
Abstract— Using a smartphone for Electroencephalogram 

(EEG) based research in the natural environment is a growing 

field of study. It brings attention to device portability, 

participant mobility, and system specifications. This article 

discusses the most recent developments in the field of EEG 

investigations using smartphones in natural environments, for 

healthy and clinical applications. We integrate the current 

trends in smartphone-based EEG studies, namely experimental 

paradigms, electrode/hardware compatibility, preprocessing 

frameworks, classifiers, and software apps. However, 

smartphone devices have inherent limitations like computational 

time and algorithm performance. Implementing artifact 

reduction and classification algorithms together in an android 

smartphone app is still speculative, and possible solutions are 

proposed. This review presents a holistic insight into our current 

understanding and challenges of the smartphone's role in 

natural environment electroencephalogram trials. 

Clinical Relevance— These portable smartphone-based EEG 

systems will be useful in monitoring individuals with psychiatric 

diseases, in addition to human brain applications in a natural 

setting. With ubiquitous availability of internet on smartphones, 

telemedicine is another possible application.  

I. INTRODUCTION 

Electroencephalogram or EEG is a high temporal resolution 
technique used to analyse neurocognitive processes[1]. 
Traditional EEG experiments included wired electrodes 
mounted on the participants' scalp, connected to a large 
amplifier with a computer monitor placed in front. This kind 
of experimental setup is only possible in a confined 
environment such as a laboratory. With time wired electrodes 
transformed into wireless, wearables, and beyond wearables 
while reduced amplifier size enabled better movement 
possibilities for the participants and allowed the flexible 
design of experiments[2]. EEG-based experimentation in a 
natural environment using a smartphone is currently an active 
area of research. However, such experiments attract several 
challenges from the perspectives of a smartphone BCI app 
developer. Smartphone-based mobile electroencephalography 
(mobile EEG) is a non-invasive, portable, and very affordable 
next-generation neuroscientific technique for studying real-
time brain activity. Reducing the number of electrodes as 
much as possible helps participants behave naturally. A 
massive amount of artifacts often come along with the EEG 
signals of interest. These include biological artefacts like 
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heartbeats, eye and muscle movements, and electrical artefacts 
such as wire, electrode movement and line noise[3]. 
Smartphone-based mobile EEG will enable the whole-body 
movement of participants, thereby giving rise to additional 
sources of artifacts. Implementing a suitable and robust pre-
processing algorithm will obtain our signal of interest. Then 
integrating with a classifier may provide information about 
aspects of brain function. Our review paper aims to focus on 
the smartphone for natural environment EEG experiments. To 
the best of our knowledge, no such review work has been 
reported as of now. Fig. 1 represents the graphical abstract of 
our review work. 

II. CURRENT TRENDS IN SMARTPHONE-BASED EEG

A. Paradigms/Experiments 

Designing an EEG-based BCI framework for a particular 

application requires selecting a protocol and paradigm for all 

the experimental stages. At the first stage, the subject executes 

an experimental task (e.g., visual, auditory, or imagery) upon 

which the brain activity is recorded through the EEG signals. 

Utilizing these EEG signals, a neural decoder is developed for 

the paradigm. The generated neural decoder is then used for 

BCI control during subsequent performing of the tasks. Abiri 

et al.[4] discusses the broad idea of paradigm types and their 

applications. The auditory oddball paradigm has been used 

recently in several EEG-based real-life environment 

studies[5], [6]. Apart from that, paradigms such as the 

competing-speaker paradigm[7], high-pressure learning 

task[8], walking task[9], mixed-bridges knowledge 

paradigm[10] are also used to study behavioural changes 

within EEG in naturalistic environmental studies. 

B. Smartphone Software Apps 

BCI aims at using brain waves to control various auxiliary 
devices. Stopcyznski et al. presented the Smartphone Brain 
Scanner as a portable smartphone-based 3D EEG imaging 
system[11] that captured the brain activity during a finger-
tapping experiment. NeuroPhone, a BCI application on 
iPhone[12], used P300 signals to dial numbers through the 
Dial Tim application. The first Nokia phone-based BCI[13] 
consisted of a visual stimulator, a wireless EEG headband, and 
a Bluetooth-enabled module. It used an external visual 
stimulator to realize the SSVEP (Steady State Visually Evoked 
Potential) paradigm by showing a virtual telephone keypad to 
dial a number. The integrated  signal  processing  on  a  single 
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Figure 1. Current Challenges in Natural Environ EEG Experiments 

device resulted in a fully smartphone-operated BCI in the 
following year[14]. Due to its single paradigm and proprietary 
communication protocol, its application remained limited. In 
the following years, Blum et al. put forward an EEG-BCI 
multi-app framework[15], which integrated data 
acquisition(smarting app), BCI processing on SCALA(Signal 
Processing and CLassification on Android), and stimulus 
presentation(Stimulus Android app) on an android 
smartphone. Although the framework was flexible in terms of 
paradigm and sensors used, it had one limitation of running 
multiple apps simultaneously at the same time for data 
acquisition. An app named TinnituSense is reported to 
integrate all the previous applications into a single one, thus 
resulting in the first smartphone app to record and visualize 
data in real-time[16], which permits real-world EEG 
experiments. To comprehend how sounds are perceived in 
real-world situations, Hölle et al. created two Android apps 
(AFEx and Record-a) that, when combined with a 
commercially available smarting app on an Android 
smartphone, enabled simultaneous acquisition of EEG data 
and audio features, such as sound onsets, average signal power 
(RMS), and power spectral density (PSD)[17]. A recent 
Android app called CameraEEG, created by Madhavan et al., 
allowed synchronised collection of EEG and video data[18] In 
contrast to natural recording applications that seem to utilise 
numerous apps or intricate arrangements to present/record 
them, the CameraEEG android app records 
electroencephalogram and external stimuli using a single 
android application with EEG device-specific libraries. 

C. Electrodes/Hardware compatible with Smartphone-

based EEG 

The first and foremost step for natural environment EEG 

experimentation is selecting appropriate hardware and 

electrodes for the study. The data acquisition system should 

be chosen based on the task, participants' nature, and the 

research question. The selection of the electrodes can be 

decided based on factors such as the type of the electrode 

(wired or wireless), cost, data quality, and the setup time to 

put the electrodes. Table I. represents some commercially 

available EEG amplifiers/electrodes which have been used in 

many studies. Apart from these, task design and data storage 

play a significant role in a smartphone-based EEG study. 

Scanlon et al. compared active and passive electrode 

configurations during standing and walking conditions[19]. 

Their main takeaway was that regardless of whether the 

electrode type is active or passive, the signal quality for both 

experiments remained the same. Hence use of passive 

electrodes would provide the participant a hassle-free 

investigation with much freedom of movement for outdoor 

experiments. Bleichner et al. developed cEEGrid electrodes 

to capture EEG signals around the ear used for auditory 

attention studies[2]. These were lightweight, comfortable to 

wear anywhere, easy to set up, and concealable. Hölle et al.[5] 

also used cEEGrid electrodes along with smarting and 

presentation apps to study auditory perception in an everyday 

context. With the development of mobile EEG hardware, 

Bleichner and Emkes[20] developed a nEEGlace, a modified 

version of the Smarting amplifier for beyond-the-lab trials. 

They tested it with the previously developed smarting and 

presentation app. Further, Hölle et al. also used the smarting 

app and cEEGrid electrodes to study auditory perception in 

daily life situations[5]. Lin et al.[21] developed a  cost-

efficient custom-made electrode holder assembly with 

replaceable montage using a 3D printer tested using dry 

electrodes. When comparing ear-EEG with scalp-EEG data 

for auditory attention tasks, Meiser et al.)[22] came to the 

conclusion that ear-EEG captured equivalent signal quality 

with strong event-related potentials (ERPs). Aside from the 

LiveAmp and SmartingMobi amplifiers utilised in the 

preceding investigations, Smarting Pro and Smarting Pro X 

are the most recent additions to the mobileEEG amplifiers that 

provide high density EEG recordings. Smarting Pro was 

reportedly used  recently  in  a  spatial  navigation  study[23]. 
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TABLE I. COMMERCIALLY AVAILABLE WIRELESS EEG HARDWARE/ELECTRODES  

Company Product Name Channels Bluetooth 

enabled? 

Battery Life (if 

applicable) 

Compatible 

with 

Smartphones? 

Smartphone 

Compatible App 

Brain Products LiveAmp 8, 16, 24, 

32 

Yes >3 hrs wireless, >4.5 

hrs on memory card 

No - 

Emotiv 
EPOC X 14 Yes Upto 9 hrs No  

EMOTIV App EPOC+ 14 Yes Upto 6 hrs Yes 

INSIGHT 5 Yes Upto 4 hrs Yes 

NeuroSky MindWave Mobile 2 1 Yes 8 hrs Yes Mindwave Mobile 2 App 

Advanced Brain 

Monitoring 

B-Alert X Series Upto 20 Yes Upto 8 hrs No - 

Stat X Series Upto 20 Yes Upto 8 hrs No - 

g.tec 

g.Nautilus PRO 8, 16, 32 Yes Upto 10 hrs  
 

 

Yes 

 
 

 

- 

g.Nautilus 
RESEARCH 

8, 16, 32, 
64 

Yes Upto 10 hrs 

g.Nautilus Multi-

Purpose 

8, 16, 32, 

64 

Yes 6 hrs (64 ch), 10 hrs 

(8, 16, 32 ch) 

g.Nautilus PRO 
FLEXIBLE 

8, 16, 32 Yes >6hrs (64 ch), >10 
hrs (8, 16, 32 ch) 

Neuroelectrics Enobio® 8, 20, 32 Yes Upto 20 hrs No - 

InteraXon Muse S 1 Yes Upto 10 hrs Yes Muse App 

Muse 2 1 Yes Upto 5 hrs 

Cognionics Quick-20m 20 Yes 6 hrs  
 

No 

 
 

- 
Quick-20rv2 21 Yes 8 hrs 

Quick-32r 32 Yes 8 hrs wireless 

Mobile Series 72, 128 Yes 4 hrs wireless, 10 hrs 

with micro-SD card 

mBrainTrain SMARTING mobi 24, 20 Yes Upto 5 hrs  

 

Yes 

SMARTING App, 

CameraEEG App 

Smarting PRO 32 Yes >10 hrs SMARTING App 

Smarting PRO X 64 Yes >10 hrs SMARTING App 

SMARTING SLEEP 24 Yes Upto 15 hrs SMARTING App 

Smartfones 11 Yes - SMARTING App 

Wearable Sensing DSI 24 24 Yes Continuous (hot-

swappable batteries) 

 

 

 
No 

 

 

 
- 

DSI 7 7 Yes >12 hrs 

DSI 7 Flex 7  Yes >12 hrs 

VR 300 7 Yes >12 hrs 

NeuSenW 8-64 Yes 4 hrs 

NeuroCube 8 Yes Upto 2 hrs 

TMSi cEEGrid 10 Yes  Upto 5 hrs Yes SMARTING App, 

CameraEEG App 

imec EEG Headset 8 Yes 8 hrs No - 

2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)

372

A
uthorized licensed use lim

ited to: IN
D

IA
N

 IN
S

T
IT

U
T

E
 O

F
 T

E
C

H
N

O
LO

G
Y

 G
U

W
A

H
A

T
I. D

ow
nloaded on A

pril 28,2023 at 10:18:47 U
T

C
 from

 IE
E

E
 X

plore.  R
estrictions apply. 



  

Electrodes are the primary part of a data acquisition system; 

selecting the appropriate electrodes matters significantly. For 

smartphone-based EEG experiments, selecting the optimal 

electrode setup for data acquisition is crucial, depending on 

the type of application and compatibility with smartphone.  

D. Pre-processing/Feature Extraction implemented on 

Smartphone 

Natural environment experimentation attracts multiple 

biological and non-biological artefacts that can often mislead 

the BCI objective. Selecting a suitable smartphone pre-

processing algorithm is another challenging task.  

Riemannian Artifact Subspace Reconstruction (rASR) 

developed by Blum et al.[24] was compared with original 

ASR(Artifact Subspace Reconstruction) for reducing eye and 

muscle artifacts, which proved to perform better than ASR 

(Artifact Subspace Reconstruction) in the online and offline 

analysis[25]. They used MATLAB and EEGLAB for the 

comparison and analysis. However, ASR is present on the 

Smarting application. Jacobsen et al.[26] put forward gait-

related artifact footprints that can suppress gait-related 

artifacts while keeping the neurological signals of interest. 

Bleichner et al.[27] put forward an ICA-based automatized 

artifact detection technique to study the artefacts' nature and 

distribution in cEEGrid data. However, its implementation in 

a smartphone app is yet to be realized. Mehdi et al. put 

forward a pre-processing pipeline for the TinnituSense 

app[28]. The pipeline offered a 3rd order Butterworth filter 

for high pass filtering, a Bandstop filter for line noise removal, 

and PREP’s re-referencing algorithm[29] to detect bad 

channels. AFEx(Audio Feature Extraction app) was 

developed for calculating acoustic features such as audio 

capture, PSD, RMS, acoustic onset detection, etc., to study 

real-world sound perception[17]. The app ran together with 

the Record-a app (for LSL data streaming) and smarting app. 

The feasible option available at this time is to select a pre-

processing algorithm that would be suitable with the 

hardware, power, and battery of a smartphone. 

E. Classifiers on Smartphone 

Blum et al.[15] presented a simple classifier in the 

SCALA app named template matching procedure inspired 

from Choi et al.[30] and Bleichner et al.[2]. The classifier was 

able to classify between the left attended, and right attended 

trials. Classification algorithms such as Random Forest (RF) 

have been implemented in a voice-activity detection app for 

Android and iOS for real-time on-device noise 

classification[31], which turned out to give better results than 

Gaussian Mixture Model(GMM). Later on, Sehgal and 

Kehtarnavaz[32] compared the previous work with a deep 

learning algorithm called CNN(Convolutional Neural 

Network), which intended to act as a switch for noise 

reduction in signal processing pipelines of hearing devices. 

Majumder et al.[33] also used deep neural networks for real-

time detection of diabetic retinopathy. Long Short-Term 

Memory (LSTM), an artificial recurrent neural network, has 

also been reported to better classify different patterns in the 

same cognitive task[34]. Due to its slower computational time 

and requirement of high-end GPUs, its implementation on 

smartphone apps for EEG classification is possibly 

questionable. Pre-trained models such as BERT(Bidirectional 

Encoder Representations from Transformers) have shown 

promising results for EEG-based NLP(Natural Language 

Processing) tasks[35]. However, these kinds of architectures 

tend to be very complex and are difficult to implement on a 

smartphone. A compact version of BERT designed explicitly 

for mobile devices, called MobileBERT, has shown to be task 

agnostic and showed better results when compared to the 

BERTBASE algorithm for NLP tasks[36]. Hence, we suggest 

that these classification algorithms may be implemented and 

could give good results for a smartphone-based EEG system. 

III. CHALLENGES AND FUTURE DIRECTIONS 

A smartphone-based mobile EEG system using an android 
app will open gateways to various challenges such as a motion-
tolerant system, i.e., the system should be motion tolerable so 
that EEG recordings can be conducted anywhere (i.e., 
outdoors or indoors)[2]. The app should be able to detect and 
classify external artifacts from the acquired signals. Low 
power artefact removal algorithms and efficient classifiers 
integrating into smartphone apps are currently an active area 
of research; however, more work is still required[37]. Progress 
in these areas will help realize a reliable app to acquire brain 
signals for applications like mindfulness training[38]. Also, 
lightweight and wireless acquisition devices will enable 
hassle-free experiments in any environment[19]. The entire 
system should be discreet and comfortable so that participants 
can perform their daily tasks without getting noticed by 
others[2]. Furthermore, EEG recordings in a natural 
environment open scope to measure brain activity in a 
comfortable and less conscious environment. It gives us a way 
to investigate the impact of the environment on human 
behaviour[39]. Additionally, such an EEG monitoring system 
will open gateways to monitor infants showing neurological 
abnormalities born to cocaine-addicted mothers [40], and in 
Alzheimer's patients[41]. Extreme smartphone use has been 
linked to decreased workplace productivity[42]. West et al. 
revealed smartphone overuse leading to depression and 
anxious symptoms using a non-portable EEG device[43]. 
Electrodes with Smarting Pro coupled to a laptop seem to have 
been utilised for real-time studies to comprehend navigational 
ambiguity[23]. The effect of various musical genres and the 
connectivity of the human brain have lately been studied using 
EEG[44]. From a mobility and user-friendliness perspective, a 
smartphone-based EEG system will be more beneficial in 
carrying out such investigations. Depending on the cognitive 
problem on hand, additional smartphone sensors (such as 
accelerometer, gyroscope, and GPS) may be combined with 
the EEG to enable multimodal data analysis. Availability of 
internet on smartphones enables Telemedicine possibility. 
Building specific app for cognitive disorders like Parkinson’s, 
or Epilepsy in consultation with clinicians is a future 
opportunity.   

Apart from these challenges, using a minimum number of 
electrodes based on Region of Interest (ROI) would provide 
less data, resulting in faster analysis. Also, incorporating prior 
knowledge and selecting channels that promote higher 
classification accuracy will provide less error rate for the test 
data set. Electrodes can be selected according to ease of use 
since the signal quality remains the same regardless of the 
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amplification system type (active or passive)[19]. Evaluating 
the pre-processing and classification algorithms using 
evaluating metrics would also contribute towards getting a 
better smartphone-based EEG app. Additionally, further 
research in the areas of LSL (Lab Streaming Layer) and its 
integration to smartphone apps with user-friendly graphical 
interfaces are areas for future work.  

IV. CONCLUSION 

EEG in a natural environment is currently an active area of 

research. Incorporating a mobile EEG recording system, a 

pre-processing algorithm, and a classifier will give us a better 

smartphone-based EEG system. Artefact reduction 

algorithms such as ASR or rASR seem to perform reasonably 

well. Their integration with an efficient classifier on a 

smartphone app is perhaps the next step forward. In this 

regard, CNN and MobileBERT on smartphones for natural 

language processing applications seem motivating. It is 

necessary to study them and work towards implementation on 

an app.  Given the limited processing capacity of 

smartphones, it is necessary for future studies to propose 

efficient ways for a commercially viable portable EEG 

system. We believe these are some immediate perspectives 

for a smartphone-based EEG system for natural environment 

applications.  
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