
Claim : We have already proved in earlier course that having more tapes does not increase the 
power of a Turing Machine, i.e. A k-tape Turing Machine may be simulated by a one-tape Turing 
Machine with some extra polynomial time.

Given that L can be completed in time T(n) where n = |x|.

Let M be a machine running in time T(n) on all inputs of size n such that L = L(n); i.e. whenever 
input x є L, M says yes and whenever input  x !є L, M says no.
(Assumption : M is a sigle tape Turing Machine since multiple tapes don't give extra power).
This existence of M is guranteed because it is given that L can be computed in time T(n) where n =  
|x| and T(n) is a time-constructible function.

So, we have to come up with with an oblivious Turing Machine N such that L(M)=L(N) and N runs 
in O(T(n)2).

The machine N will have 3 tapes; one to simulate tape of M with an additional marker on the tape 
for the location of the simulated head of M, one counter for how many steps of M have been 
simulated, and one additional counter. For simulating step i of computation of M, N makes two 
passes over M tape from location 1 to location i and back. (The additional counter is used to know 
when to turn around). Since head of M moves only one cell per step (and that too right/left since M 
is our old (normal)Turing Machine ). Hence, upto step i, head  of M would have visited atmost 1st i 
cells; hence it will point to the jth cell, 1<=j<=i. Hence, when N makes two pass over the 1st tape 
(tape of M), it must observer the head of M twice – once while going forward upto location i and 
again while coming back to 1.

While moving forward, N sees the current tape symbol under head of M and on the way back, it 
implements the step of M, i.e. over-write the current tape symbol with the new symbol and move 
the marker (denoting location of simulated head of M) right or left on the 1st tape as δ demands.

When N has finished the ith step, i.e. Came back to location 1 on tape 1, it increments the counter on 
the 2nd tape and 3rd tape representing how many steps of M' has been simulated.

Clearly, N will simulate M. After T(n) steps if M is in final state, N will say “Yes” otherwise it will 
say “No”.

N is oblivious because head movements of N (from location 1 to i and back to 1) are not dependent 
on actual input (In this implementation, they depend only on i(step number) not even on the input 
length).

Simulating step i of M takes O(i) time (moves from location 1 to i and back) + O(1) increment 
counter on 2nd and 3rd tape so, total time to simulate T(n) steps is O(T(n)2).

The 3 tape machine can be implemented by a single tape in O( (k * T(n) )2 ) (which is same as 
O(T(n)2) since k is constant ) if one appends the 2nd  and 3rd tape are appended after the 1st tape. 
Each tape contains only O(T(n)) symbols since :
Tape 1 : Different cells M can visit during its run = T(n)
Tape 2 : Since M runs for T(n) steps hence counter needs to be incremented upto T(n). I denote the 

counter in unary notation, hence max cells required =  T(n)
Tape 3: Same as tape 2



We also need some extra space to store the state of machine after step i (same as step of M after ith 
step) = log(|Q|) = O(1) cells  where Q = Set of states
We also implement the step i of M while simulating it hence we need to store  δ on the tape in the 
form of  || (q, a) | (p,b) | R|......|| a state can be encoded in log(|Q|) bits , a tape symbol in log(|T|) bits 
(T: Set of tape symbols) and Right/Left in 1 bit.

In short these information can be stored in const space (say between tape 1 and tape 2) but it won't 
affect asymptodic time of simulation since now O( (T(n) + b)2) is same as O(T(n)2) if b is constant.

Thus we have shown that an oblivious TM can decide L in O(T(n)2) if it can be decided by a normal 
(old) TM in T(n) time where T(n) is some time-constructible function
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