Claim : We have already proved in earlier course that having more tapes does not increase the power of a Turing Machine, i.e. A k-tape Turing Machine may be simulated by a one-tape Turing Machine with some extra polynomial time.

Given that L can be completed in time $T(n)$ where $n=|x|$.

Let M be a machine running in time $T(n)$ on all inputs of size n such that $L=L(n)$; i.e. whenever input $x \in L$, M says yes and whenever input $x!\in L$, M says no.
(Assumption : M is a sigle tape Turing Machine since multiple tapes don't give extra power).
This existence of M is guranteed because it is given that L can be computed in time $T(n)$ where $n=$ $|x|$ and $T(n)$ is a time-constructible function.

So, we have to come up with with an oblivious Turing Machine N such that $\mathrm{L}(\mathrm{M})=\mathrm{L}(\mathrm{N})$ and N runs in $\mathrm{O}\left(\mathrm{T}(\mathrm{n})^{2}\right)$.

The machine N will have 3 tapes; one to simulate tape of M with an additional marker on the tape for the location of the simulated head of M, one counter for how many steps of M have been simulated, and one additional counter. For simulating step i of computation of M, N makes two passes over M tape from location 1 to location i and back. (The additional counter is used to know when to turn around). Since head of M moves only one cell per step (and that too right/left since M is our old (normal)Turing Machine). Hence, upto step i, head of M would have visited atmost $1^{\text {st }} \mathrm{i}$ cells; hence it will point to the $\mathrm{j}^{\text {th }}$ cell, $1<=\mathrm{j}<=\mathrm{i}$. Hence, when N makes two pass over the $1^{\text {st }}$ tape (tape of M), it must observer the head of M twice - once while going forward upto location i and again while coming back to 1.

While moving forward, N sees the current tape symbol under head of M and on the way back, it implements the step of M, i.e. over-write the current tape symbol with the new symbol and move the marker (denoting location of simulated head of M) right or left on the 1 st tape as δ demands.

When N has finished the $\mathrm{i}^{\text {th }}$ step, i.e. Came back to location 1 on tape 1 , it increments the counter on the $2^{\text {nd }}$ tape and $3^{\text {rd }}$ tape representing how many steps of M^{\prime} has been simulated.

Clearly, N will simulate M. After $T(n)$ steps if M is in final state, N will say "Yes" otherwise it will say "No".

N is oblivious because head movements of N (from location 1 to i and back to 1) are not dependent on actual input (In this implementation, they depend only on i(step number) not even on the input length).

Simulating step i of M takes $\mathrm{O}(\mathrm{i})$ time (moves from location 1 to i and back) $+\mathrm{O}(1)$ increment counter on $2^{\text {nd }}$ and $3^{\text {rd }}$ tape so, total time to simulate $T(n)$ steps is $O\left(T(n)^{2}\right)$.

The 3 tape machine can be implemented by a single tape in $\left.\mathrm{O}\left(\mathrm{k}^{*} \mathrm{~T}(\mathrm{n})\right)^{2}\right)$ (which is same as $\mathrm{O}\left(\mathrm{T}(\mathrm{n})^{2}\right)$ since k is constant) if one appends the $2^{\text {nd }}$ and $3^{\text {rd }}$ tape are appended after the $1^{\text {st }}$ tape. Each tape contains only $\mathrm{O}(\mathrm{T}(\mathrm{n}))$ symbols since :
Tape 1 : Different cells M can visit during its run $=T(n)$
Tape 2 : Since M runs for $T(n)$ steps hence counter needs to be incremented upto $T(n)$. I denote the counter in unary notation, hence max cells required $=T(n)$
Tape 3: Same as tape 2

We also need some extra space to store the state of machine after step i (same as step of M after ith step $)=\log (|\mathrm{Q}|)=\mathrm{O}(1)$ cells where $\mathrm{Q}=$ Set of states
We also implement the step i of M while simulating it hence we need to store δ on the tape in the form of $\|(\mathrm{q}, \mathrm{a})|(\mathrm{p}, \mathrm{b})| \mathrm{R}|. \ldots . .$.$| a state can be encoded in \log (|\mathrm{Q}|)$ bits , a tape symbol in $\log (|\mathrm{T}|)$ bits (T: Set of tape symbols) and Right/Left in 1 bit.

In short these information can be stored in const space (say between tape 1 and tape 2) but it won't affect asymptodic time of simulation since now $\mathrm{O}\left((\mathrm{T}(\mathrm{n})+\mathrm{b})^{2}\right)$ is same as $\mathrm{O}\left(\mathrm{T}(\mathrm{n})^{2}\right)$ if b is constant.

Thus we have shown that an oblivious TM can decide L in $\mathrm{O}\left(\mathrm{T}(\mathrm{n})^{2}\right)$ if it can be decided by a normal (old) TM in $\mathrm{T}(\mathrm{n})$ time where $\mathrm{T}(\mathrm{n})$ is some time-constructible function

