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Fermion Mass Puzzle

Charged Fermion Mass Hierarchy
up-type quarks
m, ~ 6.5 x 107°
me ~ 3.3 x 1073
m; ~ 1

= Up
= charm

down-type quarks mp
5 = down
md Yy 1.5 X ].O_ .S[rang(
Me ~ 3 % 10—4 = botton
5 u electro
mi i 1.5 10T = MUuon
m lau
charged leptons
me ~ 3 x 107°
my, ~ 6 X 10-4 Neutrino masses not strongly hierarchical
m, ~ 1 x 1072 3 masses within an order of magnitude consistent!



Quark and Lepton Mixing Parameters

@ Quark Mixings @ Leptonic Mixings
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Cabibbo-Kobayashi-Maskawa (CKM) Matrix

@ [he unitary matrix V which appears in the charged current
interactions enters in a variety of processes. A lot of information
has been gained on the matrix elements of V. The general
matrix can be written as

Vud Vus Vub
V = Vcd' Vcs Vcb
Vie Vis Vi

@ V has a single un-removable phase for three families of quarks
and leptons. (The phases («, ) which appeared in the case of

Majorana neutrinos can be removed by right—handed quark field
redefinition.) The single un-removable phase in V allows for the

violation of CP symmetry in the quark sector. Unlike in the
leptonic sector, the quark mixing angles turn out to be small.



Wolfenstein form of CKM Matrix

@ This enables one to make a perturbative expansion of the mixing matrix a la
Wolfenstein . The small parameter is taken to be A = |V.| in terms of which one
has

1— 12— 1y A AN (p — im)
V = X 1— 122 — 10%(1+4A2) AN +0O(N).
AN(1—p—in) —AXN 4+ 1AM (1-2(p+in)) 1—IAN

@ Here the exact correspondence is given by

s2=A, sa=AN, spe " =AN(p—in).



Decays to measure CKM angles
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Figure: Processes determining |Vj;|.




Measuring CKM Angles

Matrix elements of V are determined usually via semileptonic decays of quarks. In Fig.,
we have displayed the dominant processes enabling determination of these elements,

@ (a) is the diagram for nuclear beta decay, from which |V,4| has been extracted

rather accurately :
| V| = 0.97377 £ 0.00027 .

@ (b) shows semileptonic K decay from which the Cabibbo angle | V.| can be
extracted. The decays K — mfr and K= — n%*v (£ = e, i) have been
averaged to obtain for the product |V,.|f, (0) = 0.21668 + 0.00045. Here . (0) is
the form factor associated with this semileptonic decay evaluated at g° = 0. Using
f.(0) = 0.961 = 0.008 (obtained from QCD calculations, which are in agreement
with lattice QCD evaluations), one obtains

V,| = 0.2257 + 0.0021 .
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Measuring CKM angles

o |V,4| is extracted from D — Kfv and D — wfv decays with
assistance from lattice QCD for the computation of the relevant
form factors.

@ V. Is determined from semileptonic D decays and from leptonic

D, decay (D" — p"v), combined with lattice calculation of the
decay form factor fp..

@ Both |V.4| and | V| have rather large errors currently:

V| = 0.23040.011,
V| = 0.957 £0.010.

® |V is determined from both inclusive and exclusive decays of
B hadrons into charm, yielding a value

V.| = (41.6 0.6) x 1073,



Measuring CKM angles

@ |V,| is determined from charmless B decays and gives

V5| = (4.3140.30) x 103,

@ Elements | V4| and |V;s| cannot be currently determined, for a
lack of top quark events, but can be inferred from B meson
mixings where these elements appear through the box diagram.
The result Is

|Vig| = (7.4 £0.8) x 1073,
| Vid|
| Vis|

= (0.208 = 0.008 .



CP Violation

@ Charge conjugation (C) takes a particle to its antiparticle, Parity
(spatial reflection) changes the helicity of the particle. Under CP,
e; will transform to e;. Both C and P are broken symmetries in
the SM, but the product CP is approximately conserved.
Violation of CP has been seen only in weak interactions.

@ The CKM mechanism predicts CP violation through a single
complex phase that appears in the CKM matrix. Thus in the
SM, various CP violating processes in K, B and other systems
get correlated. So far such correlations have been consistent with
CKM predictions, but more precise determinations in the B and
D systems at the LHC may open up new physics possibilities.



CP Violation

@ In the K° — KO system, CP violation has been observed both in
mixing and in direct decays. CP violation in mixing arises in the
SM via the W—-boson box diagram.

@ The CP asymmetry in mixing is parametrized by €, which is a
measure of the mixing between the CP even and CP odd states
K?, = (K® & K°)/+/2. It has been measured to be

€| = (2.229 £+ 0.010) x 107>



CP Violation
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Figure: One loop penguin diagram that generates CP violation in direct
K — mm decay.
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CP Violation

@ [he measured value in in excellent agreement with expectations
from the SM, and enables us to determine the single phase of

the CKM matrix.

@ [he box diagram contribution to € is given by
GFfZmgm?y, -
P W By { 1S (x)Im[(Vis V)]

12/2m2Amy
+  1:S(x)Im|( Vs ;;')2] + 2Nt S (X, Xe ) Im [ Ves Vg Vis Vig] -

€

Here S(x) and S(x, y) are Inami-Lim functions with
Xet = mgjt/Mﬁ;, and the 7 factors are QCD correction factors
for the running of the effective AS = 2 Hamiltonian from My,

to the hadron mass scale.



Unitarity Triangle
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Figure: Unitarity triangle in the CKM model.




Unitarity Triangle

@ CP violation in B meson system is now well established. Several
CP violating quantities have been measured in By meson

system, all of which show consistency with the CKM mixing
matrix. Unitarity of the CKM matrix implies that

@ There are six vanishing combinations, which can be expressed as
triangles in the complex plane. The areas of all of these triangles
are the same. The most commonly used triangle arises from the
relation

Vud V:b + Vcﬂ V:b ‘|— Vrd VIE — D .

@ In the complex plane, the resulting triangle has sides of similar

length (of order A\*). This unitarity triangle relation is shown in
Fig.



Unitarity Triangle

@ The three interior angles (a, 3, ), also referred to as
(¢2, @1, ¢3), can be written in the CKM model as

a = ﬂl'g(_vrdb:m)f:arg(—l_ﬂfm),
VUﬂVub p+1m
—Vch;b) ( 1 )
= ar ~ ar - :
g g( Via Vi, \1-p—in

_ Vud :b .
= ar ~ Ar + 1 i
v g ( VooV, ) g(p+in)

One experimental test of the CKM mechanism is the
measurement of a + 3 + v = 180°.



Angles of the Triangle

@ The angle 5 can be measured with the least theoretical uncertainty from the decay
of By — J/1Ks. It is found to be

sin2d = 0.68 4+ 0.03 .

This value is in in good agreement with the CKM prediction.

@ The angle o is measured from decay modes where b — uud is dominant. Such
decays includ B — wm, B — pp and B — wp. The value of o extracted is

o = (88 g]ﬂ

@ The angle + does not depend on the top quark, and can in principle be measured

from tree—level decays of B meson. Strong interaction uncertainties are rather
large in decays such as B* — D"K*. The current value of the angle v is

y= (7B,



Global it to Flavor Data

Figure: Global fit to the mixing and CP violation data from the UTFit
collaboration (left panel) and the CKMFitter collaboration (right panel).



Best Fit CKM Parameters

@ The intersection of the various ellipses gives the best fit value for
the Wolfenstein parameters (A, A, p, 1), which are as follows :

A = 0.2272 + 0.0010, A = 0.818+39%7,
p =0.221*70%%, n = 0.340"70 .

Theories of flavor should provide an understanding of these
fundamental parameters.



Relating Quark Mixings with Mass Ratios

@ Can the quark mixing angle be computed in terms of the quark
mass ratios?

@ Clearly such attempts have to go beyond the SM. Here | give a
simple two—family example which assumes a flavor U(1)
symmetry that distinguishes the two families.

@ Consider the mass matrices for (u, c¢) and (d, s) quarks given by
[0 A, (0 Ag4
M= (g 5) 0 M= )

@ The crucial features of these matrices are (i) the zeros in the
(1,1) entries, and (ii) their hermiticity. Neither of these features
can be realized within the SM.




Prediction for Cabibbo Angle

M, = P,M,Pz,

@ The matrices 1'1:?” and rﬁd, which have all real entries, can be diagonalized readily,
yielding for the mixing angles ¢, and #4

m

tanf, = —=,
Me
My

tanf, = .
mli

@ This yields a prediction for the Cabibbo angle

- mgy o m
sin A | ~ —eV,[—
' ULE me

@ This formula works rather well, especially since even without the second term, the
Cabibbo angle is correctly reproduced. The phase v is a parameter, however, its
effect is rather restricted. For example, since /my/m, ~ 0.22 and

v My/me =~ 0.07, |sin fc| must lie between 0.15 and 0.29, independent of the
value of 0.




Realistic Model for Cabibbo Angle

@ Since SM interactions do not conserve Parity, it is useful to extend the
gauge sector to the left-right symmetric group
G = SU(3)¢c x SU(2), x SU(2)g x U(1)g_, wherein Parity invariance
can be imposed.

@ The (1,2) and (2,1) elements of M, 4 being complex conjugates of each
other will then result. The left—handed and the right—-handed quarks
transform as @;(3.2,1,1/3) + Qir(3,1,2,1/3) under G.

@ Under discrete parity operation @; <+ Qiz. This symmetry can be
consistently imposed, as W, ++ Wk in the gauge sector under Parity.
The leptons transform as ¥;(1,2,1,—1) + tr(1,1,2,—1) under the
gauge symmetry.

@ Note that t/g, which is a doublet of SU(2)g, contains the right—handed
neutrino, as the partner of eg. Thus there is a compelling reason for the
existence of vg, unlike in the SM, where it is optional.




Left-Right Symmetric Model

@ The Higgs field that couples to quarks should be ®(1, 2,2, 0),
and under Parity & — @7,

@ In matrix form Qi , Qir, P read as

(Y I _ R
QJL_ (df):_j Qfﬁ' (df)ﬁj ¢ (ﬁt}I Qf’g)

so that the Yukawa Lagrangian for quarks

Lyvuiawe = QPYQr + QY Qr + h.c.

Is gauge invariant. Here = ‘qu}*TQ Imposing Parity, we see
that the Yukawa matrices Y and Y must be hermitian, Y = Y1
and Y = YT,



Left-Right Symmetric Model (cont.)

@ The VEVs (¢?) and (¢9) can be complex in general, but this will
not affect the prediction for the Cabibbo angle, since that only

requires (M, q)12| = [(My,a)21]-

e Additional Higgs fields, eg., A;(1,3,1,2) + Ag(1,1,3,2), would
be required for breaking the left—right symmetric gauge group

down to the SM and for simultaneously generating large vg
Majorana masses. However, these fields do not enter into the

mass matrices of quarks.

@ To enforce zeros in the (1,1) entries of M, 4, we can employ the

following U(1) flavor symmetry:
QlL :21, Qlﬁ' : —2. QEL . 1: QEE‘ - —1. ¢’1 :2, q)g - 3.

@ Note that two Higgs bidoublet fields are needed. ®; generates the (2,2)
entries, while ®, generates the (1,2) and (2,1) entries. There is no (1,1)
entry generated, since there is no Higgs field with U(1) charge of +4.




Three Family Generalizations

@ |t can be generalized for the case of three families, a la Fritzsch.

@ The up and down quark mass matrices have hermitian nearest
neighbor interaction form:

0 A O
Ms=|A" 0 B
0 B* C

u,d

@ Such matrices have factorizable phases, i.e.,
M,q=P,aM, 4P 4 where M, 4 are the same, but without any
phases, and P, 4 are diagonal phase matrices.



Fritzsch Mass Matrix Predictions

@ One finds four relations between masses and mixings :

V| ~ E_E;@ my |
\,f' m. \e' m,

ms i Mg
Vol = [ o/ — e, [ e
Mp me
Ms My my Ms ; Mme
A R e R R BV Ly |
Mgy Mg Mg Ty
m . m
V| =~ —+er < e, [=])].
my Mg

Here the two phases 1) and ¢ are related to the phases in the diagonal
matrix P as ¢ = (o — ) and ¢ = 8.

|Vub| . [ My |th| -~ [ My
|Vr:b| me : |Vts| ms .

From V(cb) prediction, top mass predicted to be < 90 GeV!




Froggatt-Nielsen Mechanism for Mass Hierarchy

@ The hierarchy in the masses and mixings of quarks and leptons
can be understood by assuming a flavor U(1) symmetry under
which the fermions are distinguished.

@ In this approach developed by Froggatt and Nielsen, there is a
“flavon” field S, which is a scalar, usually a SM singlet field,
which acquires a VEV and breaks the U(1) symmetry.

@ This symmetry breaking is communicated to the fermions at
different orders in a small parameter e = (S) /M,. Here M, is
the scale of flavor dynamics, and usually is associated with some
heavy fermions which are integrated out.

@ The nice feature of this approach is that the mass and mixing
hierarchies will be explained as powers of the expansion
parameter € without assuming widely different Yukawa couplings.

@ The effective theory below M, is rather simple, while the full
theory will have many heavy fermions, called Froggatt—Nielsen

fields.




A Two-Family FN Model

@ Let me illustrate this idea with a two family example which is
realistic when applied to the second and third families of quarks.

@ Consider M, and M, for the (c, t) and (s, b) sectors given by

4 2 3 3
€ € € €
Here € ~ 0.2 is a flavor symmetry breaking parameter.

@ Every term has an order one coefficient which is not displayed.

@ We obtain the following relations for quark masses and |V |:

Mec ms
S~ S~ V| ~ €
My Mp



A Two-Family FN Model

@ First, let us look at the effective Yukawa couplings, which can be obtained from
the Lagrangian:

Loy = [QsusH, + QuusH,S* + QuusH,S* + QyusH, S|
+ [QBIJ’;H.:'S + zdi HyS + ﬂzdeurSE + de;H.;rSEJ + h.c.

@ Here | assumed supersymmetry, so that there are two Higgs doublets H,, ;.

@ It is not necessary to assume SUSY, one can simply identify H, as H of SM, and
replace Hy by H.

@ All couplings are taken to be of order cne.

@ The symmetry is a U(1) with the following charge assignment.

{Qs, u}:0; {Qa,u5}:2; {d;5,di}:1; {H,,Hs}:0; 5:—1.



Spaghetti Diagrams in FN Model
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Figure: Froggatt—Nielsen fields generating effective Yukawa couplings.



Spaghetti Diagrams in FN Model
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Figure: Froggatt—Nielsen fields generating effective Yukawa couplings.



A Three-Family FN Model

@ An explicit and complete anomalous U(1) model that fits well all quark
and lepton masses and mixings is constructed below. Consider the quark
and lepton mass matrices of the following form :

e® g0 ¢4 €® et ¢*
M,~ (H) | €® € €], My~ (Hp)eP | € €& €|,
et € 1 e 1 1
€2 €3 ¢ € € ¢
M. ~ (Hp)eP | €* € 1], M,,~(H)e e 1 1
et € 1 1 1
€ € € _ (H,)2 e € ¢
Me~Mgle 11 = M'E" M e“le 11
e 1 1 R e 1 1

This structure explains small CKM mixing and large lepton mixing



U(1) Charges in Three-Family FN Model

Field U(1)a Charge Charge notation
@1, Q2 Qs 4,2,0 g
Llr LE! L3 1 + s'.l 5! ] qJL
us, Us, U3 4,2, 0 q’
df, ds, d5 1+p, p,p af
ef.e565 | 4+p—s52+p—s,p—s q;
Vi, V5, U3 1,0,0 q’
Hm Hdr 5 Dn D-.v —1 (hu 'I"-.v qs)

Table: The flavor U(1)4 charge assignment for the MSSM fields and
the flavon field S.




