

8. S. K. Sahoo, N. Khatun, A. Gogoi, A. Deb and B.K. Patel,
 ‘Cu(II) catalysed chemoselective oxidative transformation of thiourea to
 thioamidoguanidine/2-aminobenzothiazole’,
 RSC Advances, 3, pp. 438-446, 2013

9. N. Khatun, L. Jamir, M. Ganesh and B.K. Patel,
 ‘A one-pot strategy for the synthesis of 2-aminobenzothiazole in water by copper
 catalysis’,
 RSC Advances 2, pp. 11557-11565, 2012

10. S. Guin, S.K. Rout, A. Banerjee, S. Nandi and B. K. Patel,
 ‘Four tandem C-H activations: A sequential C-C and C-O bond making via a Pd-
 catalyzed cross dehydrogenative coupling (CDC) approach’,

11. S. K. Sahoo, N. Khatun, H. S. Jena and B. K. Patel,
 ‘Stable Cu(I) complexes with thioamidoguanidine possessing halide-bridge structure’,

 ‘Desulfurization strategy in the construction of azoles possessing additional nitrogen,
 oxygen or sulfur using a copper(I) catalyst’,

 ‘An "on-water" exploration of CuO nanoparticle catalysed synthesis of 2-
 aminobenzothiazoles’,
 Green Chemistry, 14, pp. 2491-2498, 2012

14. S. K. Rout, S. Guin, K. K. Ghara, A. Banerjee and B.K. Patel,
 ‘Copper catalyzed oxidative esterification of aldehydes with alkylbenzenes via cross
 dehydrogenative coupling’,
15. S. Guin, S. K. Rout, N. Khatun, T. Ghosh and B. K. Patel,
‘Tandem synthesis of [1,2,4]-triazoles mediated by iodine - A regioselective approach’,

‘A one pot synthesis of [1,3,4]-oxadiazoles mediated by molecular iodine’,
RSC Advances 2, pp. 3180-3183, 2012

17. S. K. Sahoo, S. Chakraborty and B. K. Patel,
‘A one-pot conversion of di-substituted thiourea to O-organyl arylthiocarbamate using FeCl\textsubscript{3}’,

‘Environmentally benign one-pot synthesis of cyanamides from dithiocarbamates using I\textsubscript{2} and H\textsubscript{2}O\textsubscript{2}’
Synthetic Communications, 42, pp. 951-958, 2012

19. R. Sarma and S. Paul,
‘Crucial importance of water structure modification on trimethylamine-N-oxide counteracting effect of high pressure’,

20. R. Sarma and S. Paul,
‘Effect of pressure on the solution structure and hydrogen bond properties of aqueous N-methylacetamide’,
Chemical Physics, 407, pp. 115-123, 2012

21. R. Sarma and S. Paul,
‘Effect of trimethylamine-N-oxide on pressure-induced dissolution of hydrophobic solute’,

22. R. Sarma and S. Paul,
‘The effect of aqueous solutions of trimethylamine-N-oxide on pressure induced modifications of hydrophobic interactions’,

23. S. Paul and G. N. Patey,
‘Influence of urea on tert-butyl alcohol aggregation in aqueous solutions’,

24. D. J. Kalita and A. K. Gupta,
‘Application of smooth exterior scaling method to calculate the high harmonic generation spectra’,

25. D. J. Kalita and A. K. Gupta,
‘Application of parametric equations of motion to study the resonance coalescence in H$_2^+$’,

26. N. Moiseyev and A. K. Gupta,
‘Distinguishing between aligned and randomly oriented polar molecules by using a combination of strong laser field with a weak static field’,
Molecular Physics, 110, pp. 1721-1728, 2012

27. R. Mishra, D. J. Kalita and A. K. Gupta,
‘Breakdown of Dipole Approximation and its effect on High Harmonic Generation’,

28. S. Bhandari, R. Begum and A. Chattopadhyay,
‘Surface ion engineering for tuning dual emission of Zn$_x$Cd$_{1-x}$S nanocrystals’,
RSC Advances, 3, pp. 2885-2888, 2013

29. S. Das and A. Chattopadhyay,
‘Generation of inorganic-organic core-shell crystalline nanoparticles of silver and p-hydroxyacetanilide’,
RSC Advances, 2, pp. 10245-10250, 2012
30. A. Jaiswal, S. S. Ghosh, and A. Chattopadhyay,
 ‘Quantum dot impregnated-chitosan film for heavy metal ion sensing and removal’,

31. S. Sharma, P. Sanpui, A. Chattopadhyay, and S. S. Ghosh,
 ‘Fabrication of antibacterial silver nanoparticle - Sodium alginate-chitosan composite
 films’,
 RSC Advances, 2, pp. 5837-5843, 2012

32. R. Khandelia, J. Deka, A. Paul, and A. Chattopadhyay,
 ‘Signatures of specificity of interactions of binary protein mixtures with citrate-stabilized
 gold nanoparticles’,
 RSC Advances, 2, pp. 5617-5628, 2012

33. R. Begum, S. Bhandari, and A. Chattopadhyay,
 ‘Surface ion engineering of Mn\(^{2+}\)-doped ZnS quantum dots using ion-exchange resins’,

34. J. Deka, A. Paul, and A. Chattopadhyay,
 ‘Modulating enzymatic activity in the presence of gold nanoparticles’,
 RSC Advances, 2, pp. 4736-4745, 2012

 ‘Presence of amorphous carbon nanoparticles in food caramels’,
 Scientific Reports, 2, pp. 383, 2012

36. S. K. Gogoi, A. Paul, and A. Chattopadhyay,
 ‘Galvanic reaction based generation of electronically transparent corrugated Ag-Au
 nanoparticle thin films’,
 RSC Advances, 2, pp. 3642-3646, 2012

37. K. Sahu, H. Wu, and M. A. Berg,
'Rate Dispersion in the Biexciton Decay of CdSe/ZnS Nanoparticles from Multiple Population-Period Transient Spectroscopy',

38. H. S. Jena and V. Manivannan,
‘Molecular structures of dinuclear zinc(II) complexes of chiral tridentate imine and amine ligands: Effect of ligand geometry on diastereoselectivity’,

39. H. S. Jena and V. Manivannan,
‘Diastereoselectivity in dinuclear complexes of chiral tridentate ligands’,

40. V. K. Fulwa, and V. Manivannan,
‘Synthesis of 3-substituted imidazo[1,5-a]pyridines having 1-(N-picolinamidin-2-yl) group’,

41. N. Mamidi and D. Manna,
‘Zn(OTf)₂-promoted chemoselective esterification of hydroxyl group bearing carboxylic acids’,

42. N. Mamidi, R. Borah, N. Sinha, C. Jana, and D. Manna,
‘Effects of ortho substituent groups of protocatechualdehyde derivatives on binding to the C1 domain of novel protein kinase C’,

43. S. Dasgupta, D. Manna, and G. Basu,
‘Structural and functional consequences of mutating a proteobacteria- specific surface residue in the catalytic domain of Escherichia coli GluRS’,

44. N. Mamidi, S. Gorai, J. Sahoo and D. Manna,
‘Alkyl cinnamates as regulator for the C1 domain of protein kinase C isoforms’,
45. N. Mamidi, S. Gorai, R. Mukherjee and D. Manna,
‘Development of diacyltetrol lipids as activators for the C1 domain of protein kinase C’,

46. A.K. Dwivedi, K.M. Prasad, V. Trivedi, and P.K. Iyer,
‘Interaction of heme proteins with anionic polyfluorene: Insights into physiological effects, folding events, and inhibition activity’,
_AC_S Applied Materials and Interfaces_, 4, pp. 6371-6377, 2012

47. G. Saikia, A.K. Dwivedi, and P.K. Iyer,
‘Development of solution, film and membrane based fluorescent sensor for the detection of fluoride anions from water’,
Analytical Methods, 4, pp. 3180-3186, 2012

‘Photoluminescence quenching of poly(3-hexylthiophene) by carbon nanotubes’,

49. P. Kumar, A. Kalita, and B. Mondal
‘Nitric oxide reactivity of Cu(II) complexes of tetra- and pentadentate ligands: structural influence in deciding the reduction pathway’,
Dalton Transactions, 42, pp. 5731-5739, 2013

50. R.K. Debnath, A. Kalita, P. Kumar, B. Mondal and J. N. Ganguli,
‘Formation of a Cu(II)-phenoxyl radical complex from a Cu(II)-phenolate complex: A new model for galactose oxidase’,
Polyhedron, 51, pp. 222-227, 2013

51. P. Kumar, A. Kalita, and B. Mondal,
‘Copper(ii) complexes as turn on fluorescent sensors for nitric oxide’,
Dalton Transactions, 41, pp. 10543-10548, 2012
52. M. Sarma, V. Kumar, A. Kalita, R.C. Deka, and B. Mondal,
‘Nitric oxide reactivity of copper(ii) complexes of bidentate amine ligands: Effect of
chelate ring size on the stability of a [CuII-NO] intermediate’,

53. P. Kumar, S. Gorai, M. Kumar Santra, B. Mondal, and D. Manna,
‘DNA binding, nuclease activity and cytotoxicity studies of Cu(ii) complexes of
tridentate ligands’,

54. A. Kalita, P. Kumar, and B. Mondal,
‘Reaction of a copper(ii)-nitrosyl complex with hydrogen peroxide: Putative formation of
a copper(i)-peroxynitrite intermediate’,
Chemical Communications, 48, pp. 4636-4638, 2012

55. B. K. Datta, C. Kar, A. Basu, and G. Das,
‘Selective fluorescence sensor for Al$^{3+}$ and Pb$^{2+}$ in physiological condition by a benzene
based tripodal receptor’,

56. R Chutia, S.K Dey, and G. Das,
‘Positional isomeric effect in nitrophenyl functionalized tripodal urea receptors toward
binding and encapsulation of anions’,
Crystal Growth and Design, 13, pp. 883-892, 2013

57. C. Kar, A. Ramesh, and G. Das,
‘NIR-and FRET-based sensing of Cu$^{2+}$ and S$^{2-}$ in physiological conditions and in live
cells’,

58. C. Kar, and G. Das,
A retrievable fluorescence "TURN ON" sensor for sulfide anions
59. J. Saikia, B. Saha, and G. Das,
‘Morphosynthesis of framboidal stable vaterite using a salicylic acid-aniline dye as an additive’,
RSC Advances, 2, pp. 10015-10019, 2012

60. J. Saikia, B. Saha, and G. Das,
‘Controlling the morphological evolution of ZnO NPs from single precursor source and its application for β-Lactoglobulin adsorption’,
Journal of Nanoparticle Research, 14, pp. 1226, 2012

61. A. Basu, and G. Das,
‘Encapsulation of divalent tetrahedral oxyanions of sulfur within the rigidified dimeric capsular assembly of a tripodal receptor: First crystallographic evidence of thiosulfate encapsulation within neutral receptor capsule’,

62. C. Kar, A. Basu, and G. Das,
‘Benzimidazole functionalized tripodal receptor for selective recognition of iodide’,

63. S. K. Dey, B. K Datta, and G. Das,
‘Binding discrepancy of fluoride in quaternary ammonium and alkali salts by a tris(amide) receptor in solid and solution states’,
CrystEngComm, 14, pp. 5305-5314, 2012

64. S. K. Dey, and G. Das,
‘Selective inclusion of PO$_4^{3-}$ within persistent dimeric capsules of a tris(thiourea) receptor and evidence of cation/solvent sealed unimolecular capsules’,

65. A. Gogoi, and G. Das,
‘Charge-assisted complexation of anions of different dimensionality by benzimidazole-based receptors bearing -OH functionality’,
Crystal Growth and Design, 12, pp. 4012-4021, 2012
66. A Basu, and G. Das,
‘Amidothiourea as a potential receptor for organic bases by resonance assisted low barrier hydrogen bond formation: Structure and Hirshfeld surface analysis’,
CrystEngComm, 14, pp. 3306-3314, 2012

67. M. N. Hoque, A. Basu, and G. Das,
‘Cyclic pentameric puckered hybrid chloride-water cluster \([\text{Cl}_3(\text{H}_2\text{O})_4]\) 3- in the hydrophobic architecture’,
Crystal Growth and Design, 12, pp. 2153-2157, 2012

68. C. Thommen, C. K. Jana, M. Neuburger, and K. Gademann,
‘Syntheses of Taiwaniaquinone F and Taiwaniaquinol A via an Unusual Remote C–H Functionalization’,

69. S. Ghorai and C. Mukherjee
‘Ortho-Substituent Induced Triradical-Containing Tetranuclear Vanadium(IV) Cluster Formation via Ligand C-N Bond Breaking and C-O Bond Making’,
Chemical Communications, pp. 10180-10182, 2012

70. S. S. Bag, S. Ghorai, S. Jana, and C Mukherjee,
"Solvatochromic fluorescent cyanophenoxazine: design, synthesis, photophysical properties and fluorescence light-up sensing of ct-DNA"
RSC Advances, 3, pp. 5374-5377, 2013

71. S. C. Pan
‘Organocatalytic C-H Activation Reactions’,

72. G. Mehta, S. Roy and S. C. Pan
73. S. S. Bag, S. Talukdar, K. Matsumoto, and R. Kundu,
‘Triazolyl donor/acceptor chromophore decorated unnatural nucleosides and oligonucleotides with duplex stability comparable to that of a natural adenine/thymine pair’,

74. S. S. Bag, M. K. Pradhan, R. Kundu, and S. Jana,
‘Highly solvatochromic fluorescent naphthalimides: Design, synthesis, photophysical properties and fluorescence switch-on sensing of ct-DNA’,

75. S. S. Bag, J. M. Heemstra, Y. Saito, and D. M. Chenoweth,
‘Expansion of the genetic alphabet: Unnatural nucleobases and their applications’,

76. S. S. Bag, R. Kundu, S. Talukdar,
‘Fluorometric sensing of Cu$^{2+}$ ion with smart fluorescence light-up probe, triazolyl pyrene (TNDMBPy)’,

77. S. Roy, S. S. Bag, and A. Basak,
‘Synthesis and reactivity of enediyne-nucleobase hybrids: Effect of intramolecular π-stacking’,

78. K. Thalluri, K. C. Nadimpally, A. Paul, and B. Mandal,
‘Waste reduction in amide synthesis by a continuous method based on recycling of the reaction mixture’,
RSC Advances, 2, pp. 6838-6845, 2012

‘Ethyl 2-(tert-Butoxycarbonyloxyimino)-2-cyanoacetate (Boc-Oxyma) as Coupling Reagent for Racemization-Free Esterification, Thioesterification, Amidation and Peptide Synthesis’,
RSC Advances, 2, pp. 12122-12128, 2012

81. Z. Khan and M. Qureshi, Tantalum doped BaZrO$_3$ for efficient photocatalytic hydrogen generation by water splitting.
Catalysis Communications, 28, pp. 82-85, 2012

82. Z. Khan, M. Khannam, N. Vinothkumar, M. De, and M. Qureshi, Hierarchical 3D NiO-CdS heteroarchitecture for efficient visible light photocatalytic hydrogen generation.

Nanoscale, 4, pp. 3543-3550, 2012

86. P. Saha, P. Ghosh, S. Sultana and A. K. Saikia,
‘Diastereoselective Synthesis of Substituted Dihydropyrans via Oxonium-Ene Cyclization Reaction’,
Organic and Biomolecular Chemistry, 10, pp. 8730-8738, 2012

87. K. Indukuri, S. Bondalapati, S. Sultana and A. K. Saikia,
‘Synthesis of 2,3-dihydro-4-pyranones from epoxides via intermolecular [4+2] cycloaddition reaction’,
RSC Advances, 2, pp. 9398-9402, 2012

88. P. Gogoi, T. Kotipalli, K. Indukuri, S. Bondalapati, P. Saha and A. K. Saikia,
‘Application of a novel 1,3-diol with a benzyl backbone as chiral ligand for asymmetric oxidation of sulfides to sulfoxides’,

89. A. T. Khan, M. Lal, and R. Sidick Basha,
‘Regio- and diastereoselective synthesis of trans -2,3-dihydrofuran derivatives in an aqueous medium’,

90. A. T. Khan, and S. Ali,
‘A useful and convenient synthetic protocol for iodination of organic substrates using a combination of vanadyl acetylacetonate, hydrogen peroxide, and sodium iodide’,

91. A. T. Khan, D.K. Das, K. Islam, and P. Das,
‘A simple and expedient synthesis of functionalized pyrido[2,3-c] coumarin derivatives using molecular iodine catalyzed three-component reaction’,

92. A. T. Khan, M. M. Khan, D. K. Das, and M. Lal,
‘Silica-supported perchloric acid (HClO₄-SiO₂): An efficient catalyst for one-pot synthesis of functionalized tetrahydropyrimidine derivatives’,
93. A. T. Khan, R. S. Basha, and M. Lal,
‘Bromodimethylsulfonium bromide (BDMS) catalyzed synthesis of 2,3-unsaturated-O-glycosides via Ferrier rearrangement’,
Arkivoc, 2013, pp. 201-212, 2012

94. A. T. Khan, A. Choudhury, S. Ali, and M. M. Khan,
‘Regioselective monobromination of (E)-1-(2′-hydroxy-4′, 6′-dimethoxyphenyl)-3-aryl-2-propen-1-ones using bromodimethylsulfonium bromide and synthesis of 8-bromoflavones and 7-bromoaurones’,

95. A. T. Khan, M. Lal, P. Ray Bagdi, R. Sidick Basha, P. Saravanan, and S. Patra,
‘Synthesis of tetra-substituted pyrroles, a potential phosphodiesterase 4B inhibitor, through nickel(II) chloride hexahydrate catalyzed one-pot four-component reaction’,

96. A. T. Khan, R. Sidick Basha, M. Lal, and M. H. Mir,
‘Formation of unexpected α-amino amidine through three-component 'UGI condensation reaction’,
RSC Advances, 2, pp. 5506-5509, 2012

97. A. T. Khan, A. Ghosh, and M. M. Khan,
‘One-pot four-component domino reaction for the synthesis of substituted dihydro-2-oxopyrrole catalyzed by molecular iodine’,

‘Synthesis of trisubstituted 1H-pyrazole-4-carbodithioate in a one-pot three-component condensation reaction catalyzed by ferric sulfate’

‘Vanadium(IV) acetylacetonate catalysed stereoselective syntheses of β-enaminoesters and β-enaminones’,

 ‘Synthesis of important β-functionalized 5-methyl-1H-pyrazol-3-ol derivatives in the presence of γ-alumina catalyst in aqueous medium’

101. L. N. Burgula, K. Radhakrishnan, L. M. Kundu,
 ‘Synthesis of modified uracil and cytosine nucleobases using a microwave-assisted method’,

102. N. Dash, A. Mishra, and G. Krishnamoorthy,
 ‘Alkyl chain dependent interactions of ligands with bovine serum albumin’,

103. A. Mishra, A. Thangamani, S. Chatterjee, F.A.S. Chipem, and G. Krishnamoorthy,
 ‘Photoisomerization of trans-2-[4′-(dimethylamino)styryl]benzothiazole’,

104. N. Dash, G. Krishnamoorthy,
 ‘Effect of temperature on the spectral characteristics of 2-(4′-N,N-dimethylaminophenyl)imidazo[4,5-b]pyridine’,

105. A. Mishra, and G. Krishnamoorthy,
 ‘Photophysical study of 2-(4′-N,N-dimethylaminophenyl)oxazolo[4,5-b] pyridine in different solvents and at various pH’,
 Photochemical and Photobiological Sciences, 11, PP. 1356-1367, 2012

106. F. A. S. Chipem, A. Mishra, and G. Krishnamoorthy,
 ‘The role of hydrogen bonding in excited state intramolecular charge transfer’,
 Physical Chemistry Chemical Physics, 14, pp. 8775-8790, 2012
107. H. Sahu, and A. N. Panda,
Computational study on the effect of substituents on the structural and electronic properties of thiophene-pyrrole-based π-conjugated oligomers
Macromolecules, 46, pp. 844-855, 2013

108. S. Bhattacharya, A. Kirwai, A. N. Panda, and H.-D. Meyer,
‘Full dimensional quantum scattering study of the H₂⁺ CN reaction’,
Journal of Chemical Sciences, 124, pp. 65-73, 2012

‘A state-to-state dynamical study of the Br + H₂ reaction: Comparison of quantum and classical trajectory results’,
Physical Chemistry Chemical Physics, 14, pp. 13067-13075, 2012

110. D. Koner, A. Vats, M. Vashishta, and A. N. Panda,
‘Ab initio electronic structure investigation of protonated mixed rare gas dimers [NeHHe]⁺, [ArHHe]⁺ and [ArHNe]⁺’,
Computational and Theoretical Chemistry, 1000, pp. 19-25, 2012

111. A. N. Panda, F. Plasser, A. J. A. Aquino, I. Burghardt, and H. Lischka,
‘Electronically excited states in poly(p-phenylenevinylene): Vertical excitations and torsional potentials from high-level Ab initio calculations’,

112. S. Bhowmick, Renjith B., M. K. Mishra, and M. Sarma,
‘Investigation of dissociative electron attachment to 2’- deoxycytidine-3’-monophosphate using DFT method and time dependent wave packet approach’,
Journal of Chemical Physics, 137, pp. 064310, 2012

113. B. K. Shandilya, M. Sarma, S. Adhikari, and M. K. Mishra,
‘Vibrational excitation resulting from electron capture in LUMO of F₂ and HCl - A treatment using the time-dependent wave packet approach’,
114. B. K. Shandilya, M. Sarma, S. Adhikari, and M. K. Mishra,
‘Time dependent wave packet treatment of $^2\Pi \text{N}_2^-$ and $^3\Sigma^-'\text{NO}$ shape resonances using
two-dimensional surfaces for electron-N_2 and NO interactions’,

115. D. Jiao, J. Geng, X. J. Loh, D. Das, T.-C. Lee, and O. A. Scherman,
‘Fluorescence sensing delivery peptide into living cell via supramolecular peptide-
ampiphile vesicles’,

116. A.S. Achalkumar, and C.V. Yelamaggad
‘Light emitting, star-shaped tris(N-salicylideneaniline) discotic liquid crystals bearing
trans-stilbene fluorophores: synthesis and characterization’,

Yelamaggad
‘Self-Assembly of Hekates - Tris(N-salicylideneaniline)s into Columnar Structures:
Synthesis and Characterization’,