Assignment 1

1. Let $\Sigma=\{0,1\}$. For every word $w \in \Sigma^{*}$, let $N_{0}(w)$ and $N_{1}(w)$ denote the count of 0 's and 1's, respectively, in w. Let L be the language

$$
L=\left\{w \in \Sigma^{*} \mid N_{0}(w)>N_{1}(w)+2, \text { or } N_{1}(w)>N_{0}(w)+2\right\} .
$$

Prove or disprove whether L is regular.
2. Given languages L_{1}, L_{2} and L_{3}, each with alphabet Σ, define $L_{1} / L_{2} / L_{3}$ as

$$
L_{1} / L_{2} / L_{3}=\left\{w \in \Sigma^{*} \mid \exists u \in L_{2} \text { and } \exists v \in L_{3}, \text { such that } w u v \in L_{1}\right\}
$$

Prove that if L_{1} is context-free, and L_{2} and L_{3} are regular, then $L_{1} / L_{2} / L_{3}$ is context-free.
3. Let L_{2} be the language
$L=\{\langle M\rangle \mid$ there is at least one input string on which the Turing
machine M does not halt $\}$

Here, for a Turing machine M, the notation $\langle M\rangle$ denotes an encoding, over some alphabet, of the code of the Turing machine. Argue, with proof, to which of the following language classes does L belong -

- Regular
- Context-free but not Regular.
- Recursive but not Context-free
- Recursively enumerable but not recursive
- Not recursively enumerable

4. Prove that the relation \leq_{p} is transitive i.e., if languages L_{1}, L_{2}, and L_{3} are such that

$$
L_{1} \leq_{p} L_{2}, \text { and } L_{2} \leq L_{3}
$$

then

$$
L_{1} \leq_{p} L_{3} .
$$

5. Prove that every language in complexity class P is P -complete.
