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Deepanjan Kesh*

Abstract

In this paper, we address the problem of deciding ab-
solute irreducibility of multivariate polynomials. Our
work has been motivated by a recent work due to Gao
et. al. [1, 2, 3] where they have considered the prob-
lem for bivariate polynomials by studying the integral
decomposability of polygons in the sense of Minkowski
sum. We have generalized their result to polynomials
containing arbitrary number of variables by reducing
the problem of Minkowski decomposability of an in-
teger (lattice) polytope to an integer linear program.
We also present experimental results of computation of
Minkowski decomposition using this integer program.

1 Introduction

Let f =), caX® be a polynomial where a € N* and
the coefficients ¢, are from a field, say K. The lat-
tice polytope New(f) = conv({alc, # 0}) is called
the Newton polytope of f. A lattice polytope P is
integrally decomposable if there exist non-trivial lattice
polytopes @ and R such that P is their Minkowski
sum, denoted as @ + R. Ostrowski [4] observed that
if f,g,h are polynomials such that f = g - h, then
New(f) = New(g) + New(h). This gives a simple irre-
ducibility criterion for polynomials [2].

Lemma 1 Let f € K[z1,...,z,] and it is not divisible
by any z; for any i. If the Newton polytope of f is inte-
grally indecomposable, then f is absolutely irreducible.

Thus the integral indecomposability of the Newton
polytope is a sufficient condition for testing the abso-
lute irreducibility of a polynomial. Gao and Lauder [1]
showed that the problem is NP-complete even in two-
dimensions. They gave a pseudo-polynomial time algo-
rithm to solve the integral decomposition of polygons,
and a randomized heuristic algorithm for polytopes of
higher dimensions [1, 3]. We present an exact criterion
for integral decomposition of arbitrary dimensional lat-
tice polytopes. We show that an integral decomposition
of a polytope exists if and only if its edge-graph has a
graph-minor satisfying certain conditions. The crite-
rion is general and applies to non-lattice polytopes as
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well. In the rest of the discussion, polytopes or convex
polytopes would refer to lattice convex polytopes un-
less stated otherwise. The proofs of all the lemmas and
theorems have been included in the appendiz.

2 Oriented Walks and Oriented Weights

An oriented walk in an undirected graph G = (V, E) is
a non-empty sequence of vertices w = vg,- .., Vg, not
necessarily distinct, such that e; = wv;v;41 is an edge
of G for all 0 < i < k. The orientation of e; in w
is in the direction m . We denote the walk in the
reverse orientation, v, Vg_1,--.,V, by w”. If vy = vy,
then the oriented walk is said to be closed. An oriented
closed walk vy, ...,vx_1,v9 with &k > 3 is said to be a
simple if v; # v; for all 0 <4 < j < k—1. Simple closed
walks are also called cycles. All closed walks of the form
Vo, V1 - - -y Vk—1,Vk,Vk_1,---,V1,Vo are called zero-walks.

We define the oriented sum of two oriented closed
walks (or two sets of oriented closed walks) to be that
collection of oriented closed walks which results after
canceling each pair of occurrences of an edge which are
in opposite orientations. The traditional concept of cy-
cle space in algebraic graph theory is defined over the
finite field F» [5]. In this sense, the sum cancels each
pair of occurrences of an edge without consideration of
their orientations. For example, let abcda and abdca be
two closed walks in a graph. Then the oriented sum
of the two is {abca,abda} while the algebraic sum is
acbda. Observe that the oriented sum is a commutative
and associative operation.

Observation 1 If c1,co are two sets of oriented closed
walks and ¢ = ¢1 + ¢2, then ca = ¢+ ¢f.

The oriented weight W for a graph G, is a map-
ping from the oriented edges of G to K™ for some
fixed n such that W(xy) = —W(yz) for each edge
zy. We extend this mapping to oriented walks as fol-
lows. Let w = wovy...vr be an oriented walk, then
W (w) = Zf;ol W (vivit1). Thus W(w") = =W (w) and
the oriented weight of every zero-walk is zero. An ori-
ented weight W for a graph is said to be non-singular if
W (w) = 0 for each oriented closed walk w in the graph.

Observation 2 If wy and ws are oriented closed walks
(or sets of walks) in a graph on which an oriented weight
W is defined, then W (w1 + w2) = W (w1) + W(ws).



Proposition 2 Let G be any graph with oriented weight
W. Let w be any non-zero oriented closed walk in G,
not necessarily simple, then there exists oriented cycles
W, - . . , W, Possibly with multiplicity, such that W (w) =
W(wy) + -+ W(wg).

A trivial consequence of this result is that the oriented
weight of any oriented walk can be expressed as the
linear sum of the oriented weight of some oriented cycles
with integer coefficients.

A subset of oriented cycles, B, is called an oriented
basis if the weight of every closed non-zero walk can be
expressed as the sum of the oriented weights of some of
the oriented cycles in B, with integer coefficients.

Through out this paper we will only deal with ori-
ented walks, oriented sum, oriented weight, and oriented
basis. Therefore for simplicity we may often drop the
adjective oriented.

3 Oriented Bases

In this section we describe two oriented bases. The first
is applicable only to the edge-graphs of polytopes and
the second is for general graphs.

Theorem 3 Let G be the edge graph of a polytope.
Then 2-face cycles of the polytope, each oriented in any
one direction, form a basis of G.

Next we show that a set of fundamental cycles of a
graph also forms a basis. Let G = (V, E) be a graph
and T C G be one of its spanning trees. Let €2 denote
the unoriented cycle in the graph T'U{e} for some non-
tree edge e of G. Then the set of fundamental cycles
(w.r.t. T) is the collection {c.|e € E(G)\ E(T)}, where
ce is ¥ oriented in any one direction. We assign a
unique integer between 1 and |E(G)| to each edge in G
such that the integer assigned to any edge in E(G) \
E(T) is greater than all the integers assigned to edges
in E(T). Let ¢ be a cycle or a set of cycles of G. Then
le(c) denotes that edge in ¢ which has the largest integer
assignment.

Observation 3 If ¢ is a cycle, then le(c) € E(G) \
E(T).

Theorem 4 Fundamental cycles, each orieted in any
one direction, form an oriented basis.

Proof. In view of Proposition 2 it is sufficient to show
that the weight of every set of cycles can be expressed
as the sum of the weights of some fundamental cycles
with integer coefficients. Assume that it is not true. So
there is at least one set of oriented cycles whose weight
cannot be expressed as the sum of weights of funda-
mental cycles. Let ¢ be such a set such that label of
le(c) is smallest. Let e = le(c). Then, by observation 3,

e € E(G) \ E(T) where T is some fixed spanning tree.
Let the fundamental cycle of e in G w.r.t. T be c¢,, ori-
ented in one of the two ways. Suppose e occurs in ¢
for k1 times in the same orientation as in ¢, and for ko
times in the opposite orientation. Define a new set of
oriented cycles ¢’ as ¢+ ky.cl + ka.c., where k.z denotes
the sum of &k copies of .

The new set ¢’ of cycles has the property that the
label of le(c') is strictly less than the label assigned
to e. From the assumption W(c') can be expressed
as the sum of the weights of fundamental cycles, say,
W(c')=W(e1) +--- + W{(cm) where each ¢; is an ori-
ented fundamental cycle. Then W(c) = W(c1) +--- +
W (em)+ (k1 —k2).W (c.). This contradicts the assump-
tion that weight of ¢ cannot be expressed as the sum of
the weights of oriented fundamental cycles. |

4 Convex polytopes

4.1 Basics

In this section, we state a few basic facts about convex
polytopes. The reader can find more details in [7].

A polytope is the convex-hull of a set of points in
R™. In this paper a polytope refers only to the “shape”
and the orientation of a polytope so its position in the
space is ignored. Let P be a polytope in R®. Then
face,(P) denotes the face of P with an outer normal
w, given by {z € Plw.x > w.y Yy € P}. The set of
all the outer normals of a face f of P is denoted by
Np(f) and is called the normal cone of the face f. The
Minkowski sum of polytopes @ and R is the object given
by Q+R ={z+y: 2z € Q,y € R} which is also
a polytope. The locations of @ and R only affect the
location of Q+7R, not its shape or orientation. Polytope
Q is said to be a Minkowski summand of a polytope P
if there is a polytope R such that P = Q +R. Let P
be a polytope in R”. Then Gp = (Vp, Ep) is called the
edge-graph of P where Vp is the set of vertices (0-faces)
of the polytope and Ep is the set of its edges (1-faces).
We shall use the same symbol, to denote the position
vector of a polytope vertex and the corresponding graph
vertex.

Lemma 5 For any direction w, face,(Q + R) =
face,(Q) + face,(R).

Lemma 6 Let P = Q@+ R. Let fi and f2 be faces
of Q@ and R respectively with Ngo(f1) N Nr(f2) # 0,
then f1 + f2 is a face of P with the normal cone being
No(f1) N Nz (f2)

Lemma 7 Let P =Q+ R and f C P be a face. Then
there exists unique faces fi C Q and fo C R such that

F=h+f.



Lemma 8 For every face f of a polytope in R”,
dim(f) + dim(N(f)) = n, where dim(-) denotes the di-
mension.

Lemma 9 Let v be a wverter of a face face,(P)
and uo be any other vertex of a polytope P.
Then there is o monotonic path in the edge graph
Uy Uty - vy Ujy o, Uk (= ) such that (ujp1 — u;).w >0
for all0<i<j and (ujp1 —u;).w =0 forall j <i<k.

4.2 Geometric Weight and Derived Weight

The oriented weight W = {wyy = v —u}yveE, assigned
to G'p is called the geometric weight of Gp, where v —u
is the displacement vector from vertex u to vertex v in
the space.

Observation 4 The geometric weight of an edge graph
of a polytope is non-singular.

Consider a graph G with non-singular weight
W = {wsy}eyere)-  Then the weight W, =
{0y Weytecr(@), Where 0 < gy = ap, < 1 for
all zy € E(QG), is referred as derived weight of W if
it is also non-singular. Further, the weight given by
{(1 = azy) Wey tayer(q) is denoted by Wi_,. Since a’s
are independent of the orientation of the edge, we may
express Oy = Qyz by a. where e denotes the corre-
sponding edge.

Observation 5 Let W be a non-singular weight of
some graph G. Then Wy is a derived weight iff Wi_q
is also a derived weight.

4.3 Polytope of embedding

Let G be a connected graph with a non-singular weight
W where the vectors in the weight belong to R™. Let
v be a fixed vertex of G. We embed each vertex of
G into R by a mapping ¢w : V(G) — R™ as follows.
dw(vo) = 0; and for all u € V(G) — {vo}, ¢w(u) =
W(P,) where P, is any arbitrary walk from vy to u
in G. The mapping ¢w is well defined as W is non-
singular. The convex-hull of the point set {¢w (u) : u €
V(GQ)} defines a polytope denoted by ¢w (G). Vertices
of this polytope are obviously from the set {¢w (u) : u €
V(G@)}. We show that the converse is also true. It may
be noted that the choice of v is immaterial since it does
not affect the shape or the orientation of the resulting
polytope.

Let Gp be the edge graph of polytope P and W its
geometric weight. Let W, be a derived weight from W.
Then the polytope ¢w. (Gp) is called a derived polytope
of P and denoted by P,. For simplicity we shall use
¢ in place of ¢w,_, where W should be clear from the
context. We have the following important result.

Lemma 10 For each vertex v of P, ¢ (v) is a vertex

of Pq.

Lemma 11 FEvery derived polytope is a Minkowski
summand of the original polytope.

Proof Sketch If P, is a derived polytope of P, then
we show that P = Py + P1_o. O
Next we will show the converse.

Lemma 12 Let Q be a Minkowski summand of a poly-
tope P then it is a derived polytope of P.

Proof Sketch Let P = Q + R. If e is an edge of P,
then there exists unique edge-edge or edge-vertex pair
e’ € Q and e"” € R such that e = e’ +¢". Let W be the
geometric weight of Gp and W, be its derived weight
with ae = |€'|/|e] for all e € Ep. Then Q is equal to
the derived polytope P,. O

Combining lemma 11 and 12 we have the main result.

Theorem 13 For any polytope P, a polytope Q is a
Minkowski summand iff Q is some derived polytope of

P.
The theorem can be equivalently stated as following.

Corollary 14 A polytope has a proper Minkowski sum-
mand iff its edge graph has a proper derived weight (nei-
ther all a, are O nor are all 1).

Corollary 15 For any lattice polytope P, a lattice poly-
tope Q is a Minkowski summand iff Q is a derived poly-
tope P, such that all components of a..(0 — @) are in-
tegers for all edges e = uv € Ep.

5 Computation of Minkowski summand

The Corollary 14 suggests that to discover a Minkowski
summand of a polytope we only need to find if its edge
graph has a derived weight. In this section we formulate
a linear program (LP) which is feasible if and only if a
derived weight exists.

Let P be a polytope. Each edge of the polytope e =
uv, has the geometric weight w,, = ¥ — @ (equivalently
Wyy = U —U). To compute a derived weight, we define a
variable z. for each edge e. The weight {w),, = z..(0—
i) would be a derived weight if and only if the weight
of each basis cycle is zero (Theorem 3). The problem
can be stated as a linear feasibility program.

Let B be a basis of Gp. Let ¢ € B be denoted as
U0, UL, -+ -, Um, Um+1(= uo), where u; are the vertices
on the cycle and let the edge uju;41 be denoted by e;.
Then the linear feasibility program (LP) is

> Tey-(ujin —uj) = 0, VeeB,
subject to



0<z. <1, Vee€ Ep; ZeeEp T > 0;
and - cp, (1 — Tup) > 0.

If P is a lattice polytope and the summand should
also be a lattice polytope, then we need to satisfy an
additional condition that z. (¥ — ) has all integral com-
ponents, i.e., z..ged(¥ — @) must be an integer (recall
that ged(@) is the ged of all the components of @). This
additional condition transforms the LP into the follow-
ing linear integer feasibility program (IP) by defining
integral variables y, for z..ged(7 — ).

Zj yej-(uj:& - u?)/ng(uj_-’H - u’;) = 6; Ve € B,
subject to
0<Yur < ng(U_ ﬁ)a Ve € Ep;

Y ecmp Ye > 05 and 3 o (ged(V — @) —y,) > 0, where
1y are integer variables.

The number of variables in the IP is equal to the
number of the edges in the polytope, |Ep|. The num-
ber of equations is n times the number of cycles in the
basis, which is |Ep| — |[Vp| 4+ 1 in case B is the set of
fundamental cycles.

6 Experimental Results

We have discussed earlier that Gao and Lauder [1] have
shown that the Minkowski decomposition of convex lat-
tice polytope is an NP-complete problem even in 2 di-
mensions. Therefore no exact method is expected to be
polynomial in complexity. In this section we show that
the proposed solution based on solving an integer linear
program is a reasonably practical approach.

Given a dimension d and an n, we randomly generate
n lattice points in R”. The algorithm assumes the poly-
tope to be the convex hull of these points and reports
whether the polytope is decomposable. In the tables,
we have reported the running time of the algorithm for
various values of d and n split into two parts: (i) time
to compute the edges of the polytope, (ii) time to com-
pute the Minkowski summand from the edge graph of
the polytope. Each entry in the tables is the average of
the run-times of ten instances.

We use glpsol, GLPK linear programming/MIP
solver to solve the integer program. The experiments
were carried out on a 32-bit machine running on Intel
Pentium 4 processor with 2 GB RAM and the code was
written in the C programming language. As this method
is exact, the program reports Minkowski decomposabil-
ity correctly. Thus we only report the time taken by
this algorithm for various instances of the problem.

The results show that most of the time is consumed in
computing the edges of the polytope. This is because we
are not aware of any fast algorithm to compute it. We
believe that with an efficient algorithm for edge com-
putation, significantly larger problems can be solved in
real time.

Table 1: Time(secs) to find the edges

Points, n
Dimension, d || 10 | 50 [ 100 [ 200
2 0.13 | 0.38 0.49 0.54
5 0.46 | 9.24 | 30.39 | 106.76
10 0.49 | 16.93 | 89.17 | 590.94
20 0.50 | 18.88 | 113.93 | 851.37

Table 2: Time(secs) to decide indecomposability, i.e.,
time to solve IP

Points, n
Dimension, d || 10 | 50 | 100 | 200
2 0.00 | 0.01 | 0.01 | 0.01
5 0.01 | 0.08 | 0.17 | 0.35
10 0.01 | 042 | 1.72 | 6.48
20 0.02 | 0.81 | 3.74 | 18.70

7 Conclusion

We have presented a criterion for Minkowski decom-
position, general as well as integral. This reduces the
problem of computing Minkowski summand into a lin-
ear (integer) program. We have reported experimental
results. The performance of this approach can be im-
proved significantly by using an efficient algorithm to
compute the edges of the polytope. We believe this
would give a performance comparable with the heuris-
tic method proposed in [2].
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Appendix
A Oriented walks and Oriented weights

Proposition 16 [Proposition 2 in main text] Let G be
any graph with oriented weight W. Let w be any non-zero
oriented closed walk in G, not necessarily simple, then there
ezists oriented cycles wi,. .., wg, possibly with multiplicity,
such that W(w) = W(w1) + -- - + W (wg).

Proof. Assume the contrary. So there is at least one closed
(non-zero) walk for which the claim is not true. The length
of a walk is the number of edges in it, with multipmicity.
Let w = wo,v1,...,vk—1,v0 be a shortest non-zero closed
walk in the graph for which the oriented weight cannot
be expressed as the sum of those of some simple closed
walks. Thus w is itself not a simple closed walk. Let
7 be the smallest index such that there exists an index
j(> %) with v; = v;. Let I > 0 be the maximum inte-
ger such that viy, = vj_r forall 0 < r <land i+1 <
j — 1. Then w can be split into three closed walks: w; =
Uy Ujd1, -+, Uk—1,00, - - -y V5 W2 = Vigi, Vifplq1,---,V;j—1; and
W3 = Vi,...,Vi4l—1,Vitl,Vj—i+1,-.-,V;j. Since the edges of
w are partitioned into those of wi, w2, and ws, and the di-
rection of the edges are preserved, the weight of w is equal
to the sum of the weights of the three closed walks. Note
that ws is a zero walk so its weight is zero and W(w) =
W (wi) + W (w2).

The lengths of wi,wa, ws are respectively k —j+14,j —i—
21,21, so w1 and w» are both strictly smaller than w and at
least one is a non-empty non-zero closed walk. Hence, by the
choice of w, atleast one of the weights of w1 and w2 can be
expressed as the sum of the weights of simple closed walks,
while the other is either a zero-walk or can itself be expressed
as the sum of the weights of closed walks. Thus the weight
of w can also be expressed as the sum of weights of simple
closed walks. This contradicts the assumption. Further, the
argument is independent of the actual weights. O

B Oriented Bases

We will now show that the oriented weight of any non-zero
closed walk in the edge graph of a polytope can be expressed
as the sum of the oriented weights of some of the 2-face cycles
of the polytope.

Theorem 17 [Theorem 3 in main section] Let G be the
edge graph of a polytope. Then 2-face cycles of the polytope,
each oriented in any one direction, form a basis of G.

Proof. From Proposition 16, it is sufficient to show that the
oriented weight of every simple closed walk can be expressed
as the sum of the oriented weights 2-face cycles. We will
prove this by induction on the dimension of the polytope.
The statement trivially holds for polygons. Assume that P
is an n-dimensional polytope (n > 2) for which the claim
is not true while it is true for all the smaller dimensional
polytopes. Let w be a direction such that all the vertices
in P have unique projection along w, i.e., for any pair of
distinct vertices v1 and w2, v1.w # v2.w. Let w be a simple
closed walk in P such that W (w) is not expressible as the

sum of the oriented weights of some 2-face cycles. Let v
be the vertex on w having the highest projection along w,
i.e., w.w > w.u for all w on w other than v. Without loss of
generality assume that w is such a walk that v.w is minimum.

Let the neighbors of v in w be z and y such that w =
zvy...x where the subwalk y...z may be denoted by w'.
Vertex v does not occur in w' since w is a simple closed
walk. Pass a hyperplane through v cutting/touching P, with
normal w. Consider the polytope P’ lying on —w side of the
hyperplane. Let F be a face of P’ due to the new plane, i.e.,
F = face,(P'). Thus w is contained in P’ and no vertex of
w, other than v, belongs to F.

If the plane cuts P, then F will be a facet (n — 1 dimen-
sional face) but if it only touches it then F' will be a vertex
(F = v) because of distinct projections of the vertices on w.

First, consider the case when F is a facet. Let F' and F”
be arbitrary facets of P’, other than F', which contain edges
vz and vy. Consider the dual polytope 'P'D, of P'. The
facet corresponding to v contains the vertices corresponding
to F,F',F" and is a (n — 1)-dimensional polytope. Hence,
it is (n — 1)-connected from the connectivity result due to
Balinski [6]. So removing the vertex corresponding to F' still
keeps the facet corresponding to v connected because n > 2.
Then, there exists a path in the edge graph of P'? from the
vertex corresponding to F’ to the vertex corresponding to
F" | not containing F. Let the corresponding facets in P be
F'Fy,...,Fy_1,F".

In the case when F is a vertex let F' and F" be arbitrary
facets of P containing the edges vz and vy respectively. Con-
sider the dual polytope P'”. There will be vertices F' and
F" in the facet of F. Consider any path F', Fy,...,Fy_1, F"
in the facet of F.

From here we consider both the cases simultaneously.
If the sequence of the facets is written as (F' =
Fo)Fl N Fk_l(Fk = F”), then for all i, Fi 7& F and FiﬂF¢+1
is a (n — 2)-dimensional face of P. Moreover, v belongs to
each of these (n — 2)-dimensional faces.

Consider the faces Fy, F; and Fo N Fy = Fo;. In P'7°,
Fy, F1 are vertices and Fp; is an edge between them. As
an edge is shared by two vertices only, no other facet of P
contains Fpi. Specifically, Foy; is not contained in F. As
v € Fy, F1, so v € Fp1. Moreover, there exists a neighbor,
zo of v in Fpi, such that zo ¢ F. This is because the convex
polyhedral cone at v with all the neighbours of v in Fo:
contains Fy1 and is contained in the hyperplane defining F'.
These two together would imply that Fy; C F which is a
contradiction. One thing to note here is that w projection
of zo is less than that of v. We know that face,(P') = F
and F; # F so face_,(F;) N F = (. From Corollary 9,
there exist paths from z and from zp to a common vertex
in face—.,(Fp). Both the paths are monotonic along —w, so
none of the vertices of these paths belongs to F. Combine
these paths to form a walk from zg to z, call it wg, which
is contained in Fp and none of its vertices are in F'. Let the
closed walk [wg].[z, v, 20] be denoted by wo. Similarly for
each i define closed walks w; = [wj].[z;_1.v.2;] which is in
F; and none of its vertices, other than v, is in F. Here z
stands for y.

Consider the closed walks w” = [wp]".[wi]" ... [w}]".[w']
which contains no vertex of F, and w"”



[z,v, 20,0, 21,0, 22, . . ., U, Zk—1, U, y].[w]. Accounting
for zero subwalks in w"’' we have W (w"’") = W (w). Hence
we have

W(w) W (w"™)

= W([z,v, 20,v,21,0,22,...,0,25_1,,y] - [w])
F W) + YWl

= WZ(TmO,v,zo]) + ;Ewb)
;if (W ([zi-1, v, 2]) + W (wy))
+;E[zk,1,v,y]) + W (w})

AW ([w']) + YW ([wi]")

i=0

k
> W (wi) + W (w")

Since all the vertices in w’ have w projection strictly less
than that of v, due to the choice of w, W(w") can be ex-
pressed as the sum of the weights of 2-face cycles. Further,
each w; is a closed cycle in a facet of the polytope (n — 1
dimensional) so from the induction hypothesis each W (w;)
can also be expressed as the sum of the oriented weights of
some 2-face cycles. Putting all together, we find that W (w)
is also expressible as the sum of the oriented weights of some
2-face cycles. This contradicts the assumption. O

C Convex polytopes

C.1 Basics

In this section, we will establish some facts about convex
polytopes.

Lemma 18 Let x be a vertez in a polytope P and w be any
direction. If x does not belong to face,(P), then there is at
least one neighboring verter y of x (i.e., xy is an edge) such
that y.w > z.w.

Proof. Let yi,...,yr be the neighbors of z. Let z €
facew,(P). Then there exist non-negative A; such that
z—r = Zle Ai.(yi — x), because the polytope is in the
positive hull of the vectors y; — z. As (z — z).w > 0, there
exists some j such that y;.w > z.w. O

Lemma 19 [Lemma 9 from the main section] Let v be
a vertez of a face face,(P) and uo be any other verter of
a polytope P. Then there is a monotonic path in the edge
graph uo, ui, - .., u;j, ..., up(= v) such that (wir1 —u;).w >0
for all0 <i<j and (ui41 — u;).w =0 for all j < i < k.

Proof. From the previous lemma, there is a path
UQ, ULy - - -, Uy such that (ui+1 — ul)u')' >0for 0 <i< ]
and u; € face,(P). Since the edge graph of face.(P)
is connected, there is a path wj,...,ux(= v) in it. Thus
(u1+1—ui).w:0f0rj§i§k—1. O

C.2 Polytope of embedding

Lemma 20 For any P, vertex v, direction vector w, and a
derived geometric weight Wy, if vertez v € face,(P), then
o (v) € facey, (Pa).

Proof. Consider any point ¢o(u) in the embedding. Con-
sider a monotonic sequence ug(= u),
Ui, ..., ux(= v)in w direction in P. So (¢a(v) — pa(u)).w =
o (Ba(uit1) — palus)).w = Y{ ) . (wit1 — ui).w, where
a; is the weight factor of the edge u;u;+1. Due to mono-
tonicity (ui+1 — ui)w > 0 and 0 < a; < 1 for all 4, so
(Pa(v) — Pa(u)).w > 0. Since @q(u) is an arbitrarily chosen
point, ¢ (v) must belong to face, (Po). O

Corollary 21 [Lemma 10 of the main section] For each
vertez v of P, ¢ (v) is a vertez of Po.

This result implies that every normal to a vertex of P is
also a normal to the corresponding vertex of P,. This leads
to the following obvious corollary.

Corollary 22 Let P be a polytope and Q = P, be a derived
polytope. Then for every vertez v of P, Np(v) C No(da(v)).

Lemma 23 Let P be a polytope. If Po is a derived polytope,
then Po + Pi—a = P.

Proof. Denote Py by Q, Pi—a by R and Po + Pi1—a by P'.

Consider an arbitrary vertex v in P. Let v’ = ¢o(v) and
v" = ¢1-o(v). Then from the previous corollary Np(v) C
No(v')NNz(v"). From Lemma 6 v = v’ +v" is a vertex of
P’ with Np/(v""") = Ng(v')NNz (v"). So Np(v) C Np: (v'").
Since Uyev, Np(v) = R”, Uy evp Np (v) = R™. This shows
that the vertex set of P’ is exactly {v" : v € Vp}.

To show that P = P’ we also have to show that
v — " = v — u for each pair of vertices u,v of P.
Let (we,de)ecm(p) be the geometric weight of P. Con-
sider any walk uo(= u),u1,...,ux(= v). Then v' —u' =
baltr) — daluo) = 3¢y ai-(uitr — u;). Similarly v —
u = Y ¥ (1 — @i).(uiy1 — u;). This gives v — o =

E;’;c;ol(’lhj+1 — W) = UR — U =V — U O

Corollary 24 [Lemma 11 of the main section] Every
derived polytope is a Minkowski summand of the original

polytope.

Next we will show the converse, namely, every Minkowski
summand is a derived polytope.

Lemma 25 Let polytope Q be a Minkowski summand of
polytope P. Then for each face f in P, there is a face
f' of Q such that f is a Minkowski summand of f and
Nz (f) € Na(f').

Proof. Let R be a polytope such that P = Q + R. Let w
be a direction in Np(f). So f = face,(P) = face,(Q) +
face,(R) from Lemma 5. Let f' = face.(Q). From Lemma
6 Np(f) C No(f). O



Let polytope Q be a Minkowski summand of polytope
P. Then define a map % from the faces of P to those of
Q as stated in the above lemma - if f is a face of P, and
if f/ is a face of Q such that a face 3f"” of R such that
f = f+f", then ¢(f) = f'. Lemma 7 shows that the map 1
is well-defined. For the 0- and 1-faces of P, we will abuse the
notation . If ¥ is the position vector of a vertex of P, then
(V) will denote the position vector of the corresponding
vertex in Q. Similarly if € denotes the edge vector of e then
1(€) will denote the edge vector for 1) (e).

Observation 6 The i-image of every vertex of P is a ver-
tex and that of every edge of P is either a vertex or an edge.
The image of a walk P from w to v is a walk from 1 (u) to

P(v).

Lemma 26 [Lemma 12 of the main section] Let Q be
a Minkowski summand of a polytope P then it is a derived
polytope of P.

Proof. From the previous lemma we know that for each
edge € of P, 1(€) is an edge/vertex of Q which is a summand
of €. Thus ¢ (€) is parallel to €. Let a. denote |1)(€)|/|€] for
each edge € of P, which is less than or equal to 1. Consider
the derived weight W, defined by {ae}ecE.

Consider an arbitrary walk w = wg,u1...,un in P.
Then ¢o(um) — da(i) = 375" (¢a(uits) — da(i) =
Yl ai(uit — ) = Yyt gle) = L ((uit) —
P(3)) = ¥ (um) — ¥ (up). This establishes that Q@ = P,. O



