
NP-Completeness of Subset-Sum
problem

Rahul R. Huilgol 11010156
Simrat Singh Chhabra 11010165
Shubham Luhadia 11010176

September 7, 2013

Problem Statement
In the SUBSET SUM problem, we are given a list of n numbers A1, ..., An

and a number T and need to decide whether there exists a subset S ⊆ [n]
such that ∑

iεS

Ai = T

(the problem size is the sum of all the bit representations of all the numbers).
Prove that SUBSET SUM is NP-complete.

1

Contents
a Intuition 3

b SUBSET-SUM is NP 3
b.1 Solution polynomial sized . 3
b.2 Polynomial time verification 3

c Claim 1 : 3-SAT ≤p EXACTLY 1 3-SAT 3

d Claim 2 : EXACTLY 1 3-SAT ≤p M 4

e Claim 3 : M ≤p SUBSET-SUM 5

f Conclusion 7

2

a Intuition
We are reducing 3-SAT to EXACTLY 1 3-SAT which is further reduced to
M (defined below). This M can be reduced to SUBSET-SUM problem.

M is defined as the problem of finding whether a solution exists for a set
of k equations E1 to Ek. Each equation Ei is of the form

ai1x1 + ai2x2 + ...ainxn = b

where b = [0 0 0...0 1] aij = [0 0 0...0 0] or [0 0 0...0 1].
All these are binary numbers of length dlog(n) + 1e.
Each of the variables xi can only take the values 0 or 1.
i ε {1, 2, ..., k} and j ε {1, 2, ..., n}

3-SAT ≤p EXACTLY 1 3-SAT ≤p M ≤p SUBSET-SUM

b SUBSET-SUM is NP

b.1 Solution polynomial sized

A solution of the subset-sum problem is a set S of indices i from the set [n],
which correspond to the Ais which sum up to the number T. So the solution
size could be at most n. So it is polynomial in the input size.

b.2 Polynomial time verification

Once we have the set S, we can verify the solution by summing up the
corresponding Ais and comparing this sum with T. The number of additions
is at most n-1. So the addition and comparision can be done in polynomial
time. Hence, SUBSET-SUM is in NP.

c Claim 1 : 3-SAT ≤p EXACTLY 1 3-SAT
In the EXACTLY ONE 3SAT problem, we are given a 3CNF formula φ and
need to decide if there exists a satisfying assignment u for φ such that every
clause of φ has exactly one TRUE literal.

Suppose Ψ is a 3-SAT expression. Therefore, it will be of the form

Ψ = C1 ∧ C2 ∧ ... ∧ Ck

where each clause
Ci = (x ∨ y ∨ z)

where i ε {1, 2, ..., k}
We would convert the expression Ψ to an EXACTLY ONE 3SAT ex-

pression φ by making the following changes for every clause of Ψ: For every

3

clause Ci = (x ∨ y ∨ z) in Ψ, introduce 6 new variables ax, bx, ay, by, az, bz
and form the equivalent clause

Di = (¬x ∨ ax ∨ bx) ∧ (¬y ∨ ay ∨ by) ∧ (¬z ∨ az ∨ bz) ∧ (ax ∨ ay ∨ az)

Claim : Ci ≡ Di

Proof : For any particular assignment which satisfies Ci, we will choose
our additional literals (ax, bx, ay, by, az, bz) in such a way that exactly one of
(ax, ay, az) will become true. Suppose ω is false, then the clause (¬ω∨aω∨bω)
becomes true automatically and so aω and bω are chosen to be false. If ω
is true, then either one of aω or bω are made true depending on whether
any other of ais are true, as we want the last clause of Di to be true. Also,
we cannot have x, y and z all false as Ci is satisfied, so we don’t need to
consider the case where ax, ay and az all are false at the same time.

On the other hand, if the clause Ci is false, then all of x,y,z have to be
false. This would mean that ax, ay and az are all false and so the last clause
of Di will become false and hence Di will not be satisfied
Hence, when Ci has a satisfying assignment so does Di and when former
does not have a solution, latter is also false.

Also, since we are adding only 6 extra literals for each clause, so each
Di will be constructed in constant time, and therefore the whole reduction
will take only polynomial time.

d Claim 2 : EXACTLY 1 3-SAT ≤p M
Suppose φ is a 3-SAT expression. Therefore, it will be of the form

φ = C1 ∧ C2 ∧ ... ∧ Ck

where each clause
Ci = (x ∨ y ∨ z)

where i ε {1, 2, ..., k}
We convert an instance of this problem into an instance of the problem

M by the following steps:
For each clause Ci, we will introduce an equation Ei of the form

ai1x1 + a′
i1x

′
1 + ai2x2 + a′

i2x
′
2 + ...+ ainxn + a′

inx
′
n = b

where n= total number of variables in φ
xj=boolean variable corresponding to the Exactly1 3-SAT literal xj
x′
j=boolean variable corresponding to the Exactly1 3-SAT literal ¬xj

4

aij take values [0 0 ...0 0] if xj is not present in the clause Ci
[0 0 ...0 1] if xj is present in the clause Ci

a′
ij take values [0 0 ...0 0] if ¬xj is not present in the clause Ci

[0 0 ...0 1] if ¬xj is present in the clause Ci
b=[0 0 ...0 1]
length of all above binary numbers is dlog(2n) + 1e

If there exists a solution to φ, we get values of all the variables (x1, x2, ..., xn)
from which we can get the corresponding values for M’s variables (x1, x2, ..., xn, x

′
1, x

′
2, ..., x

′
n).

Since φ is satisfied, each of its clauses is satisfied. If we consider the equation
Ei corresponding to the clause Ci, then the former would be true as of all
the variables in the equation whose coefficient is a non-zero binary number
(which means they are present in the clause) exactly one will be having the
value 1, so the equation holds.

If there does not exist a satisfying solution to φ, then there must be atleast
a single clause with a false value, so all literals in that clause will be false
and hence the equation corresponding to that clause will not hold.

The length of each equation will be :
b and all the aijs will take dlog(2n) + 1e bits
the variables xis will take 1 bit each
So, each equation will take O(nlog(n)) space.
Hence, the output takes polynomial time for printing.

During reduction, the computations involved are: 1. Checking whether
a literal exists in a particular clause (to find the value of aij) takes constant
time per literal. 2. Addition on n binary numbers for checking whether a
solution satisfies the equation could take a O(nlog(n)) steps. So, computa-
tions can be done in polynomial time.
Hence proved.

e Claim 3 : M ≤p SUBSET-SUM
M is defined as the problem of finding whether a solution exists for a set of
k equations E1 to Ek. Each equation Ei is of the form

ai1x1 + ai2x2 + ...ainxn = b

where b = [0 0 0 ...0 1] aij = [0 0 0 ...0 0] or [0 0 0 ...0 1].
All these are binary numbers of length dlog(n) + 1e.
Each of the variables xj can only take the values 0 or 1.
i ε {1, 2, ..., k} and j ε {1, 2, ..., n}

5

For every instance of the problem M, we create an instance of the Subset-
Sum problem in the following way:
Define n numbers A1, A2, ..., An such that Aj = a1ja2j ...aij ...akj i.e. each
Aj consists of kdlog(n) + 1e bits.
Also, define the number T = bbb....b (k times) so T also has kdlog(n)+1e bits.

If the given set of equations have a solution, then form a subset S such
that j εS if xj = 1 in the satisfying solution. If xm1 , xm2 , ..., xml

take value
1 in the satisfying solution (l ≤ n), and m1,m2, ...,ml ε{1, 2, ..., n}, then

ml∑
t=m1

ait = b ∀iε{1, 2, ..., k}

Hence, ∑
jεS

Aj = (
ml∑
t=m1

a1t)(
ml∑
t=m1

a2t)...(
ml∑
t=m1

akt)

= bb...b(ktimes)
=T

On the other hand, if there is no solution for the given set of equations, then
for any assignment of (x1, x2, ..., xn), atleast one of the equations wouldn’t
be satisfied, i.e.

ml∑
t=m1

ait = c

for some i, and c 6= b, therefore,∑
jεS

Aj = (
ml∑
t=m1

a1t)(
ml∑
t=m1

a2t)...(
ml∑
t=m1

akt)

= bb...bcb...b(ktimes)
6= T

so we wouldn’t get a solution for the subset-sum problem.
NOTE: The case where c = 1b will never arise because we are taking
dlog(n) + 1e bits and the n binary numbers aijs could only go up till we
get all ones in c, i.e. no carry overflow is possible.

For every instance of the problem M, we can print the corresponding subset-
sum problem in O(knlog(n)) steps as T and each Aj takes n times dlog(n)+
1e bits.
Also, during computation, in worst case, when we need to add all the Ajs,
we would need O(n2log(n)) steps for total n-1 additions.
Hence proved.

6

f Conclusion
SUBSET-SUM is in NP
3-SAT ≤p EXACTLY 1 3-SAT ≤p M ≤p SUBSET-SUM
3-SAT is NP-Complete.
Using the transitivity of reduction:
From Claim-1, EXACTLY 1 3-SAT becomes NP-Complete.
From Claim-2, M becomes NP-Complete.
And finally from Claim-3, SUBSET-SUM becomes NP-Complete.

Hence Proved.

7

