. �

Lemma 2.19. Let I be a binomial ideal in k[x1, . . . , xn]. If f ∈ I, then ∃ binomials

xαi − xβi ∈ I such that

f =
∑
i

ci
(
xαi − xβi

)
, (2.1)

and each xαi ,xβi is a member of f .

2.6 Projection Homomorphism 27

Proof. Consider a monomial xδ in the R.H.S. of equation 2.1 such that xδ is not a

term of f . Let the number of occurances of xδ be l. We can reduce the number of

occurances of xδ by the following trick. Assume that bj = xδ−xγ and bk = xδ−xγ′

be two binomials containing xδ. Then

f =
∑
i

cibi

=
∑
i6=j,k

cibi + cj(bj − bk) + (c+ d)bk

=
∑
i6=j,k

cibi + cj(x
γ′ − xγ) + (c+ d)bk.

So, we have reduced the number of occurances of xδ. We repeat this procedure to

remove all occurances of xδ and all occurances of monomials not belonging to f . �

2.6 Projection Homomorphism

From this section onwards, we shall restrict our consideration of surjective ring

homomorphisms to projection maps, and as we have discussed earlier, at the end of

section 2.2, the maps in these cases will be denoted by π or Π, with suitable indices.

We would also like to state a certain relabeling of the variables in the polynomial

ring k[x1, . . . , xn] so that the description of upcoming algorithms and results become

more succint and easy to follow. From now on, we shall partition the set of variables

{x1, . . . , xn} of the ring k[x1, . . . , xn] into two sets, one that are set to 1 by the

projection homomorphism, and the other that are not set to 1. Those that are set

to 1 will be denoted by v with suitable indices, and those that are left unchanged

will be denoted by u, again with suitable indices.

For example, let the projection homomorphism considered be Πi, as defined in

section 2.2. To recall, Πi is a projection map from k[x1, . . . , xn] → k[xi+1, . . . , xn].

Then the variables x1, . . . , xi will be relabelled v1, . . . , vi, and the variables xi+1, . . . , xn

will be relabelled ui+1, . . . , un, respectively.

With this notation, we now describe the steps to compute φ−1 in the algorithms

ShadowSpoly (Algorithm 2.2, step 4) and Shadow-Division (Algorithm 2.3, step 9).

We will assume that

φ = Πi.

28 Generalized reduction to compute toric ideals

So, using the relabelling,

Πi : k[v1, . . . , vi, ui+1, . . . , un]→ k[ui+1, . . . , un].

In algorithm ShadowSpoly, we have

c1u
α1 = in≺ (φ(f)) , c2u

α2 = in≺ (φ(g)) , (step 1).

This implies that f and g must contain sub-polynomials of the form p1(v)u
α1 and

p2(v)u
α2 respectively, such that

φ(p1(v)) = c1 φ(p2(v)) = c2.

Moreover, if f ′ = f − p1(v)u
α1 , then in≺ (φ(f ′)) is strictly less than in≺ (φ(f)).

Similar is the case for g − p2(v)u
α2 . We define step 4 as

h1 ← p2(v)y
β1 and h2 ← p1(v)y

β2 .

In algorithm Shadow-Division, there must exist a sub-polynomial l(v)uα in p(x)

such that

in≺ (φ(p− l(v)uα)) ≺ in≺ (φ(p))

We then define step 9 as

h← l(v)uα.

Some properties of the Shadow algorithms in the context of projection homo-

morphisms are as follows.

Observation 6. If φ is a projection homomorphism, f1, f2 are homogeneous w.r.t.

a grading vector ~d and (g1, g2) = ShadowSpoly(f1, f2, φ,≺), then g1f1 − g2f2 is also

homogeneous w.r.t. ~d.

If a binomial f = xα1 − xα2 is such that φ(f) is non-zero, then φ(xα1) 6=
φ(xα2). Thus, in the case of binomials, the polynomials g1, g2 in step 4 of algo-

rithm ShadowSpoly, and h in step 9 of Shadow-Buchberger algorithm are monomials.

Observation 7. Let φ be a projection homomorphism, and f1, f2 be binomials of

k[x1, . . . , xn]. Moreover, let (g1, g2) = ShadowSpoly(f1, f2, φ,≺). Then φ(f1g1−f2g2)
is the Shadow S-polynomial of f1 and f2, and f1g1 − f2g2 is a binomial.

2.7 A fast algorithm for computing toric ideals 29

Observation 8. Let φ be a projection homomorphism, as before, and B be a set

of binomials of k[x1, . . . , xn]. Then f̄ , computed by Shadow-Division(f,B, φ,≺), is
a monomial for f ∈ k[x1, . . . , xn]. Additionally, if f and each member of B is

homogeneous, then so is the remainder r.

We have earlier seen (Lemma 2.9) that φ(f̄) is a non-zero constant, and the above

observation states that f̄ is a monomial. Then in that case, by using the notation

for the variables discussed at the start of the section, we see that f̄ computed by

Shadow-Division algorithm is of the form vα, for some α ∈ Ni. Using this fact in the

proof of Lemma 2.17, we get the following lemma which is at the heart of algorithm

proposed in the next section.

Lemma 2.20. If φ is a projection homomorphism, B is a set of binomials of

k[x1, . . . , xn], and G is computed by reduced-Shadow-Buchberger(B, φ,≺), then for

each binomial f ∈ 〈 B 〉 such that φ(f) 6= 0, there exists a monomial vα such that,

vαf ∈ 〈 G 〉.

2.7 A fast algorithm for computing toric ideals

We have discussed earlier (section 1.3) that saturation of an ideal with respect to

the set of variables in the ring is the most important and time comsuming step in

the computation of a toric ideal. Now we present Algorithm 2.6 which takes a set

of pure difference binomials B and computes 〈 B 〉 : (x1 · · · xn)
∞.

In the following, the projection map Πi maps k[v,u, y] to k[u, y] by setting each

vj to 1.

To prove the correctness of the algorithm we will use the following notations.

We will index the sets in the end of various iterations of the for loop (steps 1 to 6)

by the counter i of the for loop. For example, in the ith iteration the final value of

G̃ will be denoted G̃i. Therefore initial value of B will be denoted by Bn. We will

prove the correctness of Algorithm 2.6 by induction on i.

Let I ⊆ k[x1, . . . , xn] be an ideal. A polynomial xai
i f will be called Shadow-

Saturated at level i if

xai
i · · · xan

n ybf ∈ I =⇒ xa1
1 · · · x

ai−1

i−1 y
b′f ∈ I,

30 Generalized reduction to compute toric ideals

Algorithm 2.6: Computation of I : (x1 · · · xn)
∞ for a binomial ideal I

Data: a finite set of binomials B ⊂ k[x1, . . . , xn]

Result: A generating set of 〈 B 〉 : (x1 . . . xn)
∞

1 for i = n− 1 to 0 do

2 ~d←

 0, . . . , 0,︸ ︷︷ ︸
i components

1, . . . , 1,︸ ︷︷ ︸
n−i components

1︸︷︷︸
homogenizing component

 ;

3 Ã←
{
f̃ | f ∈ B

}
;

4 G̃← reduced-Shadow-Buchberger(Ã,Πi,≺~d,i+1) ;

5 B ← πy(G̃÷ x∞
i+1) ;

6 end

7 return B ;

for some aj for 1 ≤ j ≤ i− 1 and some b′. Ideal I will be called Shadow-Saturated

if the above statement is true for all polynomials in I.

Let G̃i be the final value of G̃ in the ith iteration. Also, let c = u
ai+1

i+1 y
a
(
xα − ybxβ

)
be a binomial in 〈 G̃i 〉. Then, by Lemma 2.18,

c = u
ai+1

i+1 y
a
(
xα − ybxβ

)
= ya1xδ1b1 + · · ·+ yamxδmbm, (2.2)

where bj =
(
xαj − ybjxβj

)
∈ G̃i for all j and R.H.S. is a chain.

Lemma 2.21. If in the chain expansion of c, we have

in≺~d,i+1

(
Πi

(
yajxδj

(
xαj − ybjxβj

)))
� in≺~d,i+1

(Πi (c)) for all j,

i.e., the leading monomial in the image of the R.H.S. is same as the leading mono-

mial of the image of the L.H.S., then c is Shadow-Saturated in 〈 G̃i ÷ u∞
i+1 〉 with

respect to ui+1.

Proof. Recall that ≺~d,i+1 is a graded reverse lexicographic term order with ui+1

being the least. So Πi

(
xγ1yk1

)
≺~d,i+1 Πi

(
xγ2yk2

)
implies that if ul

i+1 | xγ2yk2 then

ul
i+1 | xγ1yk1 .

It is given that in≺~d,i+1

(
Πi

(
yajxδj

(
xαj − ybjxβj

)))
� in≺~d,i+1

(Πi (c)), for all j.

So if ul
i+1 divides c then, ul

i+1 divides all monomials in the chain expansion of c.

Thus c is Shadow-Saturated in 〈 G̃i ÷ u∞
i+1 〉. �

2.7 A fast algorithm for computing toric ideals 31

Lemma 2.22. In the chain expansion of c, let

Πi

(
xαj − ybjxβj

)
= 0

for some j and 〈 G̃i 〉 is Shadow-Saturated at level i+ 1. The binomial

u
ai+1

i+1 y
a
(
xαybjxβj − ybxβxαj

)
has a chain expansion

ybjxβj
(
ya1xδ1b1 + · · ·+ yaj−1xδj−1bj−1

)
+ xαj

(
yaj+1xδj+1bj+1 + · · ·+ yamxδmbm

)
If u

ai+1

i+1 y
a
(
xαybjxβj − ybxβxαj

)
is Shadow-Saturated at level i in 〈 G̃i÷ u∞

i+1 〉, then
so is c.

Proof. Since Πi

(
xαj − ybjxβj

)
= 0, xαj − ybjxβj = urj (vsj − vtj). Further, 〈 G̃i 〉 is

Shadow-Saturated at level i + 1, this binomial is equal to ul
i+1 (v

sj − vtj). Further

xαj − ybjxβj is a member of G̃i, hence xαj = ul
i+1v

sj and ybjxβj = ul
i+1v

tj . Also,

(vsj − vtj) ∈ G̃i ÷ u∞
i+1.

As a result u
ai+1

i+1 y
a
(
xαybjxβj − ybxβxαj

)
= u

rj+aj+1

i+1 ya
(
xαvtj − ybxβvsj

)
. It is

given to be Shadow Saturated at level i in 〈 G̃i ÷ ui+1 〉, so

E1 , ya
(
xαvtj − ybxβvsj

)
∈ 〈 G̃i ÷ ui+1 〉

So E1+ya+bxβE2 = yavtj−ya+bxβvtj = vtjya
(
xα − ybxβ

)
∈ 〈 G̃i÷u∞

i+1 〉. Therefore,
c is also Shadow-Saturated at level i in 〈 G̃i ÷ u∞

i+1 〉. �

Lemma 2.23. Let the chain expansion of c does not contain any element from

kerΠi. Also let xαyk be the largest monomial (in the image space) in the chain

expansion of c such that Πi(x
αyk) is strictly greater than in≺~d,i+1

(Πi(c)). Also, let

the number of occurances of xαyk in the chain be l. Then there exists a chain

expansion of c such that either the largest monomial in the chain is strictly less than

xαyk, or the largest monomial is still xαyk and the number of its occurances is less

than l.

Proof. Let xαyk belong to a the binomial bi in the chain expansion of c. Without

loss of generality, assume that bi and bi+1 share the monomial xαyk.

Then, yaixδibi + yai+1xδi+1bi+1 is the Shadow S-polynomial of bi, bi+1 (with some

mulplicative factors). As G̃i is a Gröbner basis, so there exists a Shadow standard

expression for the S-polynomial. Each of the monomials of the Shadow standard

expression is strictly less that xαyk. Let the resulting expression of c be

c = ya1xδ1b1 + · · ·+ E + · · ·+ yamxδmbm,

32 Generalized reduction to compute toric ideals

where E is the Shadow Standard expression for the S-polynomial. But the expres-

sion on the R.H.S. is not necessarily a chain expansion. In that case, we apply

Lemma 2.18 to get the desired chain expansion of c. �

Corollary 2.24. c has a chain expansion in which leading term of the image of c

is largest element in the image of the chain expansion.

Theorem 2.25. 〈 G̃i ÷ u∞
i+1 〉 is Shadow-Saturated at level i.

Proof. Let c = u
ai+1

i+1 y
a
(
xα − ybxβ

)
be a binomial in 〈 G̃i 〉. We will establish that c

is Shadow-Saturated at level i in G̃i ÷ u∞
i+1. Let the chain expansion of c be

u
ai+1

i+1 y
a
(
xα − ybxβ

)
= ya1xδ1

(
xα1 − yb1xβ1

)
+ · · ·+ yamxδm

(
xαm − ybmxβm

)
, (2.3)

where
(
xαj − ybjxβj

)
∈ G̃i for all j.

We can assume that the chain expansion of c does not contain a kernel element

because all the kernel elements can be removed from the chain expansion by repeated

application of Lemma 2.22 and we will have a binomial c′ such that if c′ is Shadow-

Saturated, then c is also Shadow-Saturated.

From Corollary 2.24 and Lemma 2.21 c is Shadow-Saturated at level i in 〈 G̃i ÷
u∞
i+1 〉.
So, all the binomials in G̃i÷u∞

i+1 is Shadow-Saturated. From Lemma 2.19 〈 G̃i 〉
is Shadow-Saturated at level i. �

We conclude from Theorem 2.25 that ideal 〈 Bi 〉 in Algorithm 2.6 is Shadow-

Saturated at level i. Hence the final output, B0, is saturated with respect to x1 · · · xn.

Theorem 2.26. Algorithm 2.6 correctly computes 〈B〉 : (x1 · · · xn)
∞.

The advantage of the new algorithm is as follows. In this algorithm, the number

of variables in the image space is 1 in the first iteration, 2 in the second iteration, and

so on. Symbolically let t(i) denote the time complexity of the Büchberger’s algorithm

in i variable problem. Then, the cost of the proposed algorithm is
∑n

i=1 t(i) against

the Sturmfels’ algorithm’s cost n · t(n).

2.8 Experimental Results 33

Table 2.1:

Number of Size of basis Time taken (in sec.) Speedup

variables Initial Final Sturmfels Proposed

6 2 5 0.0 0.00 -

4 51 0.001 0.00 -

8 4 186 0.12 0.02 6

6 597 6.58 0.64 10.3

10 6 729 18.16 0.50 36.3

8 357 2.68 0.29 9.2

12 6 423 4.04 0.27 14.9

8 2695 822.12 27.21 30.2

14 10 1035 127.97 4.24 30.1

2.8 Experimental Results

In this section we present the results on performance of the new algorithm and com-

pare it with the existing algorithm by Sturmfels (Stu95). In these experiments we

randomly generated binomials and computed J : (x1 . . . xn)
∞. The programs were

written in C. There are cases where one can ignore certain S-polynomial reduction

in the Büchberger algorithm for Gröbner basis computation. There is a significant

literature on criteria to select such S-polynomials. We only applied one such crite-

rion, referred as criterion tail in Proposition 3.15 of (BSR99) in the implementation

of the new algorithm as well as to Sturmfels’ algorithm. Since every such criterion

can be applied to both algorithms, we believe the performance gains shown here will

remain same after the implementations are fully optimized.

Table 2.1 shows performances of the two algorithms. Although only a few cases

are shown in the table we ran an extensive experiment and in each and every case the

proposed algorithm was faster. Also, as expected the performance ratio improves as

the number of variables increase.

34 Generalized reduction to compute toric ideals

Chapter 3

A Saturation Algorithm for

Homogeneous Binomial Ideals

3.1 Introduction

Let k[x1, . . . , xn] be a polynomial ring in n variables, and let I ⊂ k[x1, . . . , xn] be a

general homogeneous binomial ideal. In this chapter, we describe a fast algorithm

to compute the saturation, I : (x1 · · · xn)
∞. This chapter is based on the work

(KM11a; KM11b),

3.1.1 Problem Description

Let

b = cxα + dxβ

be a binomial, and ~d ∈ Zn
≥0 be a vector. b is a said to be homogeneous w.r.t. ~d, if

~d · α = ~d · β.

The vector ~d is called the grading vector.

We describe a fast algorithm to compute the saturation, I : (x1 · · · xn)
∞, of a

homogeneous binomial ideal I.

36 A Saturation Algorithm for Homogeneous Binomial Ideals

3.1.2 Our Approach

Definition 3.1. (Eis95) Given a ring R, and a multiplicatively closed subset U ⊂ R

not containing zero, we define the localization ofR at U , written as R[U−1], to be the

set of equivalence classes of pairs (r, u) with r ∈ R and u ∈ U with the equivalence

relation (r, u) ∼ (r′, u′) if there is an element v ∈ U such that v(u′r − ur′) = 0 in

R. The equivalence class of (r, u) is denoted by r/u. Addition an multiplication

operations are defined on R[U−1] as follows:

r

u
+

r′

u′ =
u′r + ur′

uu′ and
r

u
× r′

u′ =
rr′

uu′

for r, r′ ∈ R, and u, u′ ∈ U . It can be seen that under these operations R[U−1] is a

ring.

We begin by defining some notations. Ui will denote the multiplicatively closed

set {xa1
1 · · · x

ai
i : aj ≥ 0, 1 ≤ j < i}. ≺i will denote a graded reverse lexicographic

term order with xi being the least. The grading vector will become clear from the

context. ϕi : k[x1, . . . , xn]→ k[x1, . . . , xn][U
−1
i] will be the natural localization map

r 7→ r/1.

Algorithms 3.1 and 3.2 gives the skeletal structure of two algorithms that com-

pute saturation of homogeneous binomial ideals. Algorithm 3.1 describes the sat-

uration algorithm due to (Stu95, Lemma 12.1) To compute I : (x1 · · · xn)
∞, the

algorithm computes n Gröbner bases in n variables. Algorithm 3.2 describes the

proposed algorithm. The primary motivation for the new approach is that the time

complexity of Gröbner basis is a strong function of the number of variables. In

the proposed algorithm, a Gröbner basis is computed in the i-th iteration in n − i

variables. To do this, the algorithm requires the computation of a Gröbner basis

over the ring k[x1, . . . , xn][U
−1
i], for 1 ≤ i ≤ n. The Gröbner basis over such rings

is not known in the literature. Thus, we propose a generalization of Gröbner basis,

called pseudo Gröbner basis, and appropriately modify the Buchberger’s algorithm

to compute it.

3.1 Introduction 37

Algorithm 3.1: Sturmfels’ Algorithm

Data: A homogeneous binomial ideal, I ⊂ k[x1, . . . , xn].

Result: I : (x1 · · · xn)
∞

1 for i← 1 to n do

2 G← Gröbner basis of I w.r.t. ≺i ;

3 I ← 〈{ f ÷ x∞
i | f ∈ G }〉 ;

4 end

5 return I ;

Algorithm 3.2: Proposed Algorithm

Data: A homogeneous binomial ideal, I ⊂ k[x1, . . . , xn].

Result: I : (x1 · · · xn)
∞

1 for i← n to 1 do

2 G← Pseudo Gröbner basis of ϕi(I) w.r.t. ≺i ;

3 I ← 〈
{
ϕ−1
i (f : x∞

i) | f ∈ G
}
〉 ;

4 end

5 return I ;

38 A Saturation Algorithm for Homogeneous Binomial Ideals

3.1.3 Refined Problem Statement

Let R be a commutative Noetherian ring with unity, and U ⊂ R be a multiplicatively

closed set with unity but without zero. Let the set U+ be defined as

U+ = {u : u ∈ U, or − u ∈ U, or u = 0} .

Let S denote the localization of R w.r.t U , i.e., S = R[U−1]. Define a class of

binomials, called U -binomials, in the ring S[x1, . . . , xn] as follows

u1

u′
1

xα1 +
u2

u′
2

xα2 ,

where ui ∈ U+, u′
i ∈ U .

We will address the problem of efficiently saturating a homogeneous U -binomial

ideal w.r.t. all the variables in the ring, namely x1, . . . , xn.

This problem is a generalization of some well studied problems. If R is a field,

then this problem reduces to saturating a binomial ideal in the standard polynomial

ring. The class of problems we have by restricting R to a field and U to {+1,−1} in-
cludes the problem of saturation of pure difference binomial ideals and computation

of toric ideals.

The rest of the chapter is arranged as follows. Sections 2 and 3 deal with “chain

binomials” and “chain sums” for general binomial ideals. Section 4 deals with re-

ductions of a U -binomial by a set of U -binomials. In section 5, we will present the

notion of pseudo Gröbner Basis for S[x1, . . . , xn], and a modified Buchberger’s algo-

rithm to compute it. In section 6, we present a result similar to Sturmfels’ lemma

(Stu95, Lemma 12.1). The final saturation algorithm is presented in section 7. Fi-

nally, in section 8, we present some preliminary experimental results comparing our

algorithm applied to toric ideals, to that of Sturmfels’ algorithm and Project and

Lift algorithm (HM09).

3.2 Chain and chain-binomial

In this section we shall describe the terminology we will need to work with general

binomials in the ring S[x1, . . . , xn]. Since this polynomial ring is over a ring, S =

3.2 Chain and chain-binomial 39

R[U−1], rather than over a field k, we will revisit the terminology used for general

polynomial rings and restate them in the context of S[x1, . . . , xn].

Symbols u, v, w, . . . will denote elements of U+ and u′, v′, w′, . . . will denote the

elements of U . A term in the polynomial ring S[x1, . . . , xn] is the product of an S

element with a monomial, for example, (r/u′)xa1
1 . . . xan

n where r ∈ R and u′ ∈ U .

To simplify the notations, we may also write it as (r/u′)xα, where α represents the

vector (a1, . . . , an). If r ∈ U+, then we will call it a U-term . A binomial is a

polynomial with at most two terms, i.e.,

b =
r1
u′
1

xα +
r2
u′
2

xβ.

If both the terms of a binomial are U -terms, then we will call it a U-binomial . A

U -binomial of the form
u1

u′
1

xα +
u2

u′
2

xα

will be called balanced . Since U is not necessarily closed under addition, a balanced

U -binomial ((u1/u
′
1) + (u2/u

′
2))x

α need not be a U -term in general. A binomial b is

said to be oriented if one of its terms is identified as first (and the other second). If

b is oriented, then brev denotes the same binomial with the opposite orientation.

In the above notations, one of the coefficients of a binomial or U -binomial may

be zero. Hence, the definition of binomials (rep. U -binomials) includes single terms

(resp. U -terms). To be able to handle all binomials in a uniform manner, we shall

denote a single term (r/u′)xα as

(r/u′)xα + (0/1)x�,

where x� is a symbolic monomial. This will help in avoiding to consider a separate

case for single terms in some proofs. We shall refer to such binomials as mono-

binomials . In a term-ordering, x� will be defined to be the least element. Coefficient

of x� in every occurrence will be zero.

Definition 3.2. A sequence of oriented binomials

r1
u′
1

xβ1b1,
r2
u′
2

xβ2b2, . . . ,
rq
u′
q

xβqbq

possibly with repetitions will be called a chain if the second term of (ri/u
′
i)x

βibi

cancels the first term of (ri+1/u
′
i+1)x

βi+1bi+1, for each 1 ≤ i < q. Let B be a set

40 A Saturation Algorithm for Homogeneous Binomial Ideals

of U -binomials. If each bi in the chain belongs to B, then we will call the chain a

B-chain . The sum of the binomials of the chain (respectively, B-chain)

b̃ =

q∑
i=1

ri
u′
i

xβibi,

which is itself a binomial, will be called the corresponding chain binomial (respec-

tively, B-chain binomial). It is the first term of (r1/u
′
1)x

β1b1 plus the second term

of (rq/u
′
q)x

βqbq, because all the intermediate terms get canceled. We will call any

two chains equivalent if their corresponding chain-binomials are the same.

In the later sections, we will be interested in the “shape” of a chain. Given a

term ordering we will call a chain ascending if the first monomial is strictly less

than the second monomial in each binomial of the chain with respect to the given

term-order. Similarly, descending chains chains are also defined. Another shape

of significant interest is the one in which there are three sections in the chain: first

is descending, second is horizontal (all binomials in it are balanced), and the final

section is ascending. Any of these sections can be of length zero. Such chains will

be called bitonic .

Suppose we have a sequence of oriented U -binomials such that the monomial of

the second term of the i-th binomial in the sequence is equal to the monomial of

first term of the (i+ 1)-st binomial in the sequence. Then we can multiply suitable

coefficients to these U -binomials to turn this sequence into a chain such that its

chain-binomial is also a U -binomial. Let

xβ1b1, xβ2b2, . . . , xβqbq

be a sequence of oriented U -binomials such that the first q − 1 binomials are not

mono-binomials. Let

xβibi = xβi

(
ui

u′
i

xαi,1 +
vi
v′i
xαi,2

)
,

where (ui/u
′
i)x

αi1 is the first term for each i. Let βi + αi,2 = βi+1 + α(i+1),1 for

all 1 ≤ i < q. Consider the sequence (. . . , (di/d
′
i)x

βibi, . . .), 1 ≤ i ≤ q where

d1/d
′
1 = 1/1 and

di
d′i

= (−1)i−1v1
v′1

u′
2

u2

v2
v′2

u′
3

u3

v3
v′3
· · · vi−1

v′i−1

u′
i

ui

,

3.3 Decomposition into chains 41

for i > 1. It is easy to see that it is a chain of U -binomial and its chain-binomial is

the U -binomial
u1

u′
1

xα1,1 +
dq
d′q

vq
v′q
xαq,2

which will be denoted by B(xβ1b1, . . . ,x
βqbq). Note that if bq is a mono-binomial,

then the second term will be (0/1)x�.

Observation 9. Let (xβ1b1, . . . ,x
βkbk) be a sequence of oriented U-binomials where

bi ∈ B and none of which are mono-binomials. Furthermore, the second monomial

of xβibi and the first monomial of xβi+1bi+1 are same for all 1 ≤ i < k. Then

B(xβ1b1, . . . ,x
βkbk,x

βkbrevk , . . . ,xβ1brev1) = 0.

3.3 Decomposition into chains

If B is a finite set of pure difference binomials, then every binomial in 〈B〉 is a

B-chain binomial (Lemma 2.18). This property is used in the computation of a

toric ideal. In case B has general binomials this property does not hold. But in

the following theorem, we will show that in ideals generated by U -binomials every

polynomial can be expressed as the sum of some B-chain binomials. This result is

used in the proof of theorems 3.10 and 3.11. For any polynomial f , mon(f) will

denote the set of monomials in f .

Theorem 3.3. Let B be a finite set of U-binomials in S[x1, . . . , xn]. For every

polynomial f in I = 〈B〉, there exists a set of B-chain binomials b̃i such that f =∑
i b̃i where both monomials of every b̃i belongs to mon(f)

∪
{x�}.

Proof. Let B = {b1, . . . , bn}. Consider an arbitrary polynomial f ∈ 〈B〉. So

f =
∑
i

ri
w′

i

xβibji ,

where (ri/w
′
i)x

βi ∈ S[x1, . . . , xn], for all i. Define an edge-weighted graph G (multi-

edges and loops allowed) representing this expression in the following manner. The

vertex set of this graph is the set of distinct monomials in (ri/w
′
i)x

βibi, for all i.

Vertices corresponding to mon(f)
∪
{x�} will be called terminal vertices.

42 A Saturation Algorithm for Homogeneous Binomial Ideals

There is one edge for each binomial in the sum-expression for f . The i-th edge

is incident upon the two monomials associated with xβibi, if they are distinct. Oth-

erwise it forms a loop on that monomial. Weights are assigned to two halves of each

edge separately. Suppose bi = (ui/u
′
i)x

αi,1 + (vi/v
′
i)x

αi,2 . Then we associate weight

(ri/w
′
i)(ui/u

′
i) to the end incident on xβixαi,1 and weight (ri/w

′
i)(vi/v

′
i) to the end

incident on xβixαi,2 .

It should be clear from the construction that the sum of end-weights incident

upon a non-terminal vertex must be zero. Hence the degree of non-terminal vertices

can never be one. Each end-weight incident on x� is zero, so their sum is also zero.

See example in figure 3.1.

Figure 3.1: An example of chain decomposition graph

Consider any connected component, C, of G. The polynomial corresponding to

C is the sum of its monomials, weighted with the sum of end-weights incident on it.

This is also the sum of binomials corresponding to the edges in C. So the polynomial

associated with G is the sum of polynomials of all components of G, which is f .

If a component does not contain any mon(f) vertex, then the corresponding

polynomial will be zero. So we can delete it from the graph without affecting

the total polynomial. Similarly any isolated mon(f) vertex with no loop-edge also

contributes zero and can be deleted from the graph. So we can assume that every

connected component of G has at least one mon(f) vertex and degree of all terminal

vertices is at least 1 and as observed earlier, the degree of non-terminal vertices is

at least 2.

We will establish the claim of the theorem by induction on the number of edges

in the graph. If the graph has one edge, then the corresponding expression is a

trivial B-chain binomial with both monomials from mon(f)
∪
{x�}. Next we will

consider the graphs with more than one edge.

If there is a component with at least two terminal vertices, then select a shortest

path w between two different vertices of mon(f)
∪
{x�} in the component. In case

3.3 Decomposition into chains 43

all components have only one mon(f) node, then from lemma 3.4 given below, we

conclude that a closed walk w exists passing through the terminal vertex and has

at least one edge on it which is traversed only once.

In either case, the walk w has at least one edge on it which is not traversed more

than once and both its end-vertices (the two end-vertices may be same if w is a

closed walk) are terminals. Furthermore, if one of the end-vertices is x�, then w

must be a path, not a closed walk. Hence, all edges on it are traversed only once.

In particular, the edge incident on x� is traversed only once.

Let (
rj1
w′

j1

xβj1 bj1 ,
rj2
w′

j2

xβj2 bj2 , . . . ,
rjk
w′

jk

xβjk bjk

)
be the sequence of the binomials associated with the successive the edges of the

walk. Orient these binomials such that walk proceeds from the first to the second

term of each binomial. Then the second monomial of i-th binomial is same as the

first monomial of (i+ 1)-st binomial of the walk/sequence.

Suppose the t-th edge in the walk is traversed only once. In case the walk ends

in x�, take t to be the edge incident on x�. Let the tth edge of the walk has index

l, i.e. jt = l. Consider the chain binomial

b̃ = B

(
rl
w′

l

d′t
dt
xβj1 bj1 , . . . ,

rl
w′

l

d′t
dt
xβjk bjk

)
,

where dt/d
′
t is as defined in the end of section 3.2. Observe that in the chain

expression of b̃ the t-th binomial is (rl/w
′
l)x

βlbl and all the remaining binomials

correspond to other than l-th edge of the graph. From the definition of binomial b̃,

both its monomials are from the set {mon(f)
∪
{x�}.

Let f ′ = f− b̃. Express f ′ as a sum expression by combining the sum expressions

of f and b̃. The coefficients of a given binomial in the sum expression of f and of b̃

combine to a single coefficient of the form r/u′. Hence, we get a sum-expression for

f ′ where the binomials are the same as in the expression of f but their coefficients

may change. The coefficient of xβlbl in f ′ sum-expression is zero. So the number

of addend binomials in f ′ expression is at least one less that that in f expression.

Therefore the graph corresponding to f ′ will have at least one fewer edge then in the

graph of f . This establishes the induction-step and hence the proof is complete. �

Following is a graph theoretic result which was used in the above theorem.

44 A Saturation Algorithm for Homogeneous Binomial Ideals

Lemma 3.4. Let H be an undirected connected graph (possibly with loops and multi-

edges) with n vertices. Let s be a specified vertex. Also, let the degree of every vertex

other than s be greater than one and deg(s) ≥ 1 (so if n = 1 then s has a loop).

Then, there exists a closed walk passing through s which has at least one edge that

occurs only once in it.

Proof. The number of edges in H is half of the sum of degrees of its vertices, so it

is at least d(1 + 2(n − 1))/2e = n. A tree on n vertices has n − 1 edges. So there

must exist a cycle in H. Since the graph allows loops and parallel edges, the cycles

in the graph include 1-cycles (loop) and 2-cycles (due to parallel edges).

Suppose this cycle is v0
e′0→ v1

e′1→ . . . vm−1

e′m−1→ v0,m ≥ 1. Furthermore, sup-

pose vi is one of the nearest vertices of the cycle from s and let e1, e2, . . . , et be

a shortest paths from s to vi. So this path only touches the cycle at vi and the

sets of the edges of the path and the cycle are disjoint. Then the desired walk is

e1, e2, . . . , et, e
′
i, e

′
i+1, . . . , e

′
0, e

′
1 . . . , e

′
i−1, et, et−1, . . . , e1. �

3.4 Reduction of U-binomials

LetB be a finite set of non-balanced U -binomials (which may include mono-binomials)

and a term order ≺. In this section, we will formally describe the reduction of any

U -binomial by B with respect to the given term order. We will assume that each

binomial of B is oriented by setting the leading term as the first term. We will

denote the leading term of a binomial b by in≺(b).

Given an arbitrary U -term (u/u′)xα, Algorithm 3.3 computes a descending B-

chain
v1
v′1
xβ1bj1 , . . . ,

vp
v′p
xβpbjp

with corresponding B-chain binomial

p∑
i=1

vi
v′i
xβibji =

u

u′x
α − w

w′x
γ,

where xγ is not divisible by the leading term of any member ofB. The term (w/w′)xγ

will be denoted by (u/u′)xα
B
.

3.4 Reduction of U-binomials 45

Algorithm 3.3: Division algorithm for a U -monomial by a set of non-

balanced U -binomials
Data:

• A finite set, B, of non-balanced U -binomials

• A U -term (u/u′)xα

Result: A U -term (w/w′)xγ which is irreducible by B and a B-chain

corresponding to binomial (u/u′)xα − (w/w′)xγ.

1 (w/w′)xγ ← (u/u′)xα ;

2 i← 0 ;

3 while some leading monomial in B divides xγ do

4 Select b = (µ1/µ
′
1)x

δ1 + (µ2/µ
′
2)x

δ2 from B such that the leading

monomial xδ1 divides xγ ;

5 i← i+ 1 ;

6 xβji ← xγ/xδ1 ;

7 vi/v
′
i ← (−w/w′)(µ′

1/µ1) ;

8 w/w′ ← (vi/v
′
i)(µ2/µ

′
2) ;

9 xγ ← xβji · xδ2 ;

10 end

11 return (w/w′)xγ,
(
(v1/v

′
1)x

βbj1 , . . . , (vi/v
′
i)x

βibji
)
;

Any initial sub-chain
v1
v′1
xβ1bj1 , . . . ,

vp
v′p
xβpbjl

is called a reduction of (u/u′)xα and if the corresponding chain-binomial is

u

u′x
α − w1

w′
1

xγ1 ,

then (u/u′)xα is said to have B-reduced to (w1/w
′
1)x

γ1 . In particular, (u/u′)xα
B

is the irreducible B-reduction of (u/u′)xα. If p =
∑

i(ui/u
′
i)x

αi and (wi/w
′
i)x

γi be

some B-reduction of (ui/u
′
i)x

αi for each i, then
∑

i(wi/w
′
i)x

γi is a B-reduction of p.

The reduction of binomials is of special interest here. Suppose we have a non-

balanced U -binomial

b =
u1

u′
1

xα1 +
u2

u′
2

xα2

46 A Saturation Algorithm for Homogeneous Binomial Ideals

and a finite set B of non-balanced U -binomials in which the first term is greater than

the second term. Let (w1/w
′
1)x

γ1 and (w2/w
′
2)x

γ2 be the reductions of (u1/u
′
1)x

α1

and (u2/u
′
2)x

α2 respectively. So

b′ =
w1

w′
1

xγ1 +
w2

w′
2

xγ2

is a reduction of b. Adjoining the reduction chain of (u1/u
′
1)x

α1 with b′ (if it is

non-zero) followed by the reverse of the reduction chain of (u2/u
′
2)x

α2 results into

a bitonic chain called a reduction chain of b with respect to B. Obviously, its

chain-binomial is b.

In case b is a balanced U -binomial

u1

u′
1

xα +
u2

u′
2

xα,

we only need to reduce xα. Let a reduction chain and the reduction monomial be

C1 and (w1/w
′
1)x

γ respectively. Then

b′ =
u1

u′
1

w1

w′
1

xγ +
u2

u′
2

w1

w′
1

xγ

is a B-reduction of b and the corresponding reduction chain is

u1

u′
1

C1, b′,
u2

u′
2

Crev
1 .

For any binomial b, any B-reduction chain which reduces it to b′, is a B
∪
{b′}-

chain and it is bitonic. In particular, if b′ is zero then the reduction chain will be a

B-chain.

Lemma 3.5. Let C be a B-chain and b ∈ B. Let B′ = B \ {b} and b′ be some

B′-reduction of b. Then there is a B′∪{b′}-chain which is equivalent to C.

Proof. If b does not occur in C, then C is also a B′∪{b′}-chain.
The reduction chain of b by B′ is a B′∪{b′}-chain. In case b occurs in C, plug

this reduction chain in places of b in C. So the resulting chain is equivalent to C

and itself a B′∪{b′}-chain. �

3.5 Pseudo-Gröbner Basis 47

3.5 Pseudo-Gröbner Basis

In section 3.1.2, we saw that the saturation of an ideal in k[x1, . . . , xn] can be com-

puted by first computing a suitable Gröbner basis for it, as described in Sturmfels’

lemma (Stu95, Lemma 12.1). Unfortunately, Gröbner basis is only defined for ideals

in k[x1, . . . , xn], where k is a field, not for S[x1, . . . , xn] as is the case here. In this

section, we will describe a type of basis for U -binomial ideals in S[x1, . . . , xn] which

closely resembles a Gröbner basis. In section 3.6, we will also prove a theorem sim-

ilar to the Sturmfels’ lemma which will allows us to compute the saturation of such

ideals.

Definition 3.6. For every finite U -binomial set G, G1 and G2 will denote its par-

tition, where the former will represent the set of non-balanced binomials and the

latter will represent the set of balanced binomials of G.

Definition 3.7. Let

b1 =
u1

u′
1

xα1 +
v1
v′1
xβ1 ,

b2 =
u2

u′
2

xα2 +
v2
v′2
xβ2

be non-balanced U -binomials belonging to S[x1, . . . , xn]. Let ≺ be a term order and

xβi ≺ xαi for i = 1, 2. Further, let

b3 =

(
w1

w′
1

+
w2

w′
2

)
xα.

We define two types of S-binomials as follows: First one for a pair of two non-

balanced binomials –

S≺(b1, b2) ,
u1v2
u′
1v

′
2

xβ2+γ−α2 − v1u2

v′1u
′
2

xβ1+γ−α1 ,

where xγ is the LCM of xα1 and xα2 . The second type is for a balanced and non-

balanced binomial. In this case –

S≺(b3, b1) ,
(
w1

w′
1

+
w2

w′
2

)
xβ1+γ−α1 ,

where xγ is the LCM of xα and xα1 . Observe that if b′ and b′′ are both U -binomials,

then S≺(b
′, b′′) is also a U -binomial in both cases of S-binomial definition.

48 A Saturation Algorithm for Homogeneous Binomial Ideals

Assume a fixed term-order. In a chain(
. . . ,

vi
v′i
xβibi, . . .

)
,

two consecutive binomials will be said to form a peak if at least one is non-balanced

and the monomial at their junction is greater than or equal to the other two mono-

mials. Further suppose xβi−1bi−1 and xβi+jbi+j are non-balanced binomials and all

the intermediate binomials are balanced, then the binomials xβkbk, i ≤ k ≤ i+ j−1

are called plateau if at least one of (i − 1)-st and i-th binomials or (i + j − 1)-th

and (i+ j)-th binomials form a peak. See figure 3.2.

Figure 3.2: Types of peaks

Suppose

C =

(
. . . ,

ui−1

u′
i−1

xβi−1bi−1,
ui

u′
i

xβibi, . . .

)
is a chain where (i− 1)-st and i-th binomials form a peak. In case bi−1 and bi both

are non-balanced, then there exists a term (w/w′)xγ such that following chain is

equivalent to C:(
. . . ,

ui−2

u′
i−2

xβi−2bi−2,
w

w′x
γS≺ (bi−1, bi) ,

ui+1

u′
i+1

xβi+1bi+1, . . .

)
.

In the second case, when bi−1 is balanced and bi is non-balanced, then there exists

a constant w1/w
′
1 and a term (w2/w

′
2)x

γ such that the following chain is equivalent

to C:(
. . . ,

ui−2

u′
i−2

xβi−2bi−2,
w1

w′
1

xβibi,
w2

w′
2

xγS≺ (bi−1, bi) ,
ui+1

u′
i+1

xβi+1bi+1, . . .

)
.

The third case where bi−1 is non-balanced and bi is balanced, is same as the second

case with initial chain reversed. Observe that in these cases the original peak is

removed, see figure 3.3.

Lemma 3.8. Let G be a finite set of U-binomials and assume a fixed term-ordering

≺. If for every S-polynomial S≺(b1, b2), where b1, b2 ∈ G, has a G-chain in which

each monomial is less than or equal to at least one monomial of S≺(b1, b2), then

every G-chain has an equivalent bitonic G-chain.

3.5 Pseudo-Gröbner Basis 49

b1

b2 b2

s(b1,b2)

b1
b2

s(b1,b2)

Figure 3.3: S-polynomial reductions

Proof. Consider any arbitrary G-chain. If it has no peak, then it must be bitonic.

Otherwise locate one of the highest (in terms of the ordering) peaks. Replace the

two binomials forming the peak by the S-polynomial or the combination of the S-

polynomial and the non-balanced binomial as described in the previous paragraph.

Now replace the S-binomial by the corresponding G chain. The reduction chain does

not have any monomial higher than both the monomials of the S-binomial so no

new peaks can form which is above both the monomials of S-binomial. Substitution

also turns the entire chain into a G-chain and it is equivalent to the original chain.

But it has one less peak or plateau at the level of the selected peak. Iterate over this

step till there is no peak left. Since term-ordering is well-ordering, these iterations

will have to terminate. �

A functional definition of Gröbner basis for any ideal in the ring k[x1, . . . , xn]

is that it is a basis of the ideal which reduces every member of the ideal to zero.

We will define pseudo Gröbner basis in a similar fashion. In the previous section

we described the reduction of a U -binomial by a set of non-balanced U -binomials.

Hence the reduction of a U -binomial by set G1 is well defined.

Definition 3.9. A U -binomial basis G of the ideal I = 〈 G 〉 will be called a pseudo

Gröbner basis with respect to a given term-order if every binomial of I reduces to

0(mod 〈 G2 〉) by G1.

Algorithm 3.4 is modified Buchberger’s algorithm which computes a pseudo

Gröbner basis for any ideal having a U -binomial basis B. The first loop of the

50 A Saturation Algorithm for Homogeneous Binomial Ideals

algorithm terminates since the initial ideal of 〈G1〉 strictly increases in each itera-

tion and the underlying ring is Noetherian.

Let us now focus on the second part of the algorithm. In line 23, r is added to

H if no monomial in H divides r. So, each addition to H strictly increases the ideal

generated by H. Once again ring being Noetherian, this expansion of H must stop.

Hence the algorithm terminates.

Theorem 3.10. Algorithm 3.4 computes a pseudo Gröbner basis of 〈B〉 with respect

to the given term ordering.

Proof. Let (G1, G2) be the output of algorithm 3.4. Let G = G1

∪
G2. The S-

polynomials of a pair of binomials in the ideal also belong to the ideal. Similarly

the G1 reduction of a binomial of the ideal also belongs to the ideal. Hence the ideal

remains fixed during the computation, i.e., 〈B〉 = 〈G〉.
In order to show that (G1, G2) is a pseudo-Gröbner basis of 〈G〉 we need to

show that G1 reduces every polynomial of 〈G〉 to a polynomial in 〈G2〉. Due to

Theorem 3.3 it is sufficient to show that G1 reduces every G-chain binomial to a

polynomial in 〈G2〉.
Let S≺(b1, b2) be the S-polynomial of some b1, b2 ∈ G. Then it is itself a

G
∪
{S≺(b1, b2)}-chain (i.e., a chain of only one binomial). The reduction chain

of S≺(b1, b2) is a G-chain since S≺(b1, b2)
G1

belongs to G. From Lemma 3.8 every

G-chain has an equivalent bitonic G-chain.

Consider an arbitrary G-chain binomial b = (u1/u
′
1)x

α1 + (u2/u
′
2)x

α2 . From the

previous paragraph we know that there is a bitonic G-chain with b as its chain

binomial. Let C1, C2 and C3 be its descending, horizontal, and ascending sections.

So the C1 and Cr
3 (reverse of C3) are reduction chains of (u1/u

′
1)x

α1 and (u2/u
′
2)x

α2

respectively. Let their reduced terms be (v1/v
′
1)x

β1 and (v2/v
′
2)x

β2 respectively.

Then the chain-binomial of C2 is b
′ = (−v1/v′1)xβ1 +(−v2/v′2)xβ2 . Since all balanced

binomials of G belong to G2, C2 is a G2-chain and b′ ∈ 〈G2〉. �

3.6 Saturation with respect to xi

In this section, we we will prove a result similar to Lemma 12.1 of (Stu95) which

will result into an algorithm to compute 〈B〉 : x∞
i efficiently.

3.6 Saturation with respect to xi 51

Algorithm 3.4: A1: Modified Buchberger’s algorithm

Data: B = {b1, . . . , bs} ⊆ S[x1, . . . , xn] be a set of U -binomials; A term

order ≺
Result: A pseudo Gröbner basis (G1, G2) for 〈 B 〉 with respect to ≺.

1 G2 ← balanced members of B; G1 ← B \G2 ;

2 repeat

3 G1,old ← G1 ;

4 for each pair b1, b2 ∈ G1,old such that b1 6= b2 do

5 r ← S≺(b1, b2)
G1

;

6 if r is non-balanced then

7 G1 ← G1

∪
{r} ;

8 else

9 if r 6= 0 then

10 G2 ← G2

∪
{r}

11 end

12 end

13 end

14 until G1,old = G1;

15 H2 ← ∅;
16 for each b in G2 do

17 H ← {b};
18 repeat

19 Hold ← H;

20 for each b ∈ Hold and b1 ∈ G1 do

21 r ← S≺(b, b1)
G1
;

22 if no any monomial of H divides r then

23 H ← H
∪
{r} ;

24 end

25 end

26 until Hold = H;

27 H2 ← H2

∪
H;

28 end

29 return (G1, H2) ;

52 A Saturation Algorithm for Homogeneous Binomial Ideals

Theorem 3.11. Let (G1, G2) be the pseudo Gröbner basis of a homogeneous U-

binomial ideal I in S[x1, . . . , xn] with respect to any graded reverse lexicographic

term order in which xi is least. Then (G′
1 = G1 ÷ x∞

i , G′
2 = G2 ÷ x∞

i) is a pseudo

Gröbner basis of I : x∞
i .

Proof. From Theorem 3.3 we know that every polynomial f in I can be expressed

as a sum of G-chain binomials and their monomials are monomials of f . So it

is sufficient to show that for each G-chain binomial b, b′ = b ÷ x∞
i is a G′-chain

binomial.

Let

b =
u1

u′
1

xα1 +
u2

u′
2

xα2

be a G-chain binomial. From Lemma 3.8, there is a bitonic G-chain for b, say,(
v1
v′1
xβ1b1, . . . ,

vk
v′k

xβkbk

)
.

Hence every monomial in the chain is less than either xα1 or xα2 . Let a be the largest

integer such that xa
i divides b, i.e., xa

i divides xα1 and xα2 . Since the term ordering

is graded reverse lexicographic with xi least, x
a
i must divide every monomial of the

chain. Hence there exists β′
j such that (xβjbj)÷ xa

i = xβ′
j(bj ÷ x∞

i). So

b÷ x∞
i = b÷ xa

i =
∑
j

vj
v′j
xβ′

j (bj ÷ x∞
i) ,

and

(
v1
v′1
xβ′

1 (b1 ÷ x∞
i) , . . . ,

vk
v′k

xβ′
k (bk ÷ x∞

i)

)
is a chain with chain-binomial equal to b÷ x∞

i . Thus b÷ x∞
i is a G′-chain binomial.

�

3.7 Final Algorithm

Let R0 be a commutative Noetherian ring with unity, and U0 ⊂ R0 be a multiplica-

tively closed set with unity but without zero. Let the set U+
0 be defined as

U+
0 = { u | u ∈ U0, or − u ∈ U0, or u = 0 } .

3.7 Final Algorithm 53

Let S0 denote the localization of R0 w.r.t U0, i.e., S0 = R0[U
−1
0]. Here we define a

few notations to simplify the description of the algorithm. Let Ui be the set of all

monomials in x1, . . . , xi and Si = S0[x1, . . . , xi][U
−1
i].

Let f(x) be a polynomial in Si[xi+1, . . . , xn]. Let r be the largest integer such

that xr
i occurs in the denominators of one or more terms of f . Then x∞

i ∗ f(x)
denotes xr

i ∗ f(x). If B is a set of polynomials of Si[xi+1, . . . , xn], then x∞
i ∗ B

denotes {x∞
i ∗ f(x) : f(x) ∈ B}.

We will be dealing with several polynomial rings simultaneously. In case of

ambiguity about the underlying ring, we will denote the ideal generated by a set of

polynomials B in a ring S[x1, . . . , xn] by 〈B〉S[x1,...,xn].

Our algorithm is based on the following identities. Here B is a finite set of

polynomials in S0[x1, . . . , xn] and Bi be the generating set of

〈 B 〉Sn

∩
Si[xi+1, . . . , xn], ∀i.

Lemma 3.12. (i) 〈B〉S0[x1,...,xn] : (x1 · · · xn)
∞ = 〈B〉Sn

∩
S0[x1, . . . , xn].

(ii) 〈B〉Sn

∩
Si−1[xi, . . . , xn] = 〈x∞

i ∗Bi〉Si−1[xi,...,xn] : (xi)
∞

Proof. (i) Let f ∈ 〈 B 〉Sn

∩
S0[x1, . . . , xn]. Hence,

f =
∑
j

rj
u′
j

xαj

xβj
bj,

where bj ∈ B. So

x(β1+β2+...) · f =
∑
j

(
rj
u′
j

x(αj+β1+···+βj−1+βj+1+...) · bj
)
∈ 〈 B 〉S0[x1,...,xn].

Since f ∈ S0[x1, . . . , xn], f ∈ 〈B〉S0[x1,...,xn] : (x1 . . . xn)
∞.

Conversely, let f ∈ 〈 B 〉S0[x1,...,xn] : (x1 · · · xn)
∞. Then,

∃xβ, xβf =
∑
i

ri
u′
i

xαibi,

where bi ∈ B. So f =
∑

i(x
αi/xβ)bi ∈ 〈B〉Sn . Hence, f ∈ 〈B〉Sn

∩
S0[x1, . . . , xn].

(ii) From the definition of Sj−1[xj, . . . , xn], we have

〈 B 〉Sn

∩
Si−1[xi, . . . , xn] ⊆ 〈 B 〉Sn

∩
Si[xi+1, . . . , xn].

54 A Saturation Algorithm for Homogeneous Binomial Ideals

Now, let f ∈ 〈 B 〉Sn

∩
Si−1[xi, . . . , xn], then

f ∈ 〈 B 〉Sn

∩
Si[xi+1, . . . , xn] = 〈 Bi 〉Si[xi+1,...,xn].

So,

f =
∑
j

(
rj
u′
j

xαj

xβj

)
bj,

where bj ∈ Bi and xβj are monomials in x1, . . . , xi. Let m be the largest

exponent of xi in the denominators in the sum-expression. So there are integers

ti’s such that

xm
i f =

∑
i

xti
i x

αj

xβj
(x∞

i ∗ bj) .

This sum belongs to 〈x∞
i ∗Bi〉Si−1[xi,...,xn]. So f ∈ 〈x∞

i ∗Bi〉Si−1[xi,...,xn] : (xi)
∞.

Now the converse. We have

(x∞
i ∗Bi) ⊆ 〈 B 〉Sn

∩
Si−1[xi, . . . , xn]

=⇒ 〈 x∞
i ∗Bi 〉Si−1[xi,...,xn] ⊆ 〈 B 〉Sn

∩
Si−1[xi, . . . , xn].

Now we will show that the ideal on the right hand side is saturated with

respect to xi. Let xk
i f ∈ 〈B〉Sn

∩
Si−1[xi, . . . , xn] where xi, . . . , xn are not in

the denominators in f . So (1/xk
i)(x

k
i f) ∈ 〈B〉Sn or f ∈ 〈B〉Sn . Since f does

not have xi, . . . , xn in the denominators, f ∈ 〈B〉Sn

∩
Si−1[xi, . . . , xn].

�

Using Theorem 3.11, we compute the saturation 〈x∞
i ∗ Bi〉Si−1[xi,...,xn] : (xi)

∞.

Hence the final algorithm is as follows.

The graded reverse lexicographic term order requires a homogeneous ideal, hence

we require homogenization for n ≥ i > 1 cases. In case of i = 1, the ideal is given

to be homogeneous.

Theorems 3.10, 3.11 and Lemma 3.12 establish the correctness of this algorithm.

Theorem 3.13. Let R0 be Noetherian commutative ring with unity. Let U0 ⊂ R0

be a multiplicatively closed set. Let B be a finite set of homogeneous U0-binomials

in S0[x1, . . . , xn]. Then algorithm A2 computes a pseudo-Gröbner basis of 〈B〉 :

(x1 · · · xn)
∞.

3.8 An Application: Computing kernels 55

Algorithm 3.5: A2:Computation of 〈B〉S0[x1,...,xn] : (x1 · · · xn)
∞

Data: Finite set B of homogeneous U0-binomials in S0[x1, . . . , xn].

Result: A pseudo-Gröbner basis of 〈 B 〉S0[x1,...,xn] : (x1 · · · xn)
∞

1 G1 ← { b ∈ B | b is non-balanced } ;
2 G2 ← { b ∈ B | b is balanced } ;
3 for i← n to 1 do

4 if i > 1 then

5 Homogenize G1 using a new variable z ;

6 end

7 (G′
1, G

′
2)← (x∞

i ∗G1, x
∞
i ∗G2) ;

/* pseudo Gröbner Basis */

8 (G1, G2)← A1 (G1, G2, rev. lex order with i least);

9 (G1, G2)← (G1 ÷ x∞
i , G2 ÷ x∞

i) ;

10 (G1, G2)← (G1|z=1, G2|z=1) ;

11 end

12 return (G1, G2).

3.8 An Application: Computing kernels

In this section, we will present an algorithm to compute the kernel of a class of

polynomial homomorphisms.

Consider the polynomial ring homomorphism

φ′ : k[x1, . . . , xn]→ k[y1, . . . , ym], xi 7→ yai11 · · · yaimm ,

where k is a field. The kernel of φ′ is called a toric ideal and, as we have seen in

Chapter 2, the computation of a toric ideal is a well studied problem.

In this section, we study the problem of computing a more general kernel. Let

R0, U0 and U+
0 be as before, and S0 = R0[U

−1
0]. Consider the ring homomorphism

φ : S0[x1, . . . , xn]→ S0[y1, . . . , ym], xi 7→
ui

u′
i

yα
i ,

where ui ∈ U+
0 , u

′
i ∈ U0. The problem is to devise an efficient algorithm to compute

kerφ, the kernel of φ.

56 A Saturation Algorithm for Homogeneous Binomial Ideals

By permuting indices we can assume that there exists r such that ui/u
′
i 6= 0 for

i ≤ r and ui/u
′
i = 0 for i ≥ r + 1. Define

φr : S0[x1, . . . , xr]→ S0[y1, . . . , ym], xi 7→
ui

u′
i

yαi .

Then, it is easy to see that

kerφ = (kerφr) + 〈xr+1, . . . , xn〉. (3.1)

So the non-trivial part of the problem is to compute kerφr. Hence from now on-

wards, we will assume that ui/u
′
i 6= 0 for all 1 ≤ i ≤ n. Note that, since U0 is a

multiplicatively closed set without zero, φ-image of any monomial is non-zero.

Now, consider the following derived homomorphism

φ′ : k[x1, . . . , xn]→ k[y1, . . . , ym], xi 7→ yαi .

Since kerφ does not contain any monomial, it can be shown that there is a one to

one correspondence between the binomials of kerφ and those of kerφ′. Hence one

way to compute kerφ is to compute a basis of the toric ideal kerφ′ and then compute

a basis of kerφ from it. Here we will describe an alternative method.

To compute the toric ideal, a set of pure difference-binomials Btor is computed

from φ′ such that kerφ′ = 〈Btor〉 : (x1 · · · xn)
∞. Btor is computed as follows.

Let A be a matrix in which the columns are αi’s, i.e.

A =


α11 α21 · · · αm1

α12 α22 · · · αm2
...

...
...

...
α1n α2n · · · αmn

 .

Let u1,u2, . . . ,uk be a complete set of integer solutions of Ax = 0, i.e., all integer

solutions of these equations can be expressed as linear combination of uj’s with

integral coefficients. The uj’s can be computed in polynomial time by computing

Hermite normal form of A. Let u+
j and u−

j be defined as follows:

u+
j [k] ,

{
uj[k], if uj[k] ≥ 0

0, otherwise

3.8 An Application: Computing kernels 57

We define u−
j , u+

j − u. Let

Btor =
{
xu+

j − xu−
j | 1 ≤ j ≤ k

}
.

Then it is shown in (Stu95, Chapter 4) that kernel of φtor is 〈Btor〉 : (x1 · · · xn)
∞.

Note that the only non-trivial step in the computation of a toric ideal is the satu-

ration of 〈Btor〉.
Continuing with the computation of kerφ, consider the set

B =

{
v1
v′1
xα1 +

−v2
v′2

xα2 | xα1 − xα2 ∈ Btor,

φ(xα1) =
v2
v′2
φ′(xα1), φ(xα2) =

v1
v′1
φ′(xα2)

}
.

Observe that B is a set of U -binomials and that it has no mono-binomials. Now we

will show that B is the desired initial basis, i.e., kerφ = 〈B〉 : (x1 · · · xn)
∞.

From the construction of B it is clear that every binomial of B is in the kernel of

φ. Further, the φ-image of every monomial is non-zero, so 〈B〉 : (x1 · · · xn)
∞ ⊆ kerφ.

To show the converse, we will first establish that kerφ is a binomial ideal (i.e.,

it can be generated by a set of binomials), thus it would be sufficient to show that

every binomial in kerφ is in 〈B〉 : (x1 · · · xn)
∞.

Assume that kerφ is not a binomial ideal. Then there must exist a polynomial

p,

p = c1x
α1 + · · ·+ cjx

αj , j > 2

which cannot be expressed as a linear combination of kernel-polynomials with fewer

than k terms. Let φ(xα1) = (d1/d
′
1)y

β which is non-zero. So there must be another

term in the polynomial whose φ-image has monomial yβ. Without loss of generality

assume that φ(xα2) = (d2/d
′
2)y

β. Then p is the sum

p =

(
c1x

α1 − c1
d1
d′1

d′2
d2

xα2

)
+

((
c2 + c1

d1
d′1

d′2
d2

)
xα2 + c3x

α3 + · · ·+ ckx
αk

)
.

Both polynomials are in the kernel and their sizes are smaller than j so the assump-

tion must be incorrect.

Consider an arbitrary binomial b = c1x
α1 + c2x

α2 ∈ kerφ. We need to show that

it is in 〈B〉 : (x1 · · · xn)
∞ to complete the proof.

58 A Saturation Algorithm for Homogeneous Binomial Ideals

As b ∈ kerφ, the monomials of φ(xα1) and φ(xα2) must be same. So xα1 −xα2 ∈
kerφ′. Since kerφ′ is known to be equal to 〈Btor〉 : (x1 · · · xn)

∞, there exists xα such

that xα(xα1 − xα2) ∈ 〈Btor〉. Every member of Btor is a pure difference-binomial, so

every binomial in 〈Btor〉 is a Btor-chain binomial. Let

xα (xα1 − xα2) = B
(
xβ1 (xα1,1 − xα1,2) , . . . , xβt (xαt,1 − xαt,2)

)
,

where (xαi,1 − xαi,2) ∈ Btor. So xβ1xα1,1 = xαxα1 and xβtxαt,2 = xαxα2 . From the

construction of B we know that for each i there exist vi1/v
′
i1 and vi2/v

′
i2 such that

(vi1/v
′
i1)x

αi,1 + (−vi2/v′i2)xαi,2 ∈ B. Let us denote the U0-binomial (vi1/v
′
i1)x

αi,1 +

(−vi2/v′i2)xαi,2 by bi. So the chain binomial

B

(
c1v

′
11

v11
xβ1b1, . . . ,

c1v
′
11

v11
xβtbt

)
= c1x

αxα1 + c′2x
αxα2

belongs to 〈B〉, for some c′2.

We have seen that 〈B〉 is contained in kerφ so (c1x
αxα1+c′2x

αxα2) and (c1x
αxα1+

c2x
αxα2) both belong to kerφ. Hence their difference (c2−c′2)xαxα2 must also belong

to the kernel. Since φ-image of a monomial is non-zero, c2−c′2 = 0. Thus we conclude

that xα · b ∈ 〈B〉 or b ∈ 〈B〉 : (x1 · · · xn)
∞.

Lemma 3.14. Given φ and B as defined in the discussion above, kerφ = 〈 B 〉 :
(x1 · · · xn)

∞.

Thus the problem of computing kerφ reduces to the computation of 〈B〉 :

(x1 · · · xn)
∞ which can be computed by Algorithm 3.5.

3.9 Preliminary Experimental Results

In the table given below, we present some preliminary experimental results of the

application of the proposed algorithm in computing toric ideals. To apply our general

algorithm to this specific case, we choose R0 to be a field k, and U0 to be {1}. Thus,
S0 = k and the polynomial ring S0[x1, . . . , xn] is simply k[x1, . . . , xn].

We compare our algorithm with Sturmfels’ (Stu95) and the Project and Lift al-

gorithm (HM09), the best algorithm known to date to compute toric ideals. As

3.9 Preliminary Experimental Results 59

expected, the table shows that our algorithm performs much better than the Sturm-

fels’ original algorithm, as our algorithm is specifically designed for binomial ideals.

To compare with Project and Lift algorithm, we implemented it as reported on

page 19 of (HM09), without optimizations reported subsequently. 4ti2 (HM09) is

the optimal implementation of their algorithm. Similar optimizations are applicable

in our algorithm and it too is implemented without the same. The typical results

are presented in the table given below.

Number of Size of basis Time taken (in sec.)

variables Initial Final Sturmfels’ Project and Lift Proposed

8 4 186 .30 0.12 0.10

6 597 2.61 .6 0.64

10 6 729 3.2 1.1 0.50

8 357 2.4 .40 0.29

12 6 423 1.7 .90 0.27

8 2695 305 60 27.2

14 10 1035 10.5 4.2 2.5

Table 3.1: Preliminary experimental results comparing Project-and-Lift and our

proposed algorithm

Our intuition as to why our algorithm is doing better compared to Project and

Lift is that, though Project and Lift does a large part of its calculations in rings of

variables less than n, it still uses Sturmfels’ saturation algorithm as a subroutine,

though the extent it uses the algorithm depends on the input ideal. On the other

hand, our algorithm computes all saturations by the same approach.

60 A Saturation Algorithm for Homogeneous Binomial Ideals

Chapter 4

A Divide-and-Conquer Method to

Compute Binomial Ideals

4.1 Introduction

The symbolic projection introduced in Chapter 2 was refined in Chapter 3 by using

localized rings. We continue to refine this approach in this chapter. We develop a

divide and conquer technique in which an ideal is mapped to ideals in lower (less

variable) rings and then the results computed from those ideals are lifted back to

the original rings and combined to compute the result of the original problem. This

method is applied for the computation of saturation, radical, minimal primes, and

cellular decomposition of binomial ideals.

This chapter is based on the work (KM12). The chapter has been arranged as

follows. Section 2 deals with some basic facts about rings and ideals, and discusses

irreducible and primary decompositions in the context of Noetherian rings. In the

next section, we define two maps from ideals of k[x1, . . . , xn] to the ideals of the

derived rings in n− 1 variables, and state some useful properties. These two maps

form the basis of the reduction of the problem into the subproblems. Section 4

contains the main contribution of this chapter – discussion of the proposed divide-

and-conquer framework. In Section 5, we use this framework to compute radical,

cellular decomposition, minimal primes, and saturation of binomial ideals.

62 A Divide-and-Conquer Method to Compute Binomial Ideals

4.2 Rings and Ideal Basics

In this chapter, we will only consider commutative rings with unity. In this section,

we review a few well known definitions and results about rings and ideals which will

be used later in the chapter. Also, note that k will denote an algebraically closed

field.

Definition 4.1. An ideal I of a ring R is prime, if I is a proper ideal, and fg ∈ I

implies f ∈ I or g ∈ I.

Definition 4.2. Radical of an ideal I is an ideal given by

√
I = { r | rm ∈ I, m ≥ 0 } .

An ideal is said to radical, if it is its own radical.

We now have two simple observations regarding radical ideals.

Observation 10. Prime ideals are radical.

Observation 11. I1 ⊆ I2 implies that
√
I1 ⊆

√
I2.

Definition 4.3. A ring is said to be Noetherian if every strictly ascending chain

of ideals in the ring

I1 (I2 (I3 (. . .

terminates.

The next observation presents an alternate view of Noetherian rings.

Observation 12. A ring is Noetherian if and only if every ideal of the ring is

finitely generated.

Definition 4.4. The quotient ring

k[x1, . . . , xn, y1, . . . , ym]/〈 x1y1 − 1, . . . , xmym − 1 〉,

for 1 ≤ m ≤ n, is called a partial Laurent polynomial ring and it is denoted by

k[x1, . . . , xn, x
−1
1 , . . . , x−1

m], where x−1
i corresponds to yi for 1 ≤ i ≤ m. If m = n,

then it is called a Laurent polynomial ring.

4.2 Rings and Ideal Basics 63

We now make an observation associating localization and Laurent polynomial

rings.

Observation 13. Let R = k[x1, . . . , xn] and U be the set of all monomials generated

by the variables {x1, . . . , xm}, 1 ≤ m ≤ n. Then, R[U−1] is isomorphic to the

partial Laurent polynomial ring k[x1, . . . , xn, x
−1
1 , . . . , x−1

m]. It is also isomorphic to

R′[xm+1, . . . , xn] where R′ is the Laurent polynomial ring k[x1, . . . , xm, x
−1
1 , . . . , x−1

m]

Lemma 4.5. (Eis95, Corollary 2.3) A localization of a Noetherian ring is Noethe-

rian.

The above lemma and the fact that polynomial rings are Noetherian imply that

partial Laurent polynomial rings are also Noetherian.

For convenience in describing the algorithm in section 4.4, we present an alter-

native notation for partial Laurent polynomial rings. Let V be the set of variables

{x1, x2, . . . , xn}, and L = {xi1 , xi2 , . . . , xim} be a subset of V . Then, we will denote

the partial Laurent polynomial ring k[x1, . . . , xn, x
−1
i1
, . . . , x−1

im
] by the tuple (k, V, L).

4.2.1 Irreducible decompositions

Definition 4.6. (CLO07) Let R be a ring. An ideal I ⊆ R is said to be irreducible

if

I = I1
∩

I2 =⇒ I = I1 or I = I2.

Definition 4.7. An irreducible decomposition of an ideal I is an expression of I

as the intersection of irreducible ideals.

Lemma 4.8. If an ideal I does not have an irreducible decomposition, then ∃ an

ideal J) I which also does not have an irreducible decomposition.

Proof. Let I be an ideal which does not have an irreducible decomposition. This

also means that I is not irreducible. Consider the set of decompositions of I as the

intersection of two ideals. This is certainly non-empty as it has I
∩

R. Since I is

not irreducible, it has a decomposition I = I1
∩
I2 such that both of them properly

contain I. Moreover, at least one of I1 and I2, call it J , does not have an irreducible

decomposition, otherwise I will have an irreducible decomposition. J is the desired

ideal. �

64 A Divide-and-Conquer Method to Compute Binomial Ideals

Theorem 4.9. Every ideal in a Noetherian ring has an irreducible decomposition.

Proof. If not, then using Lemma 4.8, we can build an strict ascending chain of ideals,

each of which is not expressible as the intersection of irreducible ideals. But this is

not possible as the ring is Noetherian. �

4.2.2 Primary Ideals

Definition 4.10. An ideal I in a ring R is said to be primary if fg ∈ I implies

either f ∈ I or gn ∈ I, for some n > 0. Equivalently, I is primary if fg ∈ I implies

that either fm ∈ I or gn ∈ I for some m,n > 0.

Lemma 4.11. Let I be an ideal in a Noetherian ring R. If fg ∈ I, then there exists

an n ≥ 0 such that 〈 f 〉
∩
〈 gn 〉 ⊆ I

Proof. As R is Noetherian, ∃n ≥ 0 such that I : gn = I : g∞. Let h ∈ 〈 f 〉
∩
〈 gn 〉.

This implies h = r2g
n = r1f , where r1, r2 ∈ R. Here, hg = r2g

n+1 = r1fg ∈ I. This

shows that r2 ∈ I : gn+1 = I : gn and hence h ∈ I. �

Lemma 4.12. Every irreducible ideal in a Noetherian ring is primary.

Proof. Let I be an irreducible ideal, and fg ∈ I, where f /∈ I. Using Lemma 4.11,

we know that

(I + 〈 f 〉)
∩

(I + 〈 gn 〉) = I.

Since f /∈ I, I + 〈 f 〉 is strictly larger than I. Hence I + 〈 gn 〉 = I, which implies

that gn ∈ I. �

Definition 4.13. A primary decomposition of an ideal I is an expression of I as

an intersection of primary ideals

I =
r∩

i=1

Qi,

where Qis are primary ideals. It is called minimal or irredundant if the
√
Qi are all

distinct and Qi +
∩

j 6=i Qj.

Theorem 4.14. Every ideal in a Noetherian ring has a primary decomposition.

Proof. This follows from Theorem 4.9 and Lemma 4.12. �

4.2 Rings and Ideal Basics 65

Lemma 4.15. Radical of intersection of ideals is intersection of radicals of the

ideals.

Proof. Let the ideals involved be I1, I2, . . . , In, and we want to show that√
I1
∩

I2
∩

. . .
∩

In =
√
I1
∩√

I2
∩

. . .
∩√

In.

Let f ∈
√∩

i Ii. This implies that for some m > 0, fm ∈
∩

i Ii =⇒ fm ∈ Ii,∀i =⇒
f ∈
√
Ii, ∀i. Thus, f ∈

∩
i

√
Ii. So, we have√

I1
∩

I2
∩

. . . In ⊆
√

I1
∩√

I2
∩

. . .
√
In.

To show the converse, let f ∈
∩

i

√
Ii. Then, it is easy to see that there exists an

m > 0, such that fm ∈
∩

i Ii. This implies that f ∈
√∩

i Ii. Thus, we have√
I1
∩√

I2
∩

. . .
√

In ⊆
√
I1
∩

I2
∩

. . . In.

�

Lemma 4.16. An ideal is primary iff its radical is prime.

Proof. (if) Let I be an ideal such that
√
I is prime. Let fg ∈ I, so fg ∈

√
I. So,

either f ∈
√
I or g ∈

√
I. Hence, either fm ∈ I or gn ∈ I, for m,n ≥ 0. Thus,

I is primary.

(only if) Let I be a primary ideal. Let fg ∈
√
I and f /∈

√
I. So for some n > 0,

fngn ∈ I and fk /∈ I for all k. As I is primary, there is some m such that

gnm ∈ I. Hence g ∈
√
I.

�

Lemma 4.17. If I and J are primary and
√
I =
√
J , then I

∩
J is also primary.

Proof. Let fg ∈ I
∩

J , and f j /∈ I
∩

J for all j > 0. We need to show that

gn ∈ I
∩

J , for some n > 0. We claim that f i /∈ I,∀i > 0. Otherwise, f ∈
√
I =
√
J

or fm ∈ I
∩

J for some m > 0, which contradicts the assumption. As f i /∈ I,∀i and
I is primary, we deduce that gn1 ∈ I for some n1 > 0. From a similar argument

gn2 ∈ J for some n2 > 0. Hence the proof. �

Theorem 4.18. Every ideal in a Noetherian ring has a minimal primary decompo-

sition.

66 A Divide-and-Conquer Method to Compute Binomial Ideals

Proof. Theorem 4.14 gives us a primary decomposition for any ideal. Repeated ap-

plication of Lemma 4.17 gives us a primary decomposition such that all the radicals

are distinct. Lastly, we can eliminate all the redundant ideals in the intersection to

get a minimal primary decomposition. �

Theorem 4.19. Every radical ideal in a Noetherian ring has a prime decomposition.

Proof. Let I be a radical ideal in a Noetherian ring. From Theorem 4.14, I has a

primary decomposition

I = Q1

∩
Q2

∩
. . .
∩

Qn.

Then, applying Lemma A.3, we have

√
I =

√
Q1

∩√
Q2

∩
. . .
∩√

Qn.

Now, observing that
√
Qis are prime (Lemma 4.16), we have the proof. �

4.3 Two Ring Homomorphisms

4.3.1 Modulo Map

Let r be an element of a Noetherian ring R. Then θ : R → R/〈 r 〉 denotes the

natural homomorphism

θ(a) = [a] = a+ 〈 r 〉, ∀a ∈ R.

This induces a map Θ from the ideals in R containing r and the ideals of R/〈r〉 as
follows -

Θ(I) = { [a] | a ∈ I } ,

where I ⊆ R is an ideal containing r.

Similarly, we define a map Θ−1 from the ideals of R/〈 r 〉 to the ideals of R

containing r as follows

Θ−1(J) = { x | [x] ∈ J } ,

where J ⊆ R/〈 r 〉 is an ideal.

4.3 Two Ring Homomorphisms 67

Lemma 4.20. Θ is a bijection.

Proof. We will first show that for any ideal I ⊆ R containing r, Θ−1(Θ(I)) = I.

From the definitions, we observe that I ⊆ Θ−1(Θ(I)). Now let x ∈ Θ−1(Θ(I)). So

[x] ∈ Θ(I) and hence, there exists s ∈ I such that x− s = tr, for some t ∈ R. Since

r, s ∈ I, x ∈ I.

To show that Θ(Θ−1(J)) = J for every ideal J in R/〈 r 〉, observe from the

definitions that J ⊆ Θ(Θ−1(J)). Now, let [x] ∈ Θ(Θ−1(J)). So for some t ∈ R,

x+ rt ∈ Θ−1(J). Hence [x+ rt] ∈ J . But, as [x] = [x+ rt], so [x] ∈ J . �

It is directly verifiable from the definitions that Θ and Θ−1 preserve set inclusion.

Lemma 4.21. Θ and Θ−1 map primes to primes.

Proof. Let I be a prime ideal of R containing r. Also, let [x][y] ∈ Θ(I). So [xy] ∈
Θ(I) and hence xy ∈ I (Lemma 4.20). Being a prime ideal, I contains either x or

y. Without loss of generality, let us assume that x ∈ I. So [x] ∈ Θ(I). This implies

that Θ(I) is prime.

Let J be any prime ideal in R/〈 r 〉. Let I = Θ−1(J). Also, let xy ∈ I. Then,

[xy] = [x][y] ∈ J . Since J is prime, without loss of generality we can assume that

[x] ∈ J . Hence, x ∈ I, establishing that I is also prime. �

Lemma 4.22. Θ distributes over finite intersections. Similarly, Θ−1 also distributes

over finite intersections.

Proof. Let R be a ring and I1, I2, . . . , In ⊆ R be ideals, each containing r. We would

like to show that

Θ

(∩
i

Ii

)
=
∩
i

Θ(Ii) .

Let [f] ∈ Θ(
∩

i Ii). This implies that ∃g ∈
∩

i Ii such that [g] = [f]. Thus, f =

g + hr, for some h ∈ R. So, f ∈
∩

i Ii or f ∈ Ii,∀i. Hence [f] ∈ Θ(Ii) or

[f] ∈
∩

i Θ(Ii).

As for the other direction, let [f] ∈
∩

iΘ(Ii). Hence [f] ∈ Θ(Ii), for all i which

implies that f ∈ Ii, for all i (Lemma 4.20). So, [f] ∈ Θ(
∩

i Ii).

To prove the second claim, consider the ideal

E = Θ−1(J1
∩

J2
∩
· · ·),

68 A Divide-and-Conquer Method to Compute Binomial Ideals

where Jj are ideals in R/〈 r 〉. Let Ij = Θ−1(Jj). So, we have

E = Θ−1
(
Θ(I1)

∩
Θ(I2)

∩
· · ·
)

= Θ−1
(
Θ
(
I1
∩

I2
∩
· · ·
))

preceding discussion

= I1
∩

I2
∩
· · ·

= Θ−1(J1)
∩

Θ−1(J2)
∩
· · · . Lemma 4.20

�

Lemma 4.23. In a Noetherian ring Θ(
√
I) =

√
Θ(I)

Proof. From Theorem 4.19, we have I ⊆
√
I =

∩
i Pi, where Pis are primes. So, we

have

Θ(I) ⊆ Θ(
√
I) = Θ(

∩
i

Pi) =
∩
i

Θ(Pi)

Using Lemma 4.21 and the fact that intersection of prime ideals is radical, we know

that Θ(
√
I) is a radical ideal. So, we have

√
Θ(I) ⊆ Θ(

√
I).

Conversely, as
√

Θ(I) is radical, we have√
Θ(I) =

∩
i

Pi,

where the Pi’s are some primes in the modulo ring. So, we have Θ−1(
√
Θ(I)) =∩

i Θ
−1(Pi). Once again, from Lemma 4.21 and the fact that intersection of primes

is a radical, we conclude that Θ−1(
√

Θ(I)) is radical. Since I ⊆ Θ−1(
√

Θ(I)),√
I ⊆ Θ−1(

√
Θ(I)) or Θ(

√
I) ⊆

√
Θ(I). �

Lemma 4.24. Θ−1(〈 [f1], . . . , [fn] 〉) = 〈 f1, . . . , fn 〉+ 〈 r 〉

Proof. Let f ∈ Θ−1(〈 [f1], . . . , [fn] 〉). So, we have [f] ∈ 〈 [f1], . . . , [fn] 〉. So, f can

be expressed as
∑

i gifi + gr, for some gi’s and r in the ring. This shows that f

belongs to the R.H.S. The other direction can be shown in a similar fashion. �

4.3.2 Localization map

Let r be a non-zero-divisor of a Noetherian ring R. Let U denote the set of all

powers of r

U =
{
ri | i ≥ 0

}
.

4.3 Two Ring Homomorphisms 69

Since r is not nilpotent, U does not contain zero. U is also multiplicatively closed.

Therefore R[U−1] is well defined.

Let φ : R→ R[U−1] be the natural homomorphism given by

φ(a) =
a

1
, ∀a ∈ R.

We define a map, Φ, induced by φ, from the ideals in R saturated w.r.t. r to the

ideals of R[U−1] as follows

Φ(I) = 〈 { a/1 | a ∈ I } 〉,

where I ⊆ R is an ideal saturated w.r.t. r, i.e., I : r∞ = I. We now present some

properties of Φ.

Lemma 4.25. For any ideal I ⊆ R saturated w.r.t. r, x/rn ∈ Φ(I), for some n ≥ 0

implies x ∈ I. Conversely, x ∈ I implies x/rn ∈ Φ(I), ∀n ≥ 0.

Proof. Let x/rn ∈ Φ(I). Then, by the construction of Φ(I), there exists bi’s in I

such that x/rn =
∑

i(ci/r
ki)(bi/1) for some ci’s in R and non-negative ki’s. As r is

a non-zero-divisor, the above identity implies that rmx−
∑

i r
k′icibi ∈ I, for suitable

m, k′
i’s ∈ N. This implies that rmx ∈ I, and using the fact that I is saturated with

respect to r, we have x ∈ I.

To prove the converse, let x ∈ I. Then we have φ(x) = x/1 ∈ Φ(I) and hence,

x/rn ∈ Φ(I), ∀n ∈ N. �

Now, we will define a map, Φ−1, from the ideals in R[U−1] to the ideals in R

which are saturated with respect to r.

Φ−1(J) =
{
a | a

rk
∈ J, k ≥ 0

}
.

From their respective definitions, it is trivial to see that Φ and Φ−1 preserve set

inclusion.

Observation 14. Φ−1 is a map from the ideals of R[U−1] to the ideals of R which

are saturated with respect to r.

Proof. Suppose rmc ∈ Φ−1(J). So from the definition of the map rmc/rk ∈ J , for

some k ≥ 0. Since J is an ideal in R[U−1], c/1 ∈ J . Hence, from the definition of

Φ−1, we have c ∈ Φ−1(J). �

70 A Divide-and-Conquer Method to Compute Binomial Ideals

We will now establish that Φ is a bijection.

Lemma 4.26. Φ(Φ−1(J)) = J for all ideals J in R[U−1].

Proof. Let a/rk ∈ J . Then, a ∈ Φ−1(J) and hence a/1 ∈ Φ(Φ−1(J)). But Φ(Φ−1(J))

is an ideal in R[U−1], so a/rk ∈ Φ(Φ−1(J)).

Now suppose a/rk ∈ Φ(Φ−1(J)). From Lemma 4.25, we have a ∈ Φ−1(J) or

a/rn ∈ J , for some n ∈ N. So a/rk ∈ J . �

Lemma 4.27. Φ−1(Φ(I)) = I for all ideals I in R which are saturated with respect

to r.

Proof. If a ∈ I, then a/1 ∈ Φ(I). So, a ∈ Φ−1(Φ(I)).

Now, suppose a ∈ Φ−1(Φ(I)). So a/rk ∈ Φ(I) for some k ∈ N. From Lemma

4.25, we have a ∈ I. �

Lemma 4.28. Φ and Φ−1 map primes to primes.

Proof. Let I (R be a prime ideal which is saturated with respect to r. We want

to show that Φ(I) is prime. Let (x/rm) (y/rn) = (xy)/rm+n ∈ Φ(I). So xy ∈
Φ−1(Φ(I)) = I. Since I is prime, I contains x or y. Without loss of generality, let

us assume that x ∈ I. Hence, from Lemma 4.25, we have x/rm ∈ Φ(I).

Now suppose J is a prime ideal in R[U−1]. Let xy ∈ Φ−1(J). So for some m, we

have (xy)/rm ∈ J or (x/rm)(y/1) ∈ J . As J is prime, without loss of generality, let

us assume that x/rm ∈ J . This implies x ∈ Φ−1(J). �

Lemma 4.29. Φ and Φ−1 distribute over intersections.

Proof. Let I1, I2, . . . be ideals in R, each saturated with respect to r. Then,

x

rn
∈
∩
i

Φ(Ii)

⇐⇒ x

rn
∈ Φ(Ii), ∀i

⇐⇒ x ∈ Φ−1 (Φ(Ii)) = Ii, ∀i

⇐⇒ x ∈
∩
i

Ii

⇐⇒ x

rn
∈ Φ

(∩
i

Ii

)
.

4.4 The Algorithm 71

Next consider the ideals J1, J2, . . . in R[U−1]. So,

Φ−1

(∩
i

Ji

)
= Φ−1

(∩
i

Φ
(
Φ−1(Ji)

))

= Φ−1

(
Φ

(∩
i

Φ−1(Ji)

))
=
∩
i

Φ−1(Ji),

where the second equality is due to the result in the previous paragraph. �

Lemma 4.30. Φ(I : x∞) = Φ(I) : x∞, for any x /∈ U .

Proof. It follows directly from the definitions. �

Lemma 4.31. In a Noetherian ring Φ(
√
I) =

√
Φ(I)

Proof. The proof is identically same as that of Lemma 4.23 when Θ is replaced by

Φ and references are suitably replaced. �

Lemma 4.32. Φ−1(〈 f1/ra1 , . . . , fn/ran 〉) = 〈 f1, . . . , fn 〉 : r∞

Proof. Let

f ∈ Φ−1

(
〈 f1
ra1

, . . . ,
fn
ran
〉
)

⇐⇒ f

rk
∈ 〈 f1

ra1
, . . . ,

fn
ran
〉, for some k

⇐⇒ f

rk
=
∑
i

gi
rbi

fi
rai

, for some k

⇐⇒ rmf =
∑
i

gifir
mi for some m,mi’s

⇐⇒ f ∈ 〈 f1, . . . , fn 〉 : r∞.

�

4.4 The Algorithm

In this section, we focus on the main objective of this chapter. We present a general

algorithm (Algorithm 4.1) based on divide-and-conquer technique which is useful

72 A Divide-and-Conquer Method to Compute Binomial Ideals

Algorithm 4.1: A framework for computing binomials ideals - A

Data: A ring (k,X, L), where k is algebraically closed, and char(k) = 0;

forbidden set V ⊆ X \ L; a binomial generating set S of an ideal in

the ring.

Result: A(〈 S 〉)
1 if X = φ then // The ring is a field

2 Nothing to do ;

3 else if X = L then // Laurent polynomial ring

4 Compute A(〈 S 〉) and return ;

5 else if V = X \ L then // No more reductions

6 Compute A(〈 S 〉) and return ;

7 end

8 Let x ∈ (X \ L) \ V ;

/* computing A(Θ(〈 S 〉+ 〈 x 〉)) and lift */

9 Call A with ideal Θ(〈 S 〉+ 〈 x 〉), ring (k,X \ {x} , L) and forbidden set

V ;

10 Compute Θ−1(A(Θ(〈 S 〉+ 〈 x 〉))) ;
/* computing A(Φ(〈 S 〉 : x∞)) and lift */

11 Call A with ideal Φ(〈 S 〉 : x∞), ring (k,X, L
∪
{x}) and forbidden set V ;

12 Compute Φ−1(A(Φ(〈 S 〉 : x∞)))) ;

/* computing A(f(〈 S 〉 : x∞)) */

13 Call A with ideal f(〈 S 〉), ring (k,X, L) and forbidden set V
∪
{x} ;

/* Computing A(〈 S 〉) */

14 Combine Θ−1(A(Θ(〈 S 〉+ 〈 x 〉))), Φ−1(A(Φ(〈 S 〉 : x∞)))) and

A(f(〈 S 〉)) to get A(〈 S 〉) ;
/* Return */

15 return A(〈 S 〉) ;

4.4 The Algorithm 73

in computing several binomial ideals associated with a given binomial ideal. The

algorithm takes as input the following 3 objects (i) A ring (k,X, L), (ii) A set of

binomials, S, generating an ideal I, and (iii) A set of variables V ⊆ X \ L called

forbidden set. The objective of the algorithm is to compute A(〈 S 〉), where A is some

object associated with the binomial ideal I. In this chapter, we demonstrate how

to use Algorithm 4.1 to solve the following 4 problems (i) Radical of I, (ii) Cellular

decomposition of I, (iii) Minimal Primes of I, and (iv) Saturation of I w.r.t. all the

variables in the ring.

We will restate, from the introduction, the two crucial observations behind this

algorithm – (i) most computations involving binomial ideals compute Gröbner ba-

sis of certain ideals, and (ii) Buchberger’s algorithm to compute Gröbner basis is

very sensitive to the number of variables in the underlying polynomial ring. The

motivation behind the algorithm is to divide the problem suitably into smaller sub-

problems, solve these subproblems in rings with less variables than the original ring,

and combine these results to solve the original problem.

Let x ∈ (X \ L) \ V , and consider the maps (i) Θ : (k,X, L) → (k,X \ {x} , L)
induced by θ(y) = y + 〈 x 〉, (ii) Φ : (k,X, L)→ (k,X, L

∪
{x}) induced by φ(y) =

y/1, and U = { xi | i ≥ 0 }, and (iii) f : (k,X, L) → (k,X, L) which depends

on the problem A(). The reduction step involves the solutions of the subproblems

(i) A(Θ(I + 〈 x 〉)), in ring (k,X \ {x} , L) and forbidden set V , (ii) A(Θ(I : x∞)),

in ring (k,X, L
∪
{x}) and forbidden set V , and (iii) A(f(I)) in ring (k,X, L) and

forbidden set V ∪ {x}. The first subproblem is in a ring with one less variable

compared to the original ring. In the case of the second subproblem, Gröbner bases

are not defined in the context of partial Laurent polynomial rings (k,X, L). But

pseudo Gröbner bases (section 3.5), briefly restated later in this section in terms

of partial Laurent polynomial rings, can effectively substitute for Gröbner bases for

binomial ideal computations. The time complexity of the algorithm to compute

pseudo Gröbner basis was shown to be dependent on the number of variables in

X \ L. Hence, this subproblem is also justifiably “smaller”.

The role of the forbidden set of variables is that reduction must not be done

with respect to these variables. If V = X \ L, then the computation A(I) must

be either trivial or be possible through other method without the need for further

reduction. In addition, the third subproblem should be such that it does not require

74 A Divide-and-Conquer Method to Compute Binomial Ideals

the computation of a pseudo Gröbner basis since in this case the ring is same as in the

original problem and involves no reduction in ring size. Here is a motivating example

to justify the use of forbidden set. Suppose we want to compute the saturation,

I : (x1 · · · xn)
∞, while I is already saturated w.r.t. x1, x2. Then reduction with

these variables is futile. Hence we can put these variables in the forbidden set.

Next, the algorithm computes the inverse images of A(Θ(I + 〈 x 〉)) and A(Φ(I :

x∞)) in the original ring (k,X, L). In the applications discussed in the next section,

A(I) is either an ideal (as in the case of radical of I) or a set of ideals (as in the case

of minimal primes of I). Hence these inverse images are well defined. Abusing the

notations, we denote these inverse images respectively by Θ−1(A(Θ(I + 〈 x 〉)) and
Φ−1(A(Φ(I : x∞)).

Finally in step 14, A(I) is to be constructed from these inverse images and

A(f(I)). One can easily observe that the algorithm terminates, as in each step

either cardinality of X decreases, or that of L or V increases. This algorithm is a

general method and can be tuned to a particular problem by specifying the following

three steps in the context of that problem.

(steps 4, 6) Give the method to compute A(I) in the base cases, i.e., when V =

X \ L.

(step 13) Specify function f .

(step 14) Show how to combine the results of the subproblems.

In the next few subsections we show how to compute Θ, Φ, and their inverses

using a generating set of the input ideal.

4.4.1 Computing Modulo

Let L = {y1, . . . , yk} andX = {x1, . . . , xl}
∪
{z}

∪
L. Maps θ and Θ from (k,X, L)→

(k,X \ {z} , L) are computed as follows. Consider an arbitrary polynomial in

(k,X, L),

f =
∑
i

xαiyβi +
∑
j

xαjyβjzcj .

4.4 The Algorithm 75

Then, θ(f) =
∑

i x
αiyβi . Further, suppose S ⊂ (k,X, L) is a set of binomials.

Then, Θ(〈 S 〉) = 〈 θ(f) | f ∈ S 〉. Conversely, if S ′ ⊂ (k,X \ {z} , L), then

Θ−1(〈 S ′ 〉) = 〈 S ′∪ {z} 〉, from Lemma 4.24.

4.4.2 Computing Localization

Consider the ring (k,X, L) as defined in the previous subsection. If f ∈ (k,X, L),

then φ(f) = f/1.

Computing Φ and Φ−1 is also easy. For any S ⊂ (k,X, L),

Φ(〈 S 〉) = 〈 { f/1 | f ∈ S } 〉 ⊆
(
k,X, L

∪
{x}
)
.

In the reverse direction, for any S ′ ⊂ (k,X, L
∪
{z}), we define Φ−1(〈 S ′ 〉) as follows.

Let

S ′ =

{(
1

za1

)
f1, . . . ,

(
1

zak

)
fk

}
where fi has no z-monomial in the denominator. Then

Φ−1(〈 S ′ 〉) = 〈 f1, . . . , fk 〉 : z∞ ⊆
(
k,X, L

∪
{z}
)
.

Hence, a saturation computation is required to compute the basis of Φ−1(S ′). The

correctness follows from Lemmas 4.25 and 4.32.

To see how we can compute saturation with respect to z in a partial Laurent

polynomial ring, we briefly revisit the results on pseudo-Gröbner basis in section 3.5.

The results from that section are restated in the context of partial Laurent polyno-

mial rings.

4.4.3 pseudo-Gröbner Basis

Gröbner bases are defined for ideals in rings k[x1, . . . , xn] (Appendix B). This notion

has been generalized for binomial ideals in partial Laurent polynomial rings, called

pseudo-Gröbner bases in section 3.5. Here we reproduce some relevant results in

terms of partial Laurent rings.

Definition 4.33. A binomial axα + bxβ ∈ (k,X, L) is said to be balanced if xi ∈
X \ L implies αi = βi.

76 A Divide-and-Conquer Method to Compute Binomial Ideals

Definition 4.34. For every finite binomial setG, G1 andG2 will denote its partition,

where the former will represent the set of non-balanced binomials and the latter will

represent the set of balanced binomials of G.

Definition 4.35. A binomial basis G = (G1, G2) of a binomial ideal I will be

called a pseudo Gröbner basis with respect to a given term-order if G1 reduces every

binomial of I to 0(mod(G2)).

Theorem 4.36 (Theorem 3.10). Every binomial ideal in (k,X, L) has a Gröbner

basis with respect to any term-order.

The Buchberger’s algorithm to compute Gröbner basis has been adopted to com-

pute pseudo-Gröbner basis in Algorithm 3.4. Finally, the following theorem shows

that saturation can be computed in similar way as in k[x1, . . . , xn].

Theorem 4.37 (Theorem 3.11). Let (G1, G2) be a pseudo Gröbner basis of a homo-

geneous binomial ideal in (k,X, L) with respect to a graded reverse lexicographic term

order with the variable xi /∈ L being the least. Then (G′
1 = G1÷ x∞

i , G′
2 = G2÷ x∞

i)

is a pseudo Gröbner basis of I : x∞
i .

Here S ÷ x∞ is the result of the division of each polynomial in S by the largest

possible power of x.

4.5 Computing A(I)

As mentioned in the previous section, we will describe the steps 4, 6, 13 and 14 of the

algorithm in context of four problems – (i) radical of a binomial ideal, (ii) cellular

decomposition of a binomial ideal, (iii) the minimal prime ideals of a binomial ideal,

and (iv) the saturation of a binomial ideal with respect to all variables in the ring.

4.5.1 Radical Ideal

Theorem 4.38. Let R be a Noetherian ring, r ∈ R a nonzero divisor, and I ⊆ R

be an ideal. Then, √
I + 〈 r 〉

∩√
I : r∞ =

√
I,

for some r ∈ R.

4.5 Computing A(I) 77

Proof. From Theorem 4.19, we know that every radical in a Noetherian ring has a

prime decomposition. Let the prime decomposition of
√
I be

√
I = P1

∩
P2

∩
. . .
∩

Pn.

Let the collection of the primes in the decomposition be denoted by P. Define two

ideals

Pr =

(∩
r∈P∈P

P

)
,Pr =

(∩
r/∈P∈P

P

)
It is easy to see that I + 〈 r 〉 ⊆ Pr. Hence,

√
I + 〈 r 〉 ⊆ Pr. Next, we want to

show that
√
I : r∞ ⊆ Pr.

Let f ∈ I : r∞. Then, rnf ∈ I for some n ≥ 0. This implies that for all

P ∈ P, rnf ∈ P . In particular, if r /∈ P , then f ∈ P . We deduce that I : r∞ ⊆ Pr,

and hence
√
I : r∞ ⊆ Pr. Putting the two observations together we have√

I + 〈 r 〉
∩√

I : r∞ ⊆ Pr

∩
Pr =

√
I

The converse containment
√
I ⊆

√
I + 〈 r 〉

∩√
I : r∞ is obvious. �

This theorem leads to the following result which will help us in the execution of

step 14.

Theorem 4.39. Let R be an Noetherian ring, r ∈ R a nonzero divisor, and I ⊆ R

be an ideal. Then,

√
I = Θ−1

(√
Θ(I + 〈 r 〉)

)∩
Φ−1

(√
Φ (I : r∞)

)
.

Proof. From Lemmas 4.20 and 4.23,√
I + 〈 r 〉 = Θ−1

(
Θ
(√

I + 〈 r 〉
))

= Θ−1
(√

Θ(I + 〈 r 〉)
)
.

From Lemmas 4.27 and 4.31,

√
I : r∞ = Φ−1

(
Φ
(√

I : r∞
))

= Φ−1
(√

Φ (I : r∞)
)
.

So, from Theorem 4.38, we have

√
I = Θ−1

(√
Θ(I + 〈 r 〉)

)∩
Φ−1

(√
Φ (I : r∞)

)
.

�

78 A Divide-and-Conquer Method to Compute Binomial Ideals

Note that we will not use the f(I) branch of the reduction for this problem.

Thus, Theorem 4.39 shows that the combine step (step 14) is the computaton of

an intersection. Also, we will have V = ∅. The base case computation in step 4 of

the algorithm is trivial because all binomial ideals in a Laurent polynomial ring are

already radical as shown below.

Theorem 4.40. (ES96, Corollary 2.2) Let J be a binomial ideal in the ring (k,X, φ).

Then, if k is algebraically closed and char(k) = 0, then J : (Πx∈Xx)
∞ is radical.

Corollary 4.41. Let k be an algebraically closed field, with char(k) = 0. Then, all

binomial ideals in (k,X,X) are radical.

Proof. Let J be a binomial ideal in the ring (k,X,X), where X = {x1, . . . , xn}.
Consider the ideal localization map, Φn, from (k,X,X \ {xn}) to (k,X,X). Under

this map, we know that Φ−1
n (J) is saturated w.r.t xn. Similarly, if we consider the

map Φn−1 from (k,X,X\{xn−1, xn}) to (k,X,X\{xn}), then the ideal Φ−1
n−1(Φ

−1
n (J))

is saturated w.r.t. xn−1. So we have

Φ−1
n (J) = Φ−1

n (J) : x∞
n

=⇒ Φ−1
n−1(Φ

−1
n (J)) = Φ−1

n−1(Φ
−1
n (J) : x∞

n)

= Φ−1
n−1(Φ

−1
n (J)) : x∞

n (Lemma 4.30)

Thus, Φ−1
n−1(Φ

−1
n (J)) is saturated w.r.t. {xn−1, xn}. Continuing this argument we

see that Φ−1
1 (· · · (Φ−1

n (J)) · · ·), in the ring (k,X, φ), is saturated w.r.t. {x1, . . . , xn}.
From the previous theorem Φ−1

1 (· · · (Φ−1
n (J))) is radical. Now, by repeated applica-

tion of Lemma 4.31 we deduce that J is radical too. �

4.5.2 Cellular Decomposition

In this section we will generalize the notion of cellular ideals to partial Laurent

polynomial rings, establish that every ideal has a cellular decomposition, and use

our framework to compute such a decomposition.

Let (k,X, L) be a partial Laurent polynomial ring. For a given set of variables

E ⊆ (X \ L) and a vector d = (di)i∈(X\L)\E , we define the ideal M(E)(d) as

M(E)(d) := 〈
{
xdi
i | i ∈ (X \ L) \ E

}
〉.

Now, we are ready to generalize the definition of cellular ideals.

4.5 Computing A(I) 79

Definition 4.42. An ideal I of (k,X, L) is said to be cellular, if for some E ⊆
(X \ L), we have I = I :

(∏
i∈E xi

)∞
, and I contains M(E)(d) for some vector d.

Next, we will state a trivial observation characterizing cellular ideals.

Observation 15. An ideal I is cellular iff ∃E ⊆ (X \L) and d = (di)i∈(X\L)\E , such

that

I =
(
I +M(E)d

)
:

(∏
i∈E

xi

)∞

.

In such a case, we will denote I by I
(d)
E .

This observation helps us to make the following claim regarding cellular ideals

and Φ−1.

Lemma 4.43. Φ−1 preserves cellular ideals.

Proof. Let Φ−1 be a map from (k,X, L) to (k,X, L\{x}), where x ∈ L, and consider

the cellular ideal I = I
(d)
E in (k,X, L). As Φ−1(I) is saturated w.r.t. x, it is a cellular

ideal with Φ−1(I) = Φ−1(I)
(d′)
E
∪
{x}, where d′ is the same vector as d, except that it

does not contain the component corresponding to x. �

Lemma 4.44. Let s ∈ N be such that I : rs = I : r∞ in some Noetherian ring R.

Then,

I = (I + 〈 rs 〉)
∩

(I : rs) .

Proof. Let h ∈ (I + 〈 rs 〉)
∩

(I : rs). Then

h = i+ grs ∈ I : rs for some i ∈ I, g ∈ R

=⇒ hrs = irs + gr2s ∈ I.

=⇒ gr2s ∈ I

=⇒ g ∈ I : r2s = I : rs

=⇒ grs ∈ I

=⇒ h ∈ I

�

80 A Divide-and-Conquer Method to Compute Binomial Ideals

Now, we are ready to state how to compute a cellular decomposition of I. The

computation will not use A(Θ(I)) branch of the reduction. f(I) is defined as I +

〈 xs 〉, where s ∈ N is such that I : xs = I : x∞. We see that in this case, we add x

to the forbidden set. This is done because x is a nilpotent in I+〈 xs 〉. So, whenever
a variable is added to the forbidden set, it is ensured that it is a nilpotent. By using

Lemmas 4.29 and 4.43, we see that cellular decomposition of Φ(I : x∞) gives us a

cellular decomposition of I : xs.

To combine the decompositions of A(I : xs) and A(f(I)), we use Lemma 4.44.

In other words, cellular ideals for I are the union of those for I : x∞ and I + 〈 rs 〉.
What remains is to specify the computations at the base cases, i.e., X = L

∪
V .

Ideals in the base cases are already cellular because the ring is localized with respect

to L-variables and the variables of V = X \L are nilpotent of the ideals. Thus there

is no computation required in steps 4 and 6.

4.5.3 Prime Decomposition

In this case, as in the computation of a radical, the A(f(I)) branch will not be used.

We will first handle the base case, i.e. how to compute the minimal primes of a

binomial ideal in a Laurent polynomial ring (step 4). To do this, we will mention

(without proof) a set of results from (ES96).

Definition 4.45. A partial character on Zn is a homomorphism ρ from a sublattice

Lρ of Zn to the multiplicative group k∗. A partial character will always refer to the

tuple (ρ, Lρ).

For a proper binomial ideal I in (k,X,X), let us define a partial character

(ρ, L(I)), where

L(I) = { α | xα − c ∈ I } .

It is easy to verify that L(I) is a lattice. The function ρ is given by

ρ(α) = c, where xα − c ∈ I.

Conversely, given a partial character (ρ, L), we will define a binomial ideal as

I(ρ) = 〈 { xα − c | α ∈ L, ρ(α) = c } 〉.

4.5 Computing A(I) 81

Theorem 4.46. For any proper binomial ideal in (k,X,X), there is a unique partial

character ρ on Zn such that I = I(ρ).

Definition 4.47. If L is a sublattice of Zn, then the saturation of L is the lattice

Sat(L) = { m ∈ Zn | dm ∈ L for some d ∈ Z } .

We can compute Sat(L) for any lattice L by simple change of variables in

(k,X,X) (Swa11).

Definition 4.48. If (ρ, Lρ) is a partial character, any partial character (ρ′, Sat(Lρ))

is called a saturation of (ρ, Lρ) if ρ
′ coincides with ρ when restricted to Lρ.

Theorem 4.49. (ES96, Corollary 2.2) If g is the order of the group Sat(Lρ)/Lρ,

then there are g distinct saturations of ρ: ρ1, . . . , ρg. Also

I(ρ) =

g∩
j=1

I(ρj).

Theorem 4.50. (ES96, Corollary 2.6) The radical of a cellular ideal is of the form

I(ρ) +M(E)(d) (d is vector with all 1s), where ρ is a partial character. Moreover,

its minimal primes are the lattice ideals with the saturations of (ρ, Lρ).

In the base case, we have a Laurent polynomial ring. To determine the set of

minimal primes of a binomial ideal I = I(ρ), all we need to do is to compute the sat-

urations of ρ. The lattice ideals corresponding to these saturations are the associated

primes of I(ρ). The minimal of these ideals constitute the prime decomposition.

Let us discuss how we can combine the results from the modulo and the localiza-

tion branch (step 14). From the recursive calls of the algorithm we have computed

the minimal primes of Θ(I + 〈 r 〉) and Φ(I : r∞). Let the set of minimal primes be

denoted by PΘ and PΦ, respectively. So, we have√
Θ(I + 〈 r 〉) =

∩
P∈PΘ

P

√
Φ(I : r∞) =

∩
P∈PΦ

P.

82 A Divide-and-Conquer Method to Compute Binomial Ideals

From Theorem 4.39, we have

√
I = Θ−1

(√
Θ(I + 〈 r 〉)

)∩
Φ−1

(√
Φ (I + 〈 r 〉)

)
=

(∩
P∈PΘ

Θ−1(P)

)∩(∩
P∈PΦ

Φ−1(P)

)

We know that Θ and Φ map primes to primes (Lemmas 4.21 and 4.28). The desired

set of prime ideals is { Θ−1(P) | P ∈ PΘ }
∪
{ Φ−1(P) | P ∈ PΦ }. We just need to

remove the redundant ones.

4.5.4 Saturation

Suppose I is saturated with respect to
{
xi1 , . . . , xij

}
then we begin the computation

with V =
{
xi1 , . . . , xij

}
. For this problem, we only use the A(I : x∞) branch of

the reduction. The base case for this algorithm will be X \ L = V (step 6). As Φ

preserves saturation (Lemma 4.30), the ideal is already saturated in this ring. Since

the algorithm uses only one branch of the reduction, step 14 is redundant.

Index

B-chain binomial, 40

S-binomials, 47

U -binomial, 39

U -term, 39

S-polynomial, 17, 95

ascending chain, 40

balanced, 39

bijection, 88

bijective maps, 88

binomial, 1, 39

pure difference, 1, 4

bitonic chains, 40

cellular ideals, 9

chain, 39

B-chain, 40

chain binomial, 40

chain expansion, 26

descending chains, 40

division, 92

equivalent chains, 40

Gröbner basis, 94

Shadow, 21

grading vector, 7, 14, 35

Hermite normal form, 5, 11

homogeneous binomial, 7, 35

homogenization, 14

ideal, 85

binomial, 1

homogeneous, 14

prime, 88

proper, 88

toric, 4

Ideals Saturation, 15

initial ideal, 92

injection, 88

injective maps, 88

kernel, 13, 88

leading coefficient, 91

leading monomial, 91

leading term, 92

mono-binomials, 39

monomial, 89

ordering, 90

oriented, 39

peak, 48

plateau, 48

polynomial, 90

84 INDEX

coefficient, 90

homogeneous, 14

ring, 90

term, 90

Project and Lift, 3

projection map, 13

pseudo Gröbner basis, 49

quotients, 19, 92

radical, 87

radical ideal, 87

reduced Gröbner basis

shadow, 24

reduction, 45, 92

remainder, 19, 92

ring, 85

commutative, 85

homomorphism, 88

isomorphism, 88

Noetherian, 86

polynomial, 90

saturation, 5

saturation ideal, 88

Shadow S-polynomial, 17

Shadow standard expression, 19

Shadow-Saturated, 29

standard expression, 18, 92

surjection, 88

surjective maps, 88

term, 39

term ordering, 90

well-ordering, 90

Appendix A

Ring Basics

In this chapter, we will review a few basic definitions and results about rings and

ideals. We will avoid proving the simple observations and lemmas, and give a proof

sketch for the more involved results. For a more detailed discussion on the subject,

the reader is advised to consult (CLO07) and (Eis95).

A.1 Rings

A ring is defined as an abelian group R with an operation (a, b) 7→ ab called multi-

plication and an “identity element” 1, satisfying, for all a, b, c ∈ R:

a(bc) = (ab)c (associativity)

a(b+ c)

(b+ c)a

=

=

ab+ ac

ba+ ca

}
(distributivity)

1a = a1 = a (identity)

The ring is commutative if, in addition, ab = ba for all a, b ∈ R. Unless other-

wise stated, in the rest of the discussion, the word ring will be used to denote a

commutative ring with identity.

A subset I of a commutative ring R is said to be an ideal in R if it satisfies

• 0 ∈ I (where 0 is the zero element of R).

• If a, b ∈ I, then a+ b ∈ I.

86 Ring Basics

• If a ∈ I and r ∈ R, then r · a ∈ I.

An ideal I is said to be generated by a subset S ⊆ R if every element t ∈ I can be

written in the form

t =
n∑

i=1

risi

with ri in R and si in S. We shall write 〈 S 〉 for the ideal generated by a subset

S ⊆ R.

A ring is said to be Noetherian if every ideal of the ring is finitely generated.

The following observation gives another criterion for a ring to be Noetherian.

Observation 16. A ring is Noetherian if every strictly ascending chain of ideals of

the ring terminates.

Proof. Let R be a ring, and I ⊆ R be an ideal. We want to establish that I is

finitely generated. We will prove by contradiction.

Let I be such that it is not finitely generated. Consider the ascending chain of

ideals

{0} (〈 f1 〉 (〈 f1, f2 〉 (〈 f1, f2, f3 〉 (. . .

where fi ∈ I \ 〈 f1, . . . , fi−1 〉. Such an fi can always be found, as I is not finitely

generated. Thus, we have an infinite ascending chain of ideals, which is absurd as

R is Noetherian. �

A.2 Ideals

In the previous section, we have seen what ideals are. We are now going to define

a few ideals. These are the kind of ideals we will be dealing with in this thesis. All

the ideals are defined in the context of a commutative ring, R, with multiplicative

identity

An ideal I is said to be irreducible if

I = I1
∩

I2 implies I = I1 or I = I2.

Later we will prove(Theorem 4.9) that any ideal can be expressed as the intersection

of irreducible ideals.

A.2 Ideals 87

An ideal I is said to be radical if fm ∈ I for any integer m ≥ 1 implies that

f ∈ I. The radical of I, denoted by
√
I, is the set

√
I = { f | fm ∈ I for some integer m ≥ 1 } .

We state two simple properties of radicals. They follow directly from the definitions.

Lemma A.1. If I is an ideal in R, then
√
I is an ideal in R containing I. Further-

more,
√
I is a radical ideal.

Lemma A.2. Radical preserves set inclusion.

The next lemma deals with the relationship of radicals and intersections.

Lemma A.3. Radical of intersection of ideals is intersection of radicals of the ideals.

Proof. Let the ideals involved be I1, I2, . . . , In, and we want to show that√
I1
∩

I2
∩

. . .
∩

In =
√
I1
∩√

I2
∩

. . .
∩√

In.

Let f ∈
√∩

i Ii. This implies that fm ∈
∩

i Ii =⇒ fm ∈ Ii,∀i =⇒ f ∈
√
Ii, ∀i.

Thus, f ∈
∩

i

√
Ii. So, we have√

I1
∩

I2
∩

. . . In ⊆
√

I1
∩√

I2
∩

. . .
√
In.

To show the converse, let f ∈
∩

i

√
Ii. Then, it is easy to see that there exists an

m ≥ 0, such that fm ∈
∩

i Ii. This implies that f ∈
√∩

i Ii. Thus, we have√
I1
∩√

I2
∩

. . .
√

In ⊆
√
I1
∩

I2
∩

. . . In.

�

An ideal I in a ring R is said to be primary if fg ∈ I implies either f ∈ I or

gn ∈ I, for some n > 0. The next lemma gives an alternate definition of primary

ideals.

Lemma A.4. I is primary if fg ∈ I implies that either fm ∈ I or gn ∈ I for some

m,n > 0.

88 Ring Basics

An ideal I is said to be proper if I (R. An ideal I is prime if I is a proper

ideal and if f, g ∈ R and fg ∈ I implies f ∈ I or g ∈ I. Prime ideals will be used

extensively to study radical ideals.

Observation 17. Prime ideals are radical.

We now define saturation of an ideal. Chapters 2 and 3 will deal with the

saturation of a special kind of ideal, namely homogeneous binomial ideal. Let I is

an ideal, and r be an element of R. We define the following sets –

(I : r) = { f ∈ R | fr ∈ I }

(I : r∞) =
∞∪
d=1

(
I : rd

)
⊆ R.

The set (I : r∞) is called the saturation of I with respect to r.

Observation 18. Both of the sets defined above are ideals.

Observation 19. (I : r∞) = { f ∈ R | frm ∈ I,m ∈ N }.

A.3 Rings homomorphisms

If R and S are rings, then a ring homomorphism is a function from φ : R → S,

such that

• φ(a+ b) = φ(a) + φ(b) for all a, b ∈ R.

• φ(ab) = φ(a)φ(b) for all a, b ∈ R.

• φ(1) = 1.

A homomorphism φ is said to be surjective , or a surjection , if every element

s in S has a corresponding element r in R so that φ(r) = s. A homomorphism

is injective , or an injection , if for r, r′ in R φ(r) = φ(r′) =⇒ r = r′. A

homomorphism is bijective , or a bijection , if φ is both injective and surjective. If

the ring homomorphism is bijective, then it is also called an isomorphism . Kernel

of a homomorphism φ, denoted as kerφ, is defined as -

kerφ = { f ∈ R | φ(f) = 0 } .

Appendix B

Gröbner basis

B.1 Introduction

As we have discussed earlier, Gröbner bases are central to all computational problems

encountered in polynomial rings. In this chapter, we will a brief introduction to

Gröbner basis and present the Buchberger’s algorithm (Buc76) to compute Gröbner

Basis. For a more detailed discussion on the subject, the reader is advised to consult

(AL94).

B.2 Polynomial Rings

In this section, we define a special kind of a commutative Noetherian ring with iden-

tity, called the polynomial ring. All computations that are discussed in this thesis

are done on ideals of this ring. To start with, we define some basic terminologies

related to elements of the ring, and then define one of the key computational tools

used in the ring, namely the Gröbner basis.

B.2.1 Basics

A monomial in x1, . . . , xn is a product of the form

xα1
1 · · · xαn

n ,

90 Gröbner basis

where all of the exponents α1, . . . , αn are nonnegative integers. For simplicity, we

will denote xα1
1 · · · xαn

n by xα.

Let k denote a field. A polynomial in the variables x1, . . . , xn with coefficients in

k is a finite linear combination (with coefficients in k) of monomials. We will write

a polynomial f in the from

f =
∑
α

aαx
α, aα ∈ k,

where the sum is over a finite number of n-tuples α = (α1, . . . , αn). The set of all

polynomials in x1, . . . , xn with coefficients in k, denoted by k[x1, . . . , xn], is called

the polynomial ring.

Theorem B.1 (Hilbert Basis Theorem). Every ideal I ⊆ k[x1, . . . , xn] has a finite

generating set.

Let f =
∑

α aαx
α be a polynomial in k[x1, . . . , xn]. We have the following ter-

minologies –

• We call aα the coefficient of the monomial xα.

• If aα 6= 0, then we call aαx
α a term of f .

We next define an ordering on all the monomials in k[x1, . . . , xn]. We will see

that an ordering forms an essential part of any algorithm in polynomial rings. In

almost all cases, the termination of algorithms will be ensured by the monomial

ordering.

Definition B.2. A monomial ordering on k[x1, . . . , xn] is any relation ≺ on Zn
≥0,

satisfying:

• ≺ is a total (or linear) ordering on Zn
≥0.

• If α ≺ β and γ ∈ Zn
≥0, then α + γ ≺ βγ.

• ≺ is a well-ordering on Zn
≥0. This mean that every nonempty subset of Zn

≥0

has a smallest element under ≺.

Monomial orderings are also sometimes referred to as term ordering .

B.2 Polynomial Rings 91

Lemma B.3. An order relation ≺ on Zn
≥0 is a well-ordering if and only if every

strictly decreasing sequence in Zn
≥0

α(1) ≺ α(2) ≺ α(3) · · ·

eventually terminates.

We provide a few examples of monomial orderings. Let α = (α1, . . . , αn) and

β = (β1, . . . , βn) ∈ Zn
≥0.

Lexicographic Order This monomial order is denoted by �lex. We say α �lex β

if the vector difference α− β ∈ Zn
≥0, the left-most nonzero entry is positive.

Graded Lexicographic Order Let ~d be a vector in Nn. We say α � β if

~d · α > ~d · β, or ~d · α = ~d · β and α �lex β.

Graded Reverse Lexicographic Order Let ~d be a vector in Nn. We say α � if

~d · α > ~d · β, or ~d · α = ~d · β

and, in α− β ∈ Zn
≥0, the right-most nonzero entry is negative.

In each of these orderings, one can show that they are monomial orders. We abuse

the notation and say xα ≺ xβ if we have α ≺ β. As a special mention, a graded

reverse lexicographic term order with grading vector ~d and with xi as the least

variable will be denoted as ≺~d,i.

Let f =
∑

α aαx
α be a nonzero polynomial in k[x1, . . . , xn] and let ≺ be a

monomial order.

1. The leading monomial of f is

inm≺(f) = max≺ { xα | aα 6= 0 }

2. The leading coefficient of f is

inc≺(f) = cβ,

where xβ = inm≺(f).

92 Gröbner basis

3. The leading term of f is

in≺~d,i+1
(f) = inc≺(f) · inm≺(f)

Sometimes, the word “initial” is used instead of “leading”, hence the abbreviation

“in”.

Definition B.4. We define the initial ideal of an ideal I ⊆ k[x1, . . . , xn] other than

{0} as the ideal

in≺~d,i+1
(I) = 〈

{
in≺~d,i+1

(f) | f ∈ I
}
〉

In general, if B is any subset of k[x1, . . . , xn], then we define

in≺~d,i+1
(B) =

{
in≺~d,i+1

(f) | f ∈ B
}
.

Only in the case of an ideal, say I, in≺~d,i+1
(I) will represent an ideal.

B.2.2 Polynomial Division

Let g, g1, · · · , gs be polynomials in k[x1, . . . , xn] and≺ be a term order in k[x1, . . . , xn].

Then, the polynomial expression -

g =
∑
i

qigi + r

is said to be a standard expression for g if

• in≺(qigi) � in≺~d,i+1
(g) , ∀i

• No monomial of r is divisible by in≺~d,i+1
(gi) for any i. More formally, no

monomial of r belongs to 〈
{
in≺~d,i+1

(gi) | 1 ≤ i ≤ s
}
〉.

Here, r is called the remainder and qi’s are called the quotients of the division of

g by {g1, . . . , gs}.
Expressing a polynomial g as a standard expression in terms of a set of polyno-

mials G = {g1, . . . , gs} is also known as the division of g by G or, the reduction

of g by G. This is denoted by gG. Theorem B.5 establishes that for every pair of

polynomial and set of polynomials, standard expression exists. Algorithm B.1 gives

an algorithm to compute such an expression.

B.2 Polynomial Rings 93

Theorem B.5 (Division Algorithm). Fix a monomial order ≺ on Zn
≥0, and let

F = (f1, . . . , fs) be an ordered s-tuple of polynomials in k[x1, . . . , xn]. Then every

f ∈ k[x1, . . . , xn] can be written as

f = a1f1 + · · ·+ asfs + r, (B.1)

where ai, r ∈ k[x1, . . . , xn], and either r = 0 or r is a linear combination, with

coefficients in k, of monomials, none of which is divisible by any of in≺~d,i+1
(f1) , . . . ,

in≺~d,i+1
(fs). Furthermore, if aifi 6= 0, then we have

in≺~d,i+1
(f) � in≺~d,i+1

(aifi) .

Algorithm B.1: Division(f, {f1, . . . , fs} ,≺)
Data:

• A polynomial f

• A set B = {f1, . . . , fs} ⊆ k[x1, . . . , xn]

• a term order ≺ over k[x1, . . . , xn]

Result: f
B

1 p← f ;

2 r ← 0 ;

3 while p 6= 0 do

4 if ∃i such that in≺~d,i+1
(fi) | in≺~d,i+1

(p) then

5 p← 1
inc≺(fi)

S(p, fi,≺)
6 else

7 r ← r + in≺~d,i+1
(p) ;

8 p← p− in≺~d,i+1
(p) ;

9 end

10 end

11 return r ;

94 Gröbner basis

B.2.3 Gröbner Basis

We will now discuss one of the most important tools used to compute numerous

ideals in the polynomial ring – the Gröbner basis. In almost all of the computations,

we would find that computing Gröbner basis is the most time consuming step. As a

consequence, there has been numerous efforts to speed-up Gröbner basis computa-

tion (Fau99; Fau02). In this section, we will discuss one of the most popular ways

of computing Gröbner basis, namely Buchberger algorithm. For a more detailed

discussion on the subject, the reader is directed towards (AL94).

Definition B.6. For a given monomial order ≺, a finite subset G of an ideal I is

said to be a Gröbner basis if

〈 in≺~d,i+1
(G) 〉 = in≺~d,i+1

(I) .

Gröbner basis of an ideal I w.r.t. the monomial order ≺ will be denoted by

G≺(I)

Lemma B.7. Gröbner basis for an ideal I is a basis of I.

Before describing the algorithm to compute Gröbner basis, we will need a few

more definitions. Let α and β be two vectors in Nn, and let α[i] and β[i] denote

their ith components, respectively. Then, by α ∨ β, we denote the vector whose ith

component is given by -

(α ∨ β)[i] , max {α[i], β[i]} .

This is also called the LCM of α and β. With a little abuse of notation, we will use

xα ∨ xβ , x(α∨β).

Let ≺ denote a term order in k[x1, . . . , xn]. Consider any two polynomials,

h1, h2 ∈ k[x1, . . . , xn]. Let

c1x
α1 = in≺~d,i+1

(h1) , and c2x
α2 = in≺~d,i+1

(h2)

be the leading terms of h1 and h2, respectively. We now define two vectors β1 and

β2 as –

β1 = (α1 ∨ α2)− α1, and β2 = (α1 ∨ α2)− α2.

B.2 Polynomial Rings 95

Then the S-polynomial of h1, h2 is defined as –

S(h1, h2) = c2x
β1h1 − c1x

β2h2.

Observe that, if in≺~d,i+1
(h2) divides in≺~d,i+1

(h1), then S(h1, h2) is the first step in

the reduction of h1 by h2.

We now state a criterion, known as the Buchberger’s Criterion (Theorem B.8),

which a basis of an ideal must satisfy to be a Gröbner basis. This criterion will

also form the cornerstone of the algorithm to compute Gröbner basis, namely the

Buchberger’s algorithm (Algorithm B.2).

Theorem B.8 (Buchberger’s Criterion). Let G = {g1, . . . , gt} be a basis of an ideal

I ⊆ k[x1, . . . , xn]. The basis G is a Gröbner basis of I if and only if for all pairs

i 6= j, the remainder on division of S≺(gi, gj) by G is zero.

Algorithm B.2: Buchberger(B,≺)
Data:

• B = {f1, . . . , fs} ⊆ k[x1, . . . , xn]

• a term order ≺ in k[x1, . . . , xn]

Result: G≺(〈 B 〉)
1 G← B ;

2 repeat

3 Gold ← G ;

4 for each pair f1, f2 ∈ G such that, f1 6= f2 do

5 r ← S≺(f1, f2)
G
;

6 if r 6= 0 then

7 G← G
∪
{r} ;

8 end

9 end

10 until G = Gold;

11 return G ;

96 Gröbner basis

B.2.4 Gröbner basis in action

From computational perspective, Gröbner basis is a very versatile structure. In this

section, we will quote a few results highlighting this fact. This results also has a

bearing on the discussion that is to follow in the subsequent chapters of the thesis.

Theorem B.9 (The Elimination Theorem). Let I ⊆ k[x1, . . . , xn] be an ideal and

let G be a Gröbner basis of I with respect to lex order, �lex where x1 �lex x2 �lex

· · · �lex xn. Then for every 0 ≤ l ≤ n, the set

Gl = G
∩

k[xl+1, . . . , xn]

is a Gröbner basis of the I
∩

k[xl+1, . . . , xn]. This is called the lth elimination ideal

Il of I.

Theorem B.10 (Ideal Membership). Let G be a Gröbner basis of I ⊆ k[x1, . . . , xn],

f ∈ k[x1, . . . , xn]. Then, f ∈ I if and only if f
G
= 0.

Theorem B.11 (Ideal Intersection). Let I = 〈 f1, . . . , fs 〉 and J = 〈 g1, . . . , gt 〉 be
ideals in k[x1, . . . , xn]. Then,

I
∩

J = 〈 yf1, . . . , yfs, (1− y)g1, . . . , (1− y)gt 〉
∩

k[x1, . . . , xn].

Theorem B.12 (Ideal Saturation). Let I = 〈 f1, . . . , fs 〉 be an ideal in k[x1, . . . , xn].

Then,

I : x∞
i = 〈 f1, . . . , fs, 1− xiy 〉

∩
k[x1, . . . , xn].

References

[AL94] W. W. Adams and P. Loustaunau. An Introduction to Gröbner Bases,

volume 3 of Graduate Studies in Mathematics. American Mathematical

Society, Rhode Island, 1994. v, 2, 89, 94

[BSR99] Anna Maria Bigatti, Robertola Scala, and Lorenzo Robbiano. Comput-

ing toric ideals. J. Symb. Comput., 27(4):351–365, 1999. vi, 1, 3, 6,

33

[BU95] Fausto Di Biase and Rüdiger Urbanke. An algorithm to calculate the

kernel of certain polynomial ring homomorphisms. Experimental Math-

ematics, 4:227–234, 1995. 5, 6

[Buc76] B. Buchberger. A theoretical basis for the reduction of polynomials to

canonical forms. SIGSAM Bull., 10(3):19–29, 1976. 2, 89

[CC82] Tsu-Wu J. Chou and George E. Collins. Algorithms for the solution of

systems of linear diophantine equations. SIAM J. Comput., 11:687–708,

1982. 5, 11

[CLO07] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties,

and Algorithms: An Introduction to Computational Algebraic Geometry

and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics).

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007. v, 2, 7, 15,

19, 23, 63, 85

[CT91] Pasqualina Conti and Carlo Traverso. Buchberger algorithm and in-

teger programming. Applied Algebra, Algebraic Algorithms and Error-

Correcting Codes, pages 130–139, 1991. vi, 1, 3, 11

98 REFERENCES

[DSS09] Mathias Drton, Bernd Sturmfels, and Seth Sullivant. Conditional In-

dependence Lectures on Algebraic Statistics. In Lectures on Algebraic

Statistics, volume 39 of Oberwolfach Seminars, chapter 3, pages 61–88.

Birkhäuser Basel, Basel, 2009. 2

[Eis95] David Eisenbud. Commutative Algebra with a View toward Algebraic

Geometry. Springer Verlag, New York, 1995. 36, 63, 85

[ES96] David Eisenbud and Bernd Sturmfels. Binomial ideals. Duke Mathemat-

ical Journal, 84(1):1–45, 1996. 1, 2, 4, 7, 78, 80, 81

[Fau99] J.-C. Faugre. A new efficient algorithm for computing grbner bases (f4).

Journal of Pure and Applied Algebra, 139(1–3):61–88, June 1999. 2, 94

[Fau02] J.-C. Faugre. A new efficient algorithm for computing grbner bases with-

out reduction to zero (f5). In Proceedings of the 2002 international sym-

posium on Symbolic and algebraic computation, ISSAC ’02, pages 75–83,

New York, NY, USA, 2002. ACM. 2, 94

[Ful93] William Fulton. Introduction to toric varieties, volume 131 of Annals of

Mathematics Studies. Princeton University Press, Princeton, NJ, 1993.

1

[Gil84] Robert Gilmer. Commutative semigroup rings. University of Chicago

Press, Chicago, Illinois, 1984. 1

[GMS06] Dan Geiger, Christopher Meek, and Bernd Sturmfels. On the toric al-

gebra of graphical models. The Annals of Statistics, 34(3):1463–1492,

2006. 2

[HM09] Raymond Hemmecke and Peter N. Malkin. Computing generating sets

of lattice ideals and markov bases of lattices. Journal of Symbolic Com-

putation, 44(10):1463–1476, 2009. v, 3, 6, 38, 58, 59

[HS95] Serkan Hosten and Bernd Sturmfels. Grin: An implementation of

Gröbner bases for integer programming. Integer Programming and Com-

binatorial Optimization, 1995. vi, 1, 3, 6, 11

REFERENCES 99

[Kah10] Thomas Kahle. Decompositions of binomial ideals. Annals of the Insti-

tute of Statistical Mathematics, 62:727–745, 2010. 10.1007/s10463-010-

0290-9. 1

[KB79] Ravindran Kannan and Achim Bachem. Polynomial algorithms for com-

puting the smith and hermite normal forms of an integer matrix. SIAM

J. Comput., 8:499–507, 1979. 5, 11

[KM09] Deepanjan Kesh and Shashank K. Mehta. Generalized reduction to com-

pute toric ideals. In ISAAC, pages 483–492, 2009. 11

[KM10] Deepanjan Kesh and Shashank K Mehta. Generalized reduction to com-

pute toric ideals. Discrete Mathematics, Algorithms and Applications

(DMAA), 2:45–59, 2010. 11

[KM11a] Deepanjan Kesh and Shashank K Mehta. A saturation algorithm for ho-

mogeneous binomial ideals. ISSAC 2011 poster abstract in ACM Com-

munications in Computer Algebra, 45(2):121–122, 2011. 35

[KM11b] Deepanjan Kesh and Shashank K. Mehta. A saturation algorithm for

homogeneous binomial ideals. In COCOA, pages 357–371, 2011. 35

[KM12] Deepanjan Kesh and Shashank K Mehta. A divide and conquer method

to compute binomial ideals. Submitted. Available at http://www.cse.

iitk.ac.in/users/deepkesh/downloads/issac.pdf, 2012. 61

[MM82] Ernst W Mayr and Albert R Meyer. The complexity of the word prob-

lems for commutative semigroups and polynomial ideals. Advances in

Mathematics, 46(3):305 – 329, 1982. v, 2

[Stu95] Bernd Sturmfels. Gröbner Bases and Convex Polytopes, volume 8 of

University Lecture Series. American Mathematical Society, December

1995. 1, 2, 5, 6, 7, 11, 15, 33, 36, 38, 47, 50, 57, 58

[Swa11] Irena Swanson. Expanded lectures on binomial ideals. http://people.

reed.edu/~iswanson/MSRI11SwansonESbinom.pdf, 2011. 81

http://www.cse.iitk.ac.in/users/deepkesh/downloads/issac.pdf
http://www.cse.iitk.ac.in/users/deepkesh/downloads/issac.pdf
http://people.reed.edu/~iswanson/MSRI11SwansonESbinom.pdf
http://people.reed.edu/~iswanson/MSRI11SwansonESbinom.pdf

100 REFERENCES

[Tho95] Rekha R. Thomas. A geometric buchberger algorithm for integer pro-

gramming. Mathematics of Operations Research, 20:864–884, 1995. 1,

4

[TTN95] S. R. Tayur, R. R. Thomas, and N. R. Natraj. An algebraic geometry al-

gorithm for scheduling in the presence of setups and correlated demands.

Mathematical Programming, 69(3):369–401, 1995. 2, 11

[TW97] R. Thomas and R. Weismantel. Truncated gröbner bases for integer

programming. Applicable Algebra in Engineering, Communication and

Computing, 8(4):241–256, 4 1997. 2, 11

[UWZ97a] Regina Urbaniak, Robert Weismantel, and Günter M. Ziegler. A variant

of the buchberger algorithm for integer programming. SIAM J. Discrete

Math., 10(1):96–108, 1997. 2

[UWZ97b] Regina Urbaniak, Robert Weismantel, and Günter M. Ziegler. A variant

of the Buchberger algorithm for integer programming. SIAM J. Discret.

Math., 10(1):96–108, 1997. 11

	Acknowledgement
	1 Introduction
	1.1 Why Study Binomial Ideals?
	1.2 Focus of the thesis
	1.3 Computing Toric Ideals
	1.3.1 Problem Statement
	1.3.2 Solution
	1.3.2.1 Previous work
	1.3.2.2 Our Approach

	1.4 Saturating Binomial Ideal
	1.4.1 Problem Description
	1.4.2 Solution

	1.5 A General Framework

	2 Generalized reduction to compute toric ideals
	2.1 Introduction
	2.1.1 Problem Description

	2.2 Surjective ring homomorphism
	2.3 Homogeneous polynomials and saturation
	2.3.1 Homogenization
	2.3.2 Ideal Saturation

	2.4 Shadow algorithms under a surjective homomorphism
	2.4.1 Shadow S-polynomial
	2.4.2 Shadow division
	2.4.3 Shadow Gröbner Basis
	2.4.4 Shadow reduced Gröbner basis

	2.5 Binomial ideals
	2.6 Projection Homomorphism
	2.7 A fast algorithm for computing toric ideals
	2.8 Experimental Results

	3 A Saturation Algorithm for Homogeneous Binomial Ideals
	3.1 Introduction
	3.1.1 Problem Description
	3.1.2 Our Approach
	3.1.3 Refined Problem Statement

	3.2 Chain and chain-binomial
	3.3 Decomposition into chains
	3.4 Reduction of U-binomials
	3.5 Pseudo-Gröbner Basis
	3.6 Saturation with respect to xi
	3.7 Final Algorithm
	3.8 An Application: Computing kernels
	3.9 Preliminary Experimental Results

	4 A Divide-and-Conquer Method to Compute Binomial Ideals
	4.1 Introduction
	4.2 Rings and Ideal Basics
	4.2.1 Irreducible decompositions
	4.2.2 Primary Ideals

	4.3 Two Ring Homomorphisms
	4.3.1 Modulo Map
	4.3.2 Localization map

	4.4 The Algorithm
	4.4.1 Computing Modulo
	4.4.2 Computing Localization
	4.4.3 pseudo-Gröbner Basis

	4.5 Computing A(I)
	4.5.1 Radical Ideal
	4.5.2 Cellular Decomposition
	4.5.3 Prime Decomposition
	4.5.4 Saturation

	Index
	A Ring Basics
	A.1 Rings
	A.2 Ideals
	A.3 Rings homomorphisms

	B Gröbner basis
	B.1 Introduction
	B.2 Polynomial Rings
	B.2.1 Basics
	B.2.2 Polynomial Division
	B.2.3 Gröbner Basis
	B.2.4 Gröbner basis in action

	References

