
Claim : We have already proved in earlier course that having more tapes does not increase the
power of a Turing Machine, i.e. A k-tape Turing Machine may be simulated by a one-tape Turing
Machine with some extra polynomial time.

Given that L can be completed in time T(n) where n = |x|.

Let M be a machine running in time T(n) on all inputs of size n such that L = L(n); i.e. whenever
input x є L, M says yes and whenever input x !є L, M says no.
(Assumption : M is a sigle tape Turing Machine since multiple tapes don't give extra power).
This existence of M is guranteed because it is given that L can be computed in time T(n) where n =
|x| and T(n) is a time-constructible function.

So, we have to come up with with an oblivious Turing Machine N such that L(M)=L(N) and N runs
in O(T(n)2).

The machine N will have 3 tapes; one to simulate tape of M with an additional marker on the tape
for the location of the simulated head of M, one counter for how many steps of M have been
simulated, and one additional counter. For simulating step i of computation of M, N makes two
passes over M tape from location 1 to location i and back. (The additional counter is used to know
when to turn around). Since head of M moves only one cell per step (and that too right/left since M
is our old (normal)Turing Machine). Hence, upto step i, head of M would have visited atmost 1st i
cells; hence it will point to the jth cell, 1<=j<=i. Hence, when N makes two pass over the 1st tape
(tape of M), it must observer the head of M twice – once while going forward upto location i and
again while coming back to 1.

While moving forward, N sees the current tape symbol under head of M and on the way back, it
implements the step of M, i.e. over-write the current tape symbol with the new symbol and move
the marker (denoting location of simulated head of M) right or left on the 1st tape as δ demands.

When N has finished the ith step, i.e. Came back to location 1 on tape 1, it increments the counter on
the 2nd tape and 3rd tape representing how many steps of M' has been simulated.

Clearly, N will simulate M. After T(n) steps if M is in final state, N will say “Yes” otherwise it will
say “No”.

N is oblivious because head movements of N (from location 1 to i and back to 1) are not dependent
on actual input (In this implementation, they depend only on i(step number) not even on the input
length).

Simulating step i of M takes O(i) time (moves from location 1 to i and back) + O(1) increment
counter on 2nd and 3rd tape so, total time to simulate T(n) steps is O(T(n)2).

The 3 tape machine can be implemented by a single tape in O((k * T(n))2) (which is same as
O(T(n)2) since k is constant) if one appends the 2nd and 3rd tape are appended after the 1st tape.
Each tape contains only O(T(n)) symbols since :
Tape 1 : Different cells M can visit during its run = T(n)
Tape 2 : Since M runs for T(n) steps hence counter needs to be incremented upto T(n). I denote the

counter in unary notation, hence max cells required = T(n)
Tape 3: Same as tape 2

We also need some extra space to store the state of machine after step i (same as step of M after ith
step) = log(|Q|) = O(1) cells where Q = Set of states
We also implement the step i of M while simulating it hence we need to store δ on the tape in the
form of || (q, a) | (p,b) | R|......|| a state can be encoded in log(|Q|) bits , a tape symbol in log(|T|) bits
(T: Set of tape symbols) and Right/Left in 1 bit.

In short these information can be stored in const space (say between tape 1 and tape 2) but it won't
affect asymptodic time of simulation since now O((T(n) + b)2) is same as O(T(n)2) if b is constant.

Thus we have shown that an oblivious TM can decide L in O(T(n)2) if it can be decided by a normal
(old) TM in T(n) time where T(n) is some time-constructible function

− Shashank Rai (11010162)
 Vishal Anand(11010170)
Vishawadeep Mattu(11010171)

