NP-Completeness of Subset-Sum problem

Rahul R. Huilgol
11010156
Simrat Singh Chhabra
11010165
Shubham Luhadia
11010176

September 7, 2013

Problem Statement

In the SUBSET SUM problem, we are given a list of n numbers A_{1}, \ldots, A_{n} and a number T and need to decide whether there exists a subset $\mathrm{S} \subseteq[\mathrm{n}]$ such that

$$
\sum_{i \in S} A_{i}=T
$$

(the problem size is the sum of all the bit representations of all the numbers). Prove that SUBSET SUM is NP-complete.

Contents

a Intuition 3
b SUBSET-SUM is NP 3
b. 1 Solution polynomial sized 3
b. 2 Polynomial time verification 3
c Claim 1: 3-SAT \leq_{p} EXACTLY 1 3-SAT 3
d Claim 2: EXACTLY 1 3-SAT \leq_{p} M 4
e Claim 3: $\mathrm{M} \leq_{p}$ SUBSET-SUM 5
f Conclusion 7

a Intuition

We are reducing 3-SAT to EXACTLY 1 3-SAT which is further reduced to M (defined below). This M can be reduced to SUBSET-SUM problem.

M is defined as the problem of finding whether a solution exists for a set of k equations E_{1} to E_{k}. Each equation E_{i} is of the form

$$
a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots a_{i n} x_{n}=b
$$

where $\mathrm{b}=\left[\begin{array}{lllll}0 & 0 & 0 . . . & 1\end{array}\right] a_{i j}=\left[\begin{array}{lllll}0 & 0 & 0 & . . & 0\end{array}\right]$ or $\left[\begin{array}{llll}0 & 0 & 0\end{array} . .01\right]$. All these are binary numbers of length $\lceil\log (n)+1\rceil$. Each of the variables x_{i} can only take the values 0 or 1 . i $\epsilon\{1,2, \ldots, \mathrm{k}\}$ and $\mathrm{j} \epsilon\{1,2, \ldots, \mathrm{n}\}$

$$
3 \text {-SAT } \leq_{p} \text { EXACTLY } 13 \text {-SAT } \leq_{p} \mathrm{M} \leq_{p} \text { SUBSET-SUM }
$$

b SUBSET-SUM is NP

b. 1 Solution polynomial sized

A solution of the subset-sum problem is a set S of indices i from the set [n], which correspond to the A_{i} s which sum up to the number T. So the solution size could be at most n. So it is polynomial in the input size.

b. 2 Polynomial time verification

Once we have the set S, we can verify the solution by summing up the corresponding $A_{i} \mathrm{~s}$ and comparing this sum with T . The number of additions is at most $\mathrm{n}-1$. So the addition and comparision can be done in polynomial time. Hence, SUBSET-SUM is in NP.

c Claim 1: 3-SAT \leq_{p} EXACTLY 1 3-SAT

In the EXACTLY ONE 3SAT problem, we are given a 3CNF formula ϕ and need to decide if there exists a satisfying assignment u for ϕ such that every clause of ϕ has exactly one TRUE literal.

Suppose Ψ is a 3 -SAT expression. Therefore, it will be of the form

$$
\Psi=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{k}
$$

where each clause

$$
C_{i}=(x \vee y \vee z)
$$

where i $\epsilon\{1,2, \ldots, \mathrm{k}\}$
We would convert the expression Ψ to an EXACTLY ONE 3SAT expression ϕ by making the following changes for every clause of Ψ : For every
clause $C_{i}=(x \vee y \vee z)$ in Ψ, introduce 6 new variables $a_{x}, b_{x}, a_{y}, b_{y}, a_{z}, b_{z}$ and form the equivalent clause

$$
D_{i}=\left(\neg x \vee a_{x} \vee b_{x}\right) \wedge\left(\neg y \vee a_{y} \vee b_{y}\right) \wedge\left(\neg z \vee a_{z} \vee b_{z}\right) \wedge\left(a_{x} \vee a_{y} \vee a_{z}\right)
$$

Claim : $C_{i} \equiv D_{i}$
Proof : For any particular assignment which satisfies C_{i}, we will choose our additional literals $\left(a_{x}, b_{x}, a_{y}, b_{y}, a_{z}, b_{z}\right)$ in such a way that exactly one of $\left(a_{x}, a_{y}, a_{z}\right)$ will become true. Suppose ω is false, then the clause $\left(\neg \omega \vee a_{\omega} \vee b_{\omega}\right)$ becomes true automatically and so a_{ω} and b_{ω} are chosen to be false. If ω is true, then either one of a_{ω} or b_{ω} are made true depending on whether any other of $a_{i} s$ are true, as we want the last clause of D_{i} to be true. Also, we cannot have x, y and z all false as C_{i} is satisfied, so we don't need to consider the case where a_{x}, a_{y} and a_{z} all are false at the same time.

On the other hand, if the clause C_{i} is false, then all of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ have to be false. This would mean that a_{x}, a_{y} and a_{z} are all false and so the last clause of D_{i} will become false and hence D_{i} will not be satisfied Hence, when C_{i} has a satisfying assignment so does D_{i} and when former does not have a solution, latter is also false.

Also, since we are adding only 6 extra literals for each clause, so each D_{i} will be constructed in constant time, and therefore the whole reduction will take only polynomial time.

d Claim 2: EXACTLY 13 -SAT $\leq_{p} \mathrm{M}$

Suppose ϕ is a 3-SAT expression. Therefore, it will be of the form

$$
\phi=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{k}
$$

where each clause

$$
C_{i}=(x \vee y \vee z)
$$

where i $\epsilon\{1,2, \ldots, \mathrm{k}\}$
We convert an instance of this problem into an instance of the problem M by the following steps:
For each clause C_{i}, we will introduce an equation E_{i} of the form

$$
a_{i 1} x_{1}+a_{i 1}^{\prime} x_{1}^{\prime}+a_{i 2} x_{2}+a_{i 2}^{\prime} x_{2}^{\prime}+\ldots+a_{i n} x_{n}+a_{i n}^{\prime} x_{n}^{\prime}=b
$$

where $\mathrm{n}=$ total number of variables in ϕ
$x_{j}=$ boolean variable corresponding to the Exactly1 3-SAT literal x_{j}
$x_{j}^{\prime}=$ boolean variable corresponding to the Exactly1 3-SAT literal $\neg x_{j}$
$a_{i j}$ take values $\left[\begin{array}{llll}0 & 0 & \ldots & 0\end{array}\right]$ if x_{j} is not present in the clause C_{i}
[0 $\left.0 \begin{array}{lll}0 & \ldots & 1\end{array}\right]$ if x_{j} is present in the clause C_{i}
$a_{i j}^{\prime}$ take values $\left[\begin{array}{llll}0 & \ldots & 0\end{array}\right]$ if $\neg x_{j}$ is not present in the clause C_{i}
$\left[\begin{array}{llll}0 & 0 & \ldots & 1\end{array}\right]$ if $\neg x_{j}$ is present in the clause C_{i}
$\mathrm{b}=\left[\begin{array}{llll}0 & 0 & \ldots & 0\end{array}\right]$
length of all above binary numbers is $\lceil\log (2 n)+1\rceil$

If there exists a solution to ϕ, we get values of all the variables $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ from which we can get the corresponding values for M's variables $\left(x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$.
Since ϕ is satisfied, each of its clauses is satisfied. If we consider the equation E_{i} corresponding to the clause C_{i}, then the former would be true as of all the variables in the equation whose coefficient is a non-zero binary number (which means they are present in the clause) exactly one will be having the value 1 , so the equation holds.

If there does not exist a satisfying solution to ϕ, then there must be atleast a single clause with a false value, so all literals in that clause will be false and hence the equation corresponding to that clause will not hold.

The length of each equation will be :
b and all the $a_{i j} s$ will take $\lceil\log (2 n)+1\rceil$ bits
the variables $x_{i} s$ will take 1 bit each
So, each equation will take $O(n \log (n))$ space.
Hence, the output takes polynomial time for printing.

During reduction, the computations involved are: 1. Checking whether a literal exists in a particular clause (to find the value of $a_{i j}$) takes constant time per literal. 2. Addition on n binary numbers for checking whether a solution satisfies the equation could take a $O(n \log (n))$ steps. So, computations can be done in polynomial time.
Hence proved.

e Claim 3: $\mathbf{M} \leq_{p}$ SUBSET-SUM

M is defined as the problem of finding whether a solution exists for a set of k equations E_{1} to E_{k}. Each equation E_{i} is of the form

$$
a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots a_{i n} x_{n}=b
$$

where $\mathrm{b}=\left[\begin{array}{lllll}0 & 0 & 0 & \ldots & 1\end{array}\right] a_{i j}=\left[\begin{array}{lllll}0 & 0 & 0 & \ldots & 0\end{array}\right]$ or $\left[\begin{array}{lllll}0 & 0 & 0 & \ldots & 1\end{array}\right]$.
All these are binary numbers of length $\lceil\log (n)+1\rceil$.
Each of the variables x_{j} can only take the values 0 or 1 .
i $\epsilon\{1,2, \ldots, \mathrm{k}\}$ and $\mathrm{j} \epsilon\{1,2, \ldots, \mathrm{n}\}$

For every instance of the problem M, we create an instance of the SubsetSum problem in the following way:
Define n numbers $A_{1}, A_{2}, \ldots, A_{n}$ such that $A_{j}=a_{1 j} a_{2 j} \ldots a_{i j} \ldots a_{k j}$ i.e. each A_{j} consists of $k\lceil\log (n)+1\rceil$ bits.
Also, define the number $T=b b b \ldots . . b$ (k times) so T also has $k\lceil\log (n)+1\rceil$ bits.

If the given set of equations have a solution, then form a subset S such that $\mathrm{j} \epsilon S$ if $x_{j}=1$ in the satisfying solution. If $x_{m_{1}}, x_{m_{2}}, \ldots, x_{m_{l}}$ take value 1 in the satisfying solution $(1 \leq n)$, and $m_{1}, m_{2}, \ldots, m_{l} \epsilon\{1,2, \ldots, n\}$, then

$$
\sum_{t=m_{1}}^{m_{l}} a_{i t}=b \quad \forall i \epsilon\{1,2, \ldots, k\}
$$

Hence,

$$
\begin{gathered}
\sum_{j \in S} A_{j}=\left(\sum_{t=m_{1}}^{m_{l}} a_{1 t}\right)\left(\sum_{t=m_{1}}^{m_{l}} a_{2 t}\right) \ldots\left(\sum_{t=m_{1}}^{m_{l}} a_{k t}\right) \\
=b b \ldots b(\text { ktimes }) \\
=\mathbf{T}
\end{gathered}
$$

On the other hand, if there is no solution for the given set of equations, then for any assignment of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, atleast one of the equations wouldn't be satisfied, i.e.

$$
\sum_{t=m_{1}}^{m_{l}} a_{i t}=c
$$

for some i , and $c \neq b$, therefore,

$$
\begin{gathered}
\sum_{j \in S} A_{j}=\left(\sum_{t=m_{1}}^{m_{l}} a_{1 t}\right)\left(\sum_{t=m_{1}}^{m_{l}} a_{2 t}\right) \ldots\left(\sum_{t=m_{1}}^{m_{l}} a_{k t}\right) \\
=b b \ldots b c b \ldots b(\text { ktimes }) \\
\neq T
\end{gathered}
$$

so we wouldn't get a solution for the subset-sum problem.
NOTE: The case where $c=1 b$ will never arise because we are taking $\lceil\log (n)+1\rceil$ bits and the n binary numbers $a_{i j} s$ could only go up till we get all ones in c, i.e. no carry overflow is possible.

For every instance of the problem M , we can print the corresponding subsetsum problem in $O(k n l o g(n))$ steps as T and each A_{j} takes n times $\lceil\log (n)+$ 17 bits.
Also, during computation, in worst case, when we need to add all the $A_{j} s$, we would need $O\left(n^{2} \log (n)\right)$ steps for total n-1 additions.
Hence proved.

f Conclusion

SUBSET-SUM is in NP
3 -SAT \leq_{p} EXACTLY 13 -SAT $\leq_{p} \mathrm{M} \leq_{p}$ SUBSET-SUM
3 -SAT is NP-Complete.
Using the transitivity of reduction:
From Claim-1, EXACTLY 1 3-SAT becomes NP-Complete.
From Claim-2, M becomes NP-Complete.
And finally from Claim-3, SUBSET-SUM becomes NP-Complete.

Hence Proved.

