Nishant Yadav 11010147
Rohan Kumar Kwatra 11010158
Rohit Kamra 11010159

Problem: In the MAX CUT problem, we are given an undirected graph G and an integer K and have to decide whether there is a subset of vertices S such that there are at least K edges that have one endpoint in S and one endpoint in V-S where V is the set of vertices of graph G. Prove that this problem is NP-complete.

Solution:

Intuition:- We will reduce INDSET problem to the given MAX CUT problem.

Proof:- Reduction from INDSET to MAX CUT is as follows:
$\mathrm{V}=\{\mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vn}\}$ (set of vertices for INDSET)
maps to

Each edge e = uv maps to a "gadget" that looks like

The MAX CUT possible for each gadget in different cases are as follows:

If u and v are both on the same side of the cut as $x, p u t[e, u]$ and $[e, v]$ on the opposite side (4 edges cross the cut). If only u is with $x, p u t[e, u]$ on the opposite side (same with only v , in this case also 4 edges cross the cut). If neither u nor v is with x, at most 3 edges will cross the cut.

Where x is a new vertex in the modified graph and also $[\mathrm{e}, \mathrm{u}]$ and $[\mathrm{e}, \mathrm{v}]$ are also new vertices for each edge in the original graph G.

So, the transformations are as follows:
Let the instance of INDSET be described by $G=(V, E)$ and k. Then the MAX-CUT instance is $G^{\prime}=\left(V^{\prime}, E\right)$ and k^{\prime}, where
$V^{\prime}=V U\{x\} \cup V^{\prime \prime}$
$V^{\prime \prime}=\{[\mathrm{e}, \mathrm{u}],[\mathrm{e}, \mathrm{v}] \mid \mathrm{e}=\mathrm{uv} \epsilon \mathrm{E}\}$
$E^{\prime}=\{x v \mid v \quad V\} \cup E^{\prime \prime}$
$E^{\prime \prime}=\{x[e, u], x[e, v],[e, u][e, v],[e, u] u,[e, v] v \mid e=u v \epsilon E\}$
$\mathrm{K}^{\prime}=\mathrm{k}+\mathrm{c}$. $|\mathrm{E}| \quad$ where $\mathrm{c}=4$
V" is the set of extra gadget vertices; E" the gadget edges.
Gadget property (for a gadget based on $e=u v$): If at least one of u or v is on the same side of the cut as x, the gadget vertices can be assigned so that $c(=4)$ gadget edges (but no more) cross the cut. Otherwise at most $c-1$ gadget edges cross the cut.

Proof that INDSET implies MAX CUT:

Let S be a INDSET with $|S| \geq K$ in graph G. Now, in the graph G' take all the vertices of set S on one side of the cut and x on the opposite side of the cut so we have k edges crossing the cut till now. We also have $|\mathrm{E}|$ gadgets in G^{\prime} and due to the property of INDSET if uv ϵ E then both of them together cannot belong to S at most one can belong to S. So, two cases are possible: Case 1: $\quad u, v$ both don't belong to S then we can assign both of them on the side of x and can thus generate a MAX CUT of 4 from the gadget.
Case 2: \quad One belong to S either u or v then as said above that one vertex will belong to opposite side of x and in this case also we can optimally manage our gadget to generate a MAX CUT of 4 .

So, each gadget can generate 4 cross edges and we already have K cross edges and also there are $|\mathrm{E}|$ number of gadgets according to our construction.

Hence, $\mathrm{K}^{\prime}=\mathrm{K}+4$. $|\mathrm{E}|$
Therefore, INDSET implies MAX CUT

Proof that MAX CUT implies INDSET:

- Let ($S^{\prime}, V^{\prime}-S^{\prime}$) be the cut that satisfies the MAX-CUT instance and let E_{c} be the set of edges crossing the cut. We know that $\left|\mathrm{E}_{\mathrm{c}}\right| \geq \mathrm{K}^{\prime}=\mathrm{K}+$ 4.|E|.
- Each edge gadget has at most $c=4$ edges in E_{c} implies at least k edges of E_{c} are not gadget edges.
- Non-gadget edges are of the form $x v$ for some $v \in V$. Let S_{c} be $\{v \epsilon V \mid$ $\left.\mathrm{xv} \epsilon \mathrm{E}_{\mathrm{c}}\right\}$ and let $\left|\mathrm{S}_{\mathrm{c}}\right|=\mathrm{K}+\mathrm{l}$.
- There are \leq l edges of G whose gadgets have fewer than 4 cut edges. Call these edges E_{v} (for violations).
- For each e $\epsilon \mathrm{E}_{\mathrm{v}}$ choose one endpoint and remove it from S_{c} - call the remaining vertices S.
- S is an independent set - no edge has more than one endpoint in S and $|S| \geq K-\left|S_{c}\right| \geq K+l$ and ≤ 1 vertices were removed to form S - so S is the is an INDSET with $|S| \geq K$.

Therefore, MAX CUT implies INDSET

Hence, Proved

