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Let I be an ideal in the polynomial ring k[x] over a field k. Saturation of I by the product x1 · · ·xn,
denoted by I : (x1 · · ·xn)∞ is the ideal {f : xa11 · · ·xann f ∈ I, ai ≥ 0, 1 ≤ i ≤ n}. Binomials in the ring are
defined as polynomials with at most two terms [1]. Ideals with a binomial basis are called binomial ideals.
Toric ideals are examples of homogeneous binomial ideals.

We describe a fast algorithm to compute the saturation, I : (x1 · · ·xn)∞, of a homogeneous binomial
ideal I. Here we would like to note that there are several algorithms to saturate pure difference binomial
ideals [2], which are a special case of homogeneous binomial ideals.

Before proceeding, we will need some notations. Ui will denote the multiplicatively closed set {xa11 · · ·
x
ai−1

i−1 : aj ≥ 0, 1 ≤ j < i}. ≺i will denote a graded reverse lexicographic term order with xi being the

smallest. ϕi : k[x]→ k[x][U−1
i−1] is the natural localization map r 7→ r/1.

Algorithm 1 describes the saturation algorithm due to Sturmfels [3] in the context of binomial ideals.
Algorithm 2 describes the proposed algorithm. The primary motivation for the new approach is that
the time complexity of Gröbner basis is a strong function of the number of variables. In the proposed
algorithm, a Gröbner basis is computed in the i-th iteration in i variables. This requires the computation
of a Gröbner basis over the ring k[x][U−1

i ]. The Gröbner basis over such a ring is not known in the
literature. Thus, we propose a variant of Gröbner bases, called pseudo Gröbner bases, and appropriately
modify the Buchberger’s algorithm to compute it.

Definition 1 A basis G of an homogeneous binomial ideal I ⊂ k[x][U−1
i ] is called a pseudo-Gröbner basis

of I, if G can be partitioned into two sets G1, G2, such that every binomial of I reduces to 0 (mod G2) by
G1, with respect to a given term-order.

Theorem 1 Let (G1, G2) be a pseudo Gröbner basis of a homogeneous binomial ideal I in k[x][U−1
i ] with

respect to ≺i. Then (G1 : x
∞
i , G2 : x

∞
i ) is a pseudo Gröbner basis of I : x∞i .

Further details of the algorithm can be found in [4]. One thing to note is that the algorithm works
only for binomial ideals, and it crucially uses the fact that the ring is localized with monomials. We have
not been able to generalize the notions to general polynomial ideals or to polynomial ideals over function
fields.

In the table given below, we present some preliminary experimental results of the application of the
proposed algorithm in computing toric ideals. We compare our algorithm with the Sturmfels’ algorithm
[3] and Project and Lift [2], the best algorithm known to date to compute toric ideals. As expected, the
table shows that our algorithm performs much better than the Sturmfels’ algorithm, as our algorithm is
specifically designed for binomial ideals.
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Data: A homogeneous binomial ideal,
I ⊂ k[x].

Result: I : (x1, . . . , xn)
∞

1 for i← n to 1 do
2 G← Gröbner basis of I w.r.t. ≺i ;
3 I ← 〈{f ÷ (x1, . . . , xn)

∞|f ∈ G}〉 ;
4 end
5 return I ;

Algorithm 1: Sturmfels’ Algorithm

Data: A homogeneous binomial ideal,
I ⊂ k[x].

Result: I : (x1, . . . , xn)
∞

1 for i← n to 1 do
2 G← Pseudo Gröbner basis of ϕi(I)

w.r.t. ≺i ;

3 I ← 〈{ϕ−1
i (f÷(x1, . . . , xn)∞)|f ∈ G}〉

;

4 end
5 return I ;

Algorithm 2: Proposed Algorithm

To compare with the Project and Lift, we implemented it as reported on page 19 of [2], without
optimizations reported in the subsequent pages. Similar optimizations are applicable in our algorithm and
it too is implemented without the same in these experiments. The typical results are presented in the
table given below. For a definitive comparison we intend to implement our algorithm with all possible
optimizations and compare with 4ti2 [2], which is the optimal implementation of their algorithm.

Our intuition as to why our algorithm is doing better, in these experiments, compared to Project and
Lift is that their algorithm uses Sturmfels’ saturation algorithm as a subroutine, though the extent to
which it uses the algorithm depends on the input ideal. On the other hand, our algorithm computes all
saturations by the same approach.

Number of Size of basis Time taken (in sec.)
variables Initial Final Sturmfels’ Project and Lift Proposed

8 4 186 0.30 0.12 0.10
6 597 2.61 0.60 0.64

10 6 729 3.20 1.10 0.50
8 357 2.40 0.40 0.29

12 6 423 1.70 0.90 0.27
8 2695 305.00 60.00 27.20

14 10 1035 10.50 4.20 2.50

Table 1: Preliminary experimental results comparing Sturmfels’, Project-and-Lift and our
proposed algorithms
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