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Abstract

This review is based on lectures on flavor physics given at TASI 2008. First I summarize

our present knowledge on the fundamental parameters of the flavor sector. Then I discuss

various scenarios going beyond the standard model which attempt to explain aspects of

the “flavor puzzle”. Relating quark masses and mixing angles via flavor symmetry is

explored. Explaining the mass hierarchy via the Froggatt–Nielsen mechanism is reviewed

and illustrated. Grand unification ideas are pursued to seek a pattern in the observed

masses and mixings of quarks and leptons. Generating light fermion masses as radiative

corrections is explained and illustrated. The popular solutions to the strong CP problem

are summarized. Finally, specific processes in B meson system where significant new

flavor contributions can arise are discussed.
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1 Overview

This set of lectures will focus on the flavor sector of the Standard Model (SM). As you know,

most of the free parameters of the SM reside in this sector. In case you have not thought about

it lately, let me remind you of the counting of parameters of the SM. Not including neutrino

masses, there are 19 parameters in the SM. Five of these are flavor universal – the three gauge

couplings (g1, g2, g3), one Higgs quartic coupling λ, and one Higgs mass-squared µ2, while

the remaining fourteen are parameters associated with the flavor sector. Six quark masses,

three charged lepton masses, four quark mixing angles (including one weak CP violating phase)

make up thirteen, while the strong CP violating parameter θ, which is intimately related to

the quark masses, is the fourteenth flavor parameter. If we include small neutrino masses and

mixing angles into the SM, as needed to explain neutrino oscillation data from a variety of

experiments, an additional nine parameters will have to be introduced (three neutrino masses,

three neutrino mixing angles and three CP violating phases, in the case of Majorana neutrinos).

You see that twenty three of the twenty eight parameters describe flavor physics in the SM.

While there is abundant information on the numerical values these parameters take, a

fundamental understanding of the origin of these parameters is currently lacking. Why are there

three families of quarks and leptons in the first place? Are the flavor parameters all arbitrary,

or are they inter-connected? Why do the charged fermion masses exhibit a strong hierarchical

structure spanning some six orders of magnitude? Why are the mixing angles in the quark

sector hierarchical? Are the mixing parameters related to the mass ratios? Why is θ < 10−9?

Why are neutrino masses so much smaller than the charged fermion masses? What causes (at

least two of) the neutrino mixing angles to be much larger than the corresponding quark mixing

angles? What is the origin of CP violation? The lack of a fundamental understanding of such

issues is often referred to as the “flavor puzzle”.

Various solutions to this puzzle have been proposed, inevitably leading to physics beyond

the Standard Model, for within the SM these parameters can only be accommodated, and not

explained. Forthcoming experiments, especially at the LHC, have the potential to confirm or

refute some, but not all, of these proposed non–standard scenarios. If the new flavor dynamics

occurs near the TeV scale, it is potentially accessible to the LHC, but if it occurs at a much

higher scale, then it will not be directly accessible. It should be mentioned at the outset that

there is no compelling reason for the flavor dynamics to occur near the TeV scale, most puzzles

can be explained even when the dynamics takes place near the Planck scale. This is because

the small parameters of the flavor sector are quite stable under radiative corrections, owing

to chiral symmetries. If the smallness of a certain parameter has an explanation from Planck

scale physics, it is an equally good explanation at the low energy scale. Testing such high
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scale theories would be more difficult in general. In some cases, for example, with low energy

supersymmetry, information from the high scale flavor dynamics will be carried by particles

which survive to the TeV scale (the SUSY particles), in which case flavor physics may be tested

at colliders. Processes such as lepton flavor violating µ → eγ decay and b → sγ transition

appear to be promising setups to test such scenarios.

The Higgs boson is waiting to be discovered at the LHC. Its production and decay rates

can be significantly modified relative to the SM expectations in some of the flavor–extensions

of the SM. I will describe explicit models in this category. Very little is known about the top

quark properties currently. LHC will serve as a top quark factory where modifications in the

top sector arising from flavor–extensions can be studied. These include flavor changing decays

of the top and its possible anomalous couplings to the gauge bosons. We have learned a lot

about the B meson system from the B factories lately, but there are still many open issues and

some puzzles which will be probed at the LHC. These include precise determination of the CP

violating parameters, rare processes allowed in the SM but not yet observed, and new physics

processes in B decays that require modification of the SM structure.

In Sec. 2, we will take a tour of the flavor parameters of the SM and review how these

are measured and interpreted. Various ideas attempting to understand aspects of the flavor

puzzle will then be introduced and their experimental consequences outlined. In Sec. 3 we

will seek inter–relations between quark masses and mixing angle. Sec. 4 will be devoted to

an understanding of the fermion mass and mixing hierarchies based on the Frogatt–Nielsen

mechanism. In Sec. 5 we will develop grand unification as a possible clue to the flavor puzzle.

Sec. 6 discusses radiative fermion mass generation, Sec. 7 summarizes the suggested solutions

to the strong CP problem, and in Sec. 8 we introduce specific beyond the SM scenarios for the

flavor sector and study their experimental manifestations at the LHC.

2 Flavor structure of the Standard Model

Because of the chiral structure of weak interactions, bare fermion masses are not allowed in the

Standard Model. Fermion masses arise via Yukawa interactions given by the Lagrangian

LYukawa = QTYuu
cH −QTYdd

cH̃ − LTYℓe
cH̃ + h.c. (1)

Here I have used the standard notation for quark (Q, uc, dc) and lepton (L, ec) fields. (Q, L)

are SU(2)L doublets, as is the Higgs field H and its conjugate H̃ = iτ2H
∗, while the (uc, dc, ec)

fields are SU(2)L singlets. All fermion fields are left–handed, a charge conjugation matrix C

is understood to be sandwiched between all of the fermion bi-linears in Eq. (1). Contraction
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of the color indices is not displayed, but should be obvious. Yu,d,ℓ are the Yukawa couplings

matrices spanning generation space which are complex and non–Hermitian. SU(2)L contraction

between the fermion doublet and Higgs doublet involves the matrix iτ2. Explicitly, we have

(for a family labeled by index i)

Qi =





ui

di



 ; Li =





νi

ei



 ; H =





H+

H0



 ; H̃ =





H0∗

−H−



 , (2)

so that Eq. (1) expands to

LYukawa = (Yu)ij[uiu
c
jH

0 − diu
c
jH

+] + (Yd)ij[uid
c
jH

− + did
c
jH

0∗] + (Yℓ)ij[νie
c
jH

− + eie
c
jH

0∗] + h.c.

(3)

The neutral component of H acquires a vacuum expectation value (VEV) 〈H0〉 = v, spon-

taneously breaking the electroweak symmetry (v ≃ 174 GeV). The Higgs field can then be

parametrized in the unitary gauge as H0 = ( h√
2

+ v) where h is a real physical field (the Higgs

boson). In this gauge H±, which are eaten up by the W± gauge bosons, and the phase of H0,

which is eaten up by the Z0 gauge boson, do not appear.

The VEV of H0 generates the following fermion mass matrices:

Mu = Yuv , Md = Ydv , Mℓ = Yℓv . (4)

The Yukawa coupling matrices contained in (Yu)ij/
√

2(uuch), etc in each of the up, down and

charged lepton sector becomes proportional to the corresponding mass matrix. Once the mass

matrices are brought to diagonal forms, the Yukawa coupling matrices will be simultaneously

diagonal. There is thus no tree–level flavor changing current mediated by the neutral Higgs

boson in the Standard Model. This is a feature that is generally lost as we extend the SM to

address the flavor issue (for example by introducing multiple Higgs doublets or extra fermions).

We make unitary rotations on the quark fields in family space. Unitarity of these rota-

tions will ensure that the quark kinetic terms remain canonical. Specifically, we define mass

eigenstates (u0, uc0, d0, dc0) via

u = Vu u
0, uc = Vuc uc0 ,

d = Vd d
0, dc = Vdc dc0 , (5)

and we choose the unitary matrices such that

V T
u (Yuv)Vuc =









mu

mc

mt









, V T
d (Ydv)Vdc =









md

ms

mb









. (6)
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We have assumed here that the number of families is three, but the procedure applies to any

number of families. Bi-unitary transformations such as the ones in Eq. (6) can diagonalize

non–Hermitian matrices. The same transformations should be applied to all interactions of the

quarks. As already noted, these transformations will bring the Yukawa interactions of quarks

with the Higgs boson into diagonal forms. The couplings of the Z0 boson and the photon to

quarks will have the original diagonal form even after this rotation. For example, (uγµIu)Z
µ

where I is the identity matrix acting on family space will transform to (u0γµ(V
†
u IVu)u

0)Zµ,

which is identical to (u0γµIu
0)Zµ. Similarly, (ucγµIu

c)Zµ will transform to (uc0γµIu
c0)Zµ. We

see that there is no tree level flavor changing neutral current (FCNC) mediated by the Z0 boson

and the photon in the SM.

Most significantly, the transformations of Eq. (6) will bring the charged current quark

interaction, which originally is of the form Lcc = g/
√

2(uγµd)W
+µ + h.c., into the form

Lcc =
g√
2
[u0γµV d

0] W µ+ + h.c. (7)

where

V = V †
uVd (8)

is the quark mixing matrix, or the Cabibbo–Kobayashi–Maskawa (CKM) matrix [1, 2]. In

the SM, all the flavor violation is contained in V . Being product of unitary matrices, V is

itself unitary. This feature has thus far withstood experimental scrutiny, with further scrutiny

expected from LHC experiments.

Note that the right–handed rotation matrices Vuc and Vdc have completely disappeared, a

result of the purely left–handed nature of charged weak current.

We can repeat this process in the leptonic sector. We define, in analogy with Eq. (5),

ν = Vν ν
0 , e = Ve e

0 , ec = Vec ec0 . (9)

We choose Ye and Yec such that

Y T
e (Yℓv)Yec =









me

mµ

mτ









. (10)

Note that there is no right–handed neutrino in the SM. If the Yukawa Lagrangian is as

given in Eq. (1), there is no neutrino mass. In that case one can choose Vν = Ve, so that

the charged current weak interactions will remain flavor diagonal. However, it is now well

established that neutrinos have small masses. Additional terms must be added to Eq. (1) in
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order to accommodate them. The simplest possibility is to add a non–renormalizable term

Lν−mass =
(LTYνL)HH

2M∗
+ h.c. (11)

where the SU(2)L contraction between the H fields is in the triplet channel and Yν is a complex

symmetric matrix in generation space. Here M∗ is a mass scale much above the weak interaction

scale. Eq. (11) can arise by integrating out some heavy fields with mass of order M∗. The most

celebrated realization of this is the seesaw mechanism, where M∗ corresponds to the mass of

the right–handed neutrino [3]. The neutrino masses are suppressed, compared to the charged

fermion masses, because of the inverse dependence on the heavy scale M∗. Right–handed

neutrinos, if they exist, are complete singlets of the SM gauge symmetry, and can possess bare

SM invariant mass terms, unlike any other fermion of the SM. This is an elegant explanation of

why the neutrinos are much lighter than other fermions, relying only on symmetry principles

and dimensional analysis. Eq. (11) leads to a light neutrino mass matrix given by

Mν = Yν
v2

M∗
. (12)

Now we choose Vν so that

V T
ν Yν

v2

M∗
Vν =









m1

m2

m3









, (13)

with m1,2,3 being the tiny masses of the three light neutrinos. The leptonic charge current

interaction now becomes

Lℓcc =
g√
2
[e0γµUν

0] W−µ + h.c. (14)

where

U = V †
e Vν (15)

is the leptonic mixing matrix, or the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [4].

As V , U is also unitary. Neutrino oscillations observed in experiments are attributed to the

off–diagonal entries of the matrix U . We assumed here that the neutrino mass generation

mechanism violated total lepton number by two units. While this is very attractive, it should

be mentioned that neutrinos could acquire masses very much like the quarks. That would

require the right–handed νc states to be part of the low energy theory. Mν will then be similar

to Mℓ of Eq. (10). Neutrino oscillation phenomenology will be identical to the case of L–

violating neutrino masses. In this case, however, the neutrino Yukawa couplings will have to be

extremely tiny to accommodate the observed masses. Furthermore, some global symmetries,
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such as total lepton number, will have to be assumed in order to forbid gauge invariant mass

terms for the right–handed neutrinos.

The fermionic states (e0i ) are simply the physical electron, the muon, and the tau lepton

states. Similarly, the quark fields with a superscript 0 are the mass eigenstates. It is conventional

to drop these superscripts, which we shall do from now on.

2.1 Lepton masses

Conceptually charged lepton masses are the easiest to explain. Leptons are propagating states,

and their masses are simply the poles in the propagators. Experimental information on charged

lepton masses is rather accurate [5]:

me = 0.510998902± 0.000000021 MeV ,

mµ = 105.658357± 0.000005 MeV ,

mτ = 1777.03+0.30
−0.26 MeV . (16)

The direct kinematic limits on the three neutrino masses are [5]:

mνe
≤ 3 eV , mνµ

≤ 0.19 MeV , mντ
≤ 18.2 MeV . (17)

Neutrino oscillation experiments have provided much more accurate determinations of the

squared mass differences ∆m2
ij = m2

i −m2
j . Solar and atmospheric neutrino oscillation experi-

ments, when combined with accelerator and reactor neutrino experiments, suggest the following

allowed values (with 2σ error quoted) [6]:

∆m2
21 = (7.25 − 8.11) × 10−5 eV2 ,

∆m2
31 = ±(2.18 − 2.64) × 10−3 eV2 . (18)

While this still leaves some room for the absolute masses, when combined with the direct limit

on mνe
≤ 3 eV, the options become limited. Current data allow for two possible ordering of

the mass hierarchies: (i) normal hierarchy where m1 ≤ m2 ≪ m3, and (ii) inverted hierarchy

where m1 ≃ m2 ≫ m3. More specifically, νe is mostly in the lightest eigenstate in the case of

normal hierarchy, while it is mostly in the heavier eigenstate in the case of inverted hierarchy.

The sign of ∆m2
31 is not known at the moment, which gives these two ordering options. On the

other hand, the sign of ∆m2
21 is fixed from the condition that MSW resonance occurs inside

the Sun.
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2.2 Leptonic mixing matrix

The PMNS matrix U , being unitary, has N2 independent components for N families of leptons.

Out of these, N(N − 1)/2 are Euler angles, while the remaining N(N + 1)/2 are phases. Many

of these phases can be absorbed into the fermionic fields and removed. If one writes U = QÛP ,

where P and Q are diagonal phase matrices, then by redefining the phases of e fields as e→ Qe,

the N phases in Q can be removed. P has only N − 1 non–removable phases (an overall phase

is irrelevant). For N = 3, P = diag.(eiα, eiβ, 1). α, β are called the Majorana phases. (If

the neutrino masses are of the Dirac type, these phases can also be removed by redefining the

νc fields.) Û will then have N(N + 1)/2 − (2N − 1) = 1
2
(N − 1)(N − 2) phases. For N = 3,

there is a single “Dirac” phase in U . This single phase will be relevant for neutrino oscillation

phenomenology. The two Majorana phases (α, β) do not affect neutrino oscillations, but will

be relevant for neutrino-less double beta decay.

In general, the PMNS matrix for three families of leptons can be written as

U =









Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3









. (19)

To enforce the unitarity relations it is convenient to adopt specific parametrizations. The

Euler angles, as you know, can be parametrized in many different ways. Furthermore, the

Dirac phase can be chosen to appear in different ways (by field redefinitions). The “standard

parametrization” that is now widely used [5] has UPMNS = U.P where

U =









c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13









. (20)

Here sij = sin θij , cij = cos θij .

Our current understanding of these mixing angles arising from neutrino oscillations can be

summarized as follows (2 σ error bars quoted) [6]:

sin2 θ12 = 0.27 − 0.35 ,

sin2 θ23 = 0.39 − 0.63 ,

sin2 θ13 ≤ 0.040 . (21)

Here θ12 limit arises from solar neutrino data (when combined with KamLand reactor neutrino

data), θ23 from atmospheric neutrinos (when combined with MINOS accelerator neutrino data),

and θ13 from reactor neutrino data.
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It is intriguing that the current understanding of leptonic mixing can be parametrized by

the unitary matrix

UTB =











√

2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2











P . (22)

This mixing is known as tri-bimaximal mixing [7]. This nomenclature is based on the numerol-

ogy sin2 θ12 = 1/3, sin2 θ23 = 1/2, sin2 θ13 = 0 that follows from Eq. (22). As we will see, such

a geometric structure is far from being similar to the quark mixing matrix. Note that currently

θ13 is allowed to be zero, in which case the Dirac phase δ becomes irrelevant. We also have

no information on the Majorana phases (α, β in P ), which can only be tested in neutrino-less

double beta decay experiments.

There have been considerable activity in the literature in trying the reproduce the tri-

bimaximal mixing matrix of Eq. (22) based on symmetries. The most popular idea has been

to adopt the non-Abelian flavor symmetry A4, which is the symmetry group of a regular tetra-

hedron. It is also the group of even permutations of four letters. This finite group has twelve

elements, which fall into one three–dimensional (3) and three one–dimensional (1 + 1′ + 1′′) ir-

reducible representations. A4 is the simplest symmetry group with a triplet representation.

Assigning the lepton doublets to the 3, and the three charged lepton singlets to the the

(1 + 1′ + 1′′), it is possible, assuming a specific vacuum structure, to reproduce the “geometric”

form of the leptonic mixing matrix [8].

2.3 Quark masses

Unlike the leptons, quarks are not propagating particles. So their masses have to be inferred

indirectly from properties of hadrons. There are various techniques to do this. Let me illustrate

this for the light quark masses (u, d, s) by the method of chiral perturbation theory [9].

Consider the QCD Lagrangian at low energy scales. Electroweak symmetry has already

been broken, and heavy quarks (t, b, c) have decoupled. The Lagrangian for the light quarks

(u, d, s) and the gluon fields takes the form

L =

NF =3
∑

k=1

qk(i6D −mk)qk −
1

4
GµνG

µnu , (23)

where Gµν is the gluon field strength and 6D is the covariant derivative. mk is the mass of

the k-th quark and qk denotes the quark field. This Lagrangian has a chiral symmetry in the
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limit where the quark masses vanish. The three left–handed quarks can be rotated into one

another, and the three right–handed quarks can be rotated independently. The symmetry is

SU(3)L × SU(3)R × U(1)V , with the axial U(1)A (of the classical symmetry U(3)L × U(3)R)

explicitly broken by anomalies. The U(1)V is baryon number, which remains unbroken even

after QCD dynamics. QCD dynamics breaks the SU(3)L × SU(3)R symmetry down to the

diagonal subgroup SU(3)V . In the limit of vanishing quark masses, there must be 8 Goldstone

bosons corresponding to this symmetry breaking. These Goldstone bosons are identified as

the pseudoscalar mesons, which are however, not exactly massless. The (small) quark masses

actually break the chiral symmetry explicitly and thus generate small masses for the mesons.

Chiral perturbation theory is a systematic expansion in p/Λχ, where p is the particle mo-

mentum and Λχ ∼ 1 GeV is the chiral symmetry breaking scale. Since the masses of the light

quarks (u, d, s) are smaller than Λχ, we can treat them as small perturbations and apply chiral

expansion. The explicit breaking of chiral symmetry occurs via the mass term

M =









mu

md

ms









. (24)

M can be thought of as a spurion field which breaks the chiral symmetry spontaneously. Under

SU(3)L × SU(3)R symmetry qL → UL qL, qR → UR qR, while M → UL M U †
R. That is, M

transforms as a (3, 3∗) of this group. Under the unbroken diagonal SU(3)V subgroup, both

qL and qR transform as triplets, while M splits into a 1 + 8. Thus M can be written as

M = M1 +M8, where M1 is a singlet of SU(3)V , while M8 is an octet:

M1 =
(mu +md +ms)

3









1

1

1









,

M8 =
(mu −md)

2









1

−1

0









+
(mu −md − 2ms)

6









1

1

−2









. (25)

The octet (under SU(3)V ) of mesons can be written down as a (normalized) matrix

Φ =











π0
√

2
+ η0√

6
π+ K+

π− − π0
√

2
+ η0√

6
K0

K− K0 −
√

2
3
η0











. (26)
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The lowest order invariants involving Φ bilinear and M are

A Tr(Φ2)M1 +B Tr(Φ2M8) . (27)

Here A and B are arbitrary coefficients. Eq. (27) can be readily expanded, which will give

relations for the masses of mesons. Now, in the limit of mu = 0, md = 0, ms 6= 0, the SU(2)L×
SU(2)R chiral symmetry remains unbroken, and so the pion fields should be massless. Working

out the mass terms, and demanding that the pion mass vanishes in this limit, one finds a

relation A = 2B. Using this relation we can write down the pseudoscalar meson masses. In

doing so, let us also recall that electromagnetic interactions will split the masses of the neutral

and charged members. To lowest order, this splitting will be universal. Then we have

m2
π0 = B(mu +md)

m2
π± = B(mu +md) + ∆em

m2
K0 = m2

K0
= B(md +ms)

m2
K± = B(mu +ms) + ∆em

m2
η =

1

3
B(mu +md + 4ms) . (28)

Here small π0 − η0 mixing has been neglected, which vanishes in the limit mu −md vanishes.

Eliminating B and ∆em from Eq. (28) we obtain two relations for quark mass ratios:

mu

md
=

2m2
π0 −m2

π+ +m2
K+ −m2

K0

m2
K0 −m2

K+ +m2
π+

= 0.56

ms

md

=
m2
K0 +m2

K+ −m2
π+

m2
K0 −m2

K+ +m2
π+

= 20.1 (29)

This is the lowest order chiral perturbation theory result for the mass ratios. Second order chiral

perturbation theory makes important corrections to these ratios as discussed in more detail in

Ref. [10]. Note that the absolute masses cannot be determined in this way. Alternative

techniques, such as QCD sum rules and lattice calculations which provide the most precise

numbers have to be applied for this.

For heavy quarks (c and b), one can invoke another type of symmetry, the heavy quark ef-

fective theory (HQET) [11]. When the mass of the quark is heavier than the typical momentum

of the partons Λ ∼ mp/3 = 330 MeV, one can make another type of expansion. In analogy

with atomic physics, where different isotopes exhibit similar chemical behavior, the behavior of

charm hadrons and bottom hadrons will be similar. In fact, there will be an SU(2) symmetry

relating the two, to lowest order in HQET expansion. One consequence is that the mass split-

ting between the vector and scalar mesons in the b and c sector should be related. This leads
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to a relations MB∗ −MB = Λ2/mb and MD∗ −MD = Λ2/mc, leading to the prediction

MB∗ −MB

MD∗ −MD
=
mc

mb
, (30)

which is in good agreement with experiments.

The most reliable determination of light quark masses come from lattice QCD. The QCD

Lagrangian of Eq. (23) has only very few parameters, the strong coupling constant, and the

three light quark masses. All the hadron masses and decay constants should in principle

be calculable in terms of these parameters. Since QCD coupling is strong at low energies,

perturbation theory is not reliable. Lattice QCD is formulated on discrete space time lattice

points, rather than in the continuum. When the lattice spacing takes small value, lattice QCD

should reproduce continuum QCD. No approximation is made as regards the value of the strong

coupling constant αs. It is thus a non-perturbative technique which, upon matching certain

measured quantities, can be used to calculate the light quark mass parameters. In the last five

years there has been tremendous advances in lattice QCD, owing to improved lattice action, as

well as increased computing power. Early results on light quark masses assumed “quenching”,

i.e., ignored fermions propagating inside loops, but now full three flavor un-quenched calculation

with dynamical fermions are available. There have been several independent evaluations of the

light quark masses, which generally are in good agreement with one another. Conventionally

these masses are presented as running masses at q = 2 GeV in the MS scheme.

The MILC collaboration [12], which adopted a partially quenched approximation, finds for

the light quark masses

mu(2 GeV) = 1.7 ± 0.3 MeV ,

md(2 GeV) = 3.9 ± 0.46 MeV ,

ms(2 GeV) = 76 ± 7.6 MeV . (31)

Here I have combined the various uncertainties (statistical, systematic, simulation, and elec-

tromagnetic) in quadrature. The ratios of light quark masses are thought to be more reliable,

as many of the uncertainties cancel in the ratios. It is customary to define an average mass of

up and down quarks m̂ = (mu +md)/2. The results of MILC collaboration corresponds to the

following mass ratios:

mu

md

= 0.43 ± 0.08 ,

ms

m̂
= 27.4 ± 4.2 . (32)
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The JLQCD collaboration [13], which includes three flavors of dynamical quarks finds

m̂(2 GeV) = 3.55+0.65
−0.28 MeV ,

ms(2 GeV) = 90.1+17.2
−6.1 MeV ,

mu

md

= 0.577 ± 0.025 . (33)

The RBC & UKQCD collaboration [14], which includes 2+1 dynamical domain wall quarks

finds

m̂(2 GeV) = 3.72 ± 0.41 MeV ,

ms(2 GeV) = 107.3 ± 11.7 MeV ,

m̂ : ms = 1 : 28.8 ± 1.65 . (34)

And finally, the HPQCD collaboration finds [15]

mu(2 GeV) = 1.9 ± 0.24 MeV ,

md(2 GeV) = 4.4 ± 0.34 MeV ,

ms(2 GeV) = 87 ± 5.7 MeV

m̂(2 GeV) = 3.2 ± 0.89 MeV ,
mu

md
= 0.43 ± 0.08 . (35)

One sees that the lattice calculations are settling down, and have become quite reliable. It

should be mentioned that the same lattice QCD calculations also provide several of the hadronic

form factors which enter into the determination of the CKM mixing angles.

The masses of the c and b quarks can be determined in a variety of ways. Charmonium and

Upsilon spectroscopy, in conjunction with lattice calculations seem to be the most reliable. We

summarize the masses of these quarks thus obtained, along with the ranges for the light quark

masses [5].

mu(2 GeV) = 1.5 to 3.3 MeV ,

md(2 GeV) = 3.5 to 6.0 MeV ,

ms(2 GeV) = 105+25
−35 MeV ,

mu

md
= 0.35 to 0.60 ,

ms

md

= 17 to 22 ,

ms

(mu +md)/2
= 25 to 30 ,

mc(mc) = 1.27+0.07
−0.11 GeV ,

mb(mb) = 4.20+0.17
−0.07 GeV . (36)
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Sometimes the light quark masses are quoted at q = 1 GeV, rather at q = 2 GeV. There are

significant differences in these two sets of values due to the rapid running of the strong coupling

in this regime. Typically one finds for example, mu(1 GeV) ≃ 1.35 mu(2 GeV).

The top quark mass is more directly determined leading to the value [5]

mt = 171.3 ± 1.1 ± 1.2 GeV . (37)

Any ambitious theory of flavor should aim to address these observed values of quark masses.

2.4 Running quark and lepton masses

In attempting to explain the observed masses of fermions, it will be convenient to compare their

masses at a common momentum scale µ. Usually this scale is taken to be much heavier than the

QCD scale of about 1 GeV, or even the weak scale of 246 GeV, since new flavor dynamics cannot

happen at lower scales. The measured quark and lepton masses then have to be extrapolated

to a common momentum scale µ. Below the weak scale, this extrapolation would require the

renormalization group evolution of the mass parameters caused by QCD and QED loops. The

beta functions and the gamma functions necessary to do this have been computed to three–

loop (and in some cases four–loop) accuracy [16]. In the MS scheme, which is widely used, the

contributions to the beta functions and gamma functions from a specific flavor of fermion will

decouple for momenta µ less than the mass of the particle. Before discussing this evolution,

it is necessary to remark on the differences between “pole mass” and “running mass” of a

fermion. For heavy quarks (c, b, t) the pole mass Mq is the physical mass, which appears as

the pole in the propagator. (For light quarks (u, d, s) pole mass is not defined because of the

non–perturbative nature of strong interactions at their mass scales.) The running mass mq(Mq)

includes corrections from QCD and QED loops. The two are related for quarks via

Mq = mq(Mq)

[

1 +
4

3

αs(Mq)

π
+ κ(2)

q

(

αs(Mq)

π

)2

+ κ(3)
q

(

αs(Mq)

π

)3
]

, (38)

where terms of order α4
s and higher have been neglected. The two–loop and the three–loop

QCD correction factors are {κ(2)
c , κ

(2)
b , κ

(2)
t } = {11, 21, 10.17, 9.13} and {κ(3)

c , κ
(3)
b , κ

(3)
t } =

{123.8, 101.5, 80.4}. There can be significant differences between Mq and mq(Mq). For exam-

ple, using αs(MZ) = 0.1176 and Mt = 172.5 GeV, one obtains, with QCD evolution of αs from

MZ to Mt, αs(Mt) = 0.108, and then from Eq. (38) mt(Mt) = 162.8 GeV. For c and b quarks

the differences are even bigger.

The running masses of leptons can be defined analogously, but now the QCD corrections

are replaced by QED corrections. Consequently the differences between the pole mass Mℓ and
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running mass mℓ(Mℓ) are less significant. The two masses are related via

mℓ(µ) = Mℓ

[

1 − α

π

{

1 +
3

2
ln

µ

mℓ(µ)

}]

. (39)

For momentum scales higher than the electroweak symmetry breaking scale, one should

evolve the Yukawa couplings of the fermions, rather then their masses. One can define the

running mass in this momentum regime as

mi(µ) = Yi(µ) v . (40)

Here v = 174 GeV is the VEV of the Higgs doublet evaluated at the weak scale. Since the

VEV v also is a function of momentum (owing to wave function renormalization of the Higgs

filed), one could in principle define the running mass as mi(µ) = Yi(µ)v(µ). But this is usually

not necessary, and will not be adopted here. The renormalization group evolution equations

for the Yukawa couplings of the SM have been worked out to two–loop accuracy [16].

While extrapolating the Yukawa coupling above the weak scale one has to specify the theory

valid in that regime. Often it will be assumed to be the minimal supersymmetric standard

model (MSSM). In the fermion Yukawa sector there are significant differences between the

MSSM and the SM. The main difference is that supersymmetry requires two Higgs doublets,

Hu with (Y/2) = +1/2 and Hd with (Y/2) = −1/2. The extra doublet is needed for anomaly

cancelation and also for generating all fermion masses. Recall that in the SM Yukawa interaction

of Eq. (1) we used H for generating the up–type quark masses and its conjugate H̃ for the

down–type quark and charged lepton masses. Supersymmetric Yukawa couplings must be

derived from a superpotential W , which is required to be holomorphic. This means that if H

appears in W , then H∗ cannot appear. The MSSM Yukawa interactions arise from the following

superpotential.

WMSSM
Yukawa = QTYuu

cHu −QTYdd
cHd − LTYℓe

cHd . (41)

If we denote the VEVs of Hu and Hd as vu and vd, then the mass matrices for the three charged

fermion sectors are

Mu = Yuvu , Md = Ydvd , Mℓ = Yℓvd . (42)

The diagonalization procedure follows as in the SM. Notably, there is no Higgs boson mediated

flavor changing couplings at tree level, in spite of having two Higgs doublets. The constraints

of supersymmetry is the reason for its absence. (Only a single Higgs doublet couples to each

one of the three sectors.) A new parameter appears, which is the ratio of the two Higgs vacuum

expectation values:

tanβ =
vu
vd
. (43)
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mi�µ mc(mc) 2 GeV mb(mb) mt(mt) 1 TeV Λtanβ=10
GUT Λtan β=50

GUT

mu(MeV) 2.57 2.2 1.86 1.22 1.10 0.49 0.48

md(MeV) 5.85 5.0 4.22 2.76 2.50 0.70 0.51

ms(MeV) 111 95 80 52 47 13 10

mc(GeV) 1.25 1.07 0.901 0.590 0.532 0.236 0.237

mb(GeV) 5.99 5.05 4.20 2.75 2.43 0.79 0.61

mt(GeV) 384.8 318.4 259.8 162.9 150.7 92.2 94.7

me(MeV) 0.4955 ∼ 0.4931 0.4853 0.4959 0.2838 0.206

mµ(MeV) 104.474 ∼ 103.995 102.467 104.688 59.903 43.502

mτ (MeV) 1774.90 ∼ 1767.08 1742.15 1779.74 1021.95 773.44

Table 1: The running masses of quarks and leptons as a function of momentum µ. The last

two columns correspond to the running masses at ΛGUT = 2 × 1016 GeV assuming low energy

MSSM spectrum with tanβ = 10 and 50.

This parameter will influence many physical processes. tanβ plays an important role in the

RGE evolution of the Yukawa couplings. The range of tanβ preferred in the MSSM is tan β =

(1.7− 60). When tan β < 1.7 the top quark Yukawa couplings blows up before the momentum

scale µ = ΛGUT ≈ 2 × 1016 GeV. ΛGUT is associated with the scale of grand unification, where

the three gauge couplings of the SM appear to meet, if there is low energy supersymmetry.

For tan β > 60 the b–quark and τ–lepton Yukawa couplings become non-perturbative before

reaching ΛGUT.

In Table 1 we list the running masses of quarks and leptons as a function of the momentum

scale µ. We have adopted the numbers listed from Ref. [17], but our independent calculations

show general agreement at the level of few per cent with Ref. [17]. The input values for (c, b, t)

quarks are the running masses indicated in bold. For this Table we have used light quark

masses at µ = 2 GeV as indicated in bold. For the charged lepton, we have used as input the

masses given in Eq. (16). The masses of all fermions are listed at momentum scale µ = mt

and µ = 1 TeV assuming the validity of the SM up to 1 TeV. Also listed are the running

masses at µ = ΛGUT = 2 × 1016 GeV assuming MSSM spectrum, for two values of tanβ (10

and 50). The following input values have been used. αs(MZ) = 0.1176, α−1(MZ) = 127.918,

and sin2 θW (MZ) = 0.23122.

There are various noteworthy features in Table 1. The light quark masses (mu, md, , ms)
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decrease by about a factor of two in going from µ = 2 GeV to µ = 1 TeV. This decrease is

a result of QCD corrections. The d and s–quark masses decrease by about another factor of

4 in going from µ = 1 TeV to µ = ΛGUT, while mu decreases by a factor of 2.3. The net

change in the values of (mu, , md, ms) in going from µ = 2 GeV to µ = ΛGUT for the case

of tanβ = 10 is a factor (4.9, 7.9, 7.3). The value of b–quark mass decreases considerably, by

a factor of 6.9, in going from µ = mb to µ = ΛGUT for tanβ = 10. mb(µ = ΛGUT) is close

to the τ–lepton mass mτ (µ = ΛGUT) (to within about 20%). The lepton masses decrease by

about a factor of 2 in going from low energies to ΛGUT. This decrease occurs because of the

SU(2)L×U(1)Y contributions to the beta functions of Yℓ. These features will be relevant when

we discuss predictions for fermion masses from Grand Unified theories in Sec. 5.

Sometimes the light quark masses are quoted at µ = 1 GeV. In going from µ = 2 GeV

down to µ = 1 GeV, the masses increase by a factor of 1.31, if αs(MZ) = 0.1176 is used.

The running factor to go from µ = 2 GeV down to µ = mc is indicated in Table 1, while

the additional running factor to go from µ = mc to µ = 1 GeV is found to be 1.12. Thus,

(mu, md, ms) = (2.2, 5, 95) MeV at µ = 2 GeV correspond to (mu, md, ms) = (2.88, 6.58, 124)

MeV at µ = 1 GeV.

In Table 1 we have also included the top quark mass at momentum scales below Mt (in-

dicated in italics). These values, which are un-physical, since the top quark decouples at its

mass, will be rarely used.

2.5 Quark mixing and CP violation

The unitary matrix V of Eq. (8) which appears in the charged current interactions of Eq. (7)

enters in a variety of processes. A lot of information has been gained on the matrix elements

of V . The general matrix can be written as

V =









Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









. (44)

The standard parametrization of V is as in Eq. (20), but now understood to be for the quark

sector. V has a single un-removable phase for three families of quarks and leptons. (The phases

(α, β) which appeared in the case of Majorana neutrinos can be removed by right–handed quark

field redefinition.) The single un-removable phase in V allows for the violation of CP symmetry

in the quark sector. Unlike in the leptonic sector, the quark mixing angles turn out to be small.

This enables one to make a perturbative expansion of the mixing matrix a la Wolfenstein [18].
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The small parameter is taken to be λ = |Vus| in terms of which one has

V =









1 − 1
2
λ2 − 1

8
λ4 λ Aλ3(ρ− iη)

−λ 1 − 1
2
λ2 − 1

8
λ4(1 + 4A2) Aλ2

Aλ3(1 − ρ− iη) −Aλ2 + 1
2
Aλ4 (1 − 2(ρ+ iη)) 1 − 1

2
A2λ4









+ O(λ5) . (45)

Here the exact correspondence with Eq. (20) is given by

s12 ≡ λ, s23 ≡ Aλ2, s13e
−iδ ≡ Aλ3(ρ− iη) . (46)

Matrix elements of V are determined usually via semileptonic decays of quarks. In Fig. 1

we have displayed the dominant processes enabling determination of these elements. Fig. 1 (a)

is the diagram for nuclear beta decay, from which |Vud| has been extracted rather accurately

[19]:

|Vud| = 0.97377 ± 0.00027 . (47)

Fig. 1 (b) shows semileptonic K decay from which the Cabibbo angle |Vus| can be extracted.

The decays K0
L → πℓν and K± → π0ℓ±ν (ℓ = e, µ) have been averaged to obtain for the

product |Vus|f+(0) = 0.21668 ± 0.00045. Here f+(0) is the form factor associated with this

semileptonic decay evaluated at q2 = 0. Using f+(0) = 0.961 ± 0.008 (obtained from QCD

calculations, which are in agreement with lattice QCD evaluations), one obtains

|Vus| = 0.2257 ± 0.0021 . (48)

|Vcd| is extracted from D → Kℓν and D → πℓν decays with assistance from lattice QCD for

the computation of the relevant form factors. Vcs is determined from semileptonic D decays

and from leptonic Ds decay (D+
s → µ+ν), combined with lattice calculation of the decay form

factor fDs
. Both |Vcd| and |Vcs| have rather large errors currently:

|Vcd| = 0.230 ± 0.011 ,

|Vcs| = 0.957 ± 0.010 . (49)

|Vcb| is determined from both inclusive and exclusive decays of B hadrons into charm, yielding

a value

|Vcb| = (41.6 ± 0.6) × 10−3 . (50)

|Vub| is determined from charmless B decays and gives

|Vub| = (4.31 ± 0.30) × 10−3 . (51)
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Elements |Vtd| and |Vts| cannot be currently determined, for a lack of top quark events, but

can be inferred from B meson mixings where these elements appear through the box diagram.

The result is

|Vtd| = (7.4 ± 0.8) × 10−3 ,

|Vtd|
|Vts|

= 0.208 ± 0.008 . (52)

Fig. 1 (f) depicts the decay of top quark into W + b. It can also decay into W + q where q

is d, s, b. By taking the ratio of branching ratios R = B(t → Wb)/
∑

q B(t → Wq), CDF and

D0 have arrived at a limit on |Vtd| > 0.74 [5].
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Figure 1: Processes determining |Vij|.
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2.5.1 Heavy quark symmetry

Heavy quark symmetry plays an important role in the determination of |Vub| and |Vcb|. While

a thorough discussion of HQET (Heavy Quark Effective Theory) is outside the scope of this

write-up, it would be useful to get a feeling of some of the ideas involved. We refer the reader

to Ref. [11] for a thorough review, and Ref. [20] for a pedagogical exposure.

Consider first the purely leptonic decay B− → ℓ−νℓ for ℓ = e, µ, τ . The transition amplitude

for this decay is

Tfi =
GF√

2
Vub[uℓγµ(1 − γ5)uν]

〈

0|uγµ(1 − γ5)b|B−〉 . (53)

Here GF is the Fermi coupling. To compute the decay rate, the hadronic matrix element for

the transition of B meson to vacuum needs to be evaluated. Note that the matrix element of

vector current between pseudscalar meson and vacuum vanishes: 〈0|uγµb|B−〉 = 0, while the

axial vector current matrix element is parametrized as 〈0|uγµγ5b|B−〉 = ifBq
µ, with fB being

the B meson decay constant and qµ the B meson momentum. With this matrix element, the

decay rate can be readily computed. One obtains

Γ(B− → ℓ−νℓ) =
G2
F

8π
f 2
B|Vub|2MBm

2
ℓ

(

1 − m2
ℓ

M2
B

)2

. (54)

Note the helicity suppression, which implies that the number of events in this channel will be

small. Recently BELLE collaboration has observed the decay B− → τ−ν with a 3.5 sigma

statistical significance. Their results can be converted to a value for the product |Vub|fB as

|Vub|fB = [10.1+1.6
−1.4(stat)+1.3

−1.4(syst)] × 10−4 GeV . (55)

Using lattice evaluations of fB, one can obtain the value of |Vub| from Eq. (55). The accuracy

of this determination, which is rather direct, suffers from the lack of events for this helicity

suppressed decay.

Semileptonic decays do not suffer from the helicity suppression, and are therefore more

promising. Unlike a single form factor that appears in the purely leptonic decay, now there will

be two form factors. These two can be related via heavy quark symmetry, as we outline below.

Consider the decay B
0

d → D+ℓνℓ which proceeds via Fig. 1 (d). The transition amplitude for

this decay has the form

Tfi =
GF√

2
Vcb[uℓγµ(1 − γ5)uν ]

〈

D+|cγµ(1 − γ5)b|B
0

d

〉

. (56)

A similar expression is obtained for the decay B
0

d → π+ℓνℓ, with |Vcb| replaced by |Vub| in Eq.

(56). The matrix element of axial vector current between two pseudoscalar mesons vanishes:
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〈

D+|uγµγ5b|B
0

d

〉

= 0. The vector current matrix element between two pseudoscalar mesons

contains two form factors:

〈

D+(k)|uγµb|B0

d(p)
〉

= F1(q
2)

[

(p+ k)µ −
M2

B −M2
D

q2
qµ

]

+ F0(q
2)
M2

B −M2
D

q2
qµ , (57)

where q = p− k.

To see how HQET can relate the two form factors F1(q
2) and F0(q

2), let me briefly review

the crucial elements of HQET. In a hadron composed of one heavy (b) quark and one light

anti-quark u or d, the mass of b is much larger than the scale of QCD dynamics, ΛQCD. The b

quark is then almost on-shell, moving with a velocity close to the hadron’s four velocity. We

write this as

pµQ = mQv
µ + kµ , (58)

where k ≪ mQ is the residual momentum, and v2 = 1. The b quark interacts with the light

degrees of freedom, but such interactions can cause a change in the residual momentum by

∆k ∼ ΛQCD ≪ mQ. Thus ∆v → 0 as ΛQCD/mQ → 0.

In the heavy quark symmetry limit (ΛQCD/mQ → 0), the elastic scattering process B(v) →
B(v′) has the amplitude

1

MB

〈

B(v′)|b(v′)γµb(v)|B(v)
〉

= ξ(v′.v)(v + v′)µ . (59)

A term of the type (v − v′)µ cannot appear on the right-hand side of Eq. (59) since 6v bv = bv

and bv′ 6 v′ = bv′ . The 1/MB factor in Eq. (59) is associated with normalization of states,

so the right-hand side of Eq. (59) has no dependence on the heavy quark flavor. Current

conservation implies ξ(v′.v = 1) = 1, so that the function ξ(v.v′), the Isgur–Wise function [21],

is independent of the heavy quark flavor. Thus, in the heavy quark symmetry limit, we have

1√
MDMB

〈

D(v′)|cv′γµbv|B(v)
〉

= ξ(v.v′)(v + v′)µ . (60)

This transition is now governed by a single form factor, ξ(v′.v) with ξ(1) = 1. Comparing with

Eq. (57), one finds

F1(q
2) =

MD +MB

2
√
MDMB

ξ(w)

F0(q
2) =

2
√
MDMB

MD +MB

(

1 + w

2

)

ξ(w) (61)

where

w = vD.vB =
M2

D +M2
B − q2

2MDMB
. (62)
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As an application of these ideas, consider the decay B → D∗ℓν. The differential decay rate

for this process can be written as

dΓ

dw
= G2

F K F (w)2|Vcb|2 , (63)

where K is a known kinematic function and F (w) is related to the Isgur–Wise function (up to

perturbative QCD corrections). It should obey the normalization

F (1) = ηA(αs)

[

1 +
0

mc
+

0

mb
+ O

(

Λ2
QCD

m2
b,c

)]

. (64)

Here ηA(αs) is a perturbatively calculable function. Note that O(ΛQCD/mc,b) corrections vanish

[22]. This decay distribution can be measured as a function of w, from which F (w)|Vcb| can

be extracted. Now, when extrapolated to zero recoil limit (w = 1), whence the decay rate

vanishes), from Eq. (64), one obtains a value of |Vcb|.

2.5.2 CP violation

Charge conjugation (C) takes a particle to its antiparticle, Parity (spatial reflection) changes the

helicity of the particle. Under CP, e−L will transform to e+R. Both C and P are broken symmetries

in the SM, but the product CP is approximately conserved. Violation of CP has been seen only

in weak interactions. The CKM mechanism predicts CP violation through a single complex

phase that appears in the CKM matrix. Thus in the SM, various CP violating processes in K,

B and other systems get correlated. So far such correlations have been consistent with CKM

predictions, but more precise determinations in the B and D systems at the LHC may open

up new physics possibilities.

In the K0−K0 system, CP violation has been observed both in mixing and in direct decays.

CP violation in mixing arises in the SM via the W–boson box diagram shown in Fig. 2. The

CP asymmetry in mixing is parametrized by ǫ, which is a measure of the mixing between the

CP even and CP odd states K0
1,2 = (K0 ±K0)/

√
2. It has been measured to be

|ǫ| = (2.229 ± 0.010) × 10−3 . (65)

The measured value in in excellent agreement with expectations from the SM, and enables us

to determine the single phase of the CKM matrix. The box diagram contribution to ǫ is given

by

|ǫ| =
G2
Ff

2
kmKm

2
W

12
√

2π2∆mK

B̂K { ηcS(xc)Im[(VcsV
∗
cd)

2]

+ ηtS(xt)Im[(VtsV
∗
td)

2] + 2ηctS(xc, xt)Im[VcsV
∗
cdVtsV

∗
td] } . (66)
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Here S(x) and S(x, y) are Inami–Lim functions [23] with xc,t = m2
c,t/M

2
W , and the η factors are

QCD correction factors for the running of the effective ∆S = 2 Hamiltonian from MW to the

hadron mass scale.

The direct CP violation parameter that leads to the decay K → ππ has also been measured,

leading to the value

Re(ǫ′/ǫ) = (1.65 ± 0.26) × 10−3 . (67)

These decays occur via the penguin diagrams shown in Fig. 3. There are electromagnetic

penguins and gluonic penguins, which tend to cancel each other. While the KM model predicts

non-zero value of ǫ′/ǫ, estimating this value reliably has been difficult, partly because of this

cancelation. Most estimates are in agreement with observations.
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s d
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Figure 2: Box diagram inducing K0 −K0 transition in the SM.

W ds

d d

ii

g

Figure 3: One loop penguin diagram that generates CP violation in direct K → ππ decay.

A wealth of information has been gained about CP violation from the B factories over the

last decade. CP violation in B meson system is now well established. Several CP violating

quantities have been measured in Bd meson system [20], all of which show consistency with

the CKM mixing matrix. Unitarity of the CKM matrix implies that
∑

i VijV
∗
ik = δjk and

∑

j VijV
∗
kj = δik. There are six vanishing combinations, which can be expressed as triangles in

the complex plane. The areas of all of these triangles are the same. The most commonly used
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Figure 4: Unitarity triangle in the CKM model.

triangle arises from the relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 . (68)

In the complex plane, the resulting triangle has sides of similar length (of order λ3). This

unitarity triangle relation is shown in Fig. 4. The three interior angles (α, β, γ), also referred

to as (φ2, φ1, φ3), can be written in the CKM model as

α = arg

(−VtdV ∗
tb

VudV ∗
ub

)

≃ arg

(

−1 − ρ− iη

ρ+ iη

)

,

β = arg

(−VcdV ∗
cb

VtdV ∗
tb

)

≃ arg

(

1

1 − ρ− iη

)

,

γ = arg

(−VudV ∗
ub

VcdV
∗
cb

)

≃ arg (ρ+ iη) . (69)

One experimental test of the CKM mechanism is the measurement of α + β + γ = 1800.

The angle β can be measured with the least theoretical uncertainty from the decay of

Bd → J/ψKS. It is found to be

sin 2β = 0.68 ± 0.03 . (70)

This value is in in good agreement with the CKM prediction.

The angle α is measured from decay modes where b→ uud is dominant. Such decays includ

B → ππ, B → ρρ and B → πρ. The value of α extracted is

α = (88+6
−5)

0 . (71)

The angle γ does not depend on the top quark, and can in principle be measured from

tree–level decays of B meson. Strong interaction uncertainties are rather large in decays such
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as B± → D0K±. The current value of the angle γ is

γ = (77+30
−32)

0 . (72)
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Figure 5: Global fit to the mixing and CP violation data from the UTFit collaboration (left

panel) [24] and the CKMFitter collaboration (right panel) [25].

The current situation with the CKM mixing angles and CP violation phase is depicted in

Fig. 5. The left panel is the result of a global analysis of flavor mixing and CP violation data

by the UTFit [24] collaboration, while the right panel depicts the results from an independent

CKMFitter [25] collaboration. The Wolfenstein parameters η is plotted against ρ in these

figures. Here η = η(1 − λ2/2) and ρ = ρ(1 − λ2/2). A variety of input parameters have gone

into these fits. Some of the constraints used are explicitly indicated in these figures. It is very

non-trivial that the various constraint curves have a common intersection. This demonstrates

the success of the CKM mechanism of flavor mixing and CP violation. The intersection of the

various ellipses gives the best fit value for the Wolfenstein parameters (λ, A, ρ, η), which are

as follows [5]:

λ = 0.2272 ± 0.0010, A = 0.818+0.007
−0.017, ρ = 0.221+0.064

−0.028, η = 0.340+0.017
−0.045 . (73)

Theories of flavor should provide an understanding of these fundamental parameters.

3 Relating quark mixings and mass ratios

Having reviewed the fundamental flavor parameters of the Standard Model, now we turn to

attempts which explain some of the observed features. Necessarily one needs to invoke non–
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standard physics, which can be potentially tested at colliders.

We begin with a simple idea of relating quark masses and mixings by virtue of flavor

symmetries. In the quark sector we have seen that the mass ratios such as md/ms, mu/mc, etc

are strongly hierarchical, while the mixing angles, such as Vus are also hierarchical, although

the hierarchy here is not as strong. Can the quark mixing angle be computed in terms of the

quark mass ratios? Clearly such attempts have to go beyond the SM. Here I give a simple

two–family example which assumes a flavor U(1) symmetry that distinguishes the two families.

3.1 Prediction for Cabibbo angle in a two family model

Consider the mass matrices for (u, c) and (d, s) quarks given by [26]

Mu =





0 Au

A∗
u Bu



 , Md =





0 Ad

A∗
d Bd



 . (74)

The crucial features of these matrices are (i) the zeros in the (1,1) entries, and (ii) their her-

miticity. Neither of these features can be realized within the SM. Recall that the SM symmetry

would have arbitrary non–hermitian matrices for Mu and Md. The zero entries in Eq. (74) can

be enforced by a flavor U(1) symmetry, the hermitian nature can be obtained if the gauge sector

is left–right symmetric. Before constructing such a model, let us examine the consequences of

Eq. (74). Matrices in Eq. (74) have factorizable phases. That is, Mu = PuM̂uP
∗
u , where M̂u

has the same form as Mu but with all entries real, and where Pu = diag(eiαu , 1) is a diagonal

phase matrix. A similar factorization applies to Md with a phase matrix Pd = diag(eiαd, 1).

We can absorb these phase matrices into the quark fields, but since αu 6= αd, the matrix

P ∗
uPd = diag.(eiψ, 1) will appear in the charged current matrix (ψ = αd − αu). The matrices

M̂u and M̂d, which have all real entries, can be diagonalized readily, yielding for the mixing

angles θu and θd

tan2 θu =
mu

mc
,

tan2 θd =
md

ms

. (75)

This yields a prediction for the Cabibbo angle [26]

| sin θC | ≃
∣

∣

∣

∣

√

md

ms
− eiψ

√

mu

mc

∣

∣

∣

∣

. (76)

This formula works rather well, especially since even without the second term, the Cabibbo

angle is correctly reproduced. The phase ψ is a parameter, however, its effect is rather restricted.
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For example, since
√

md/ms ≃ 0.22 and
√

mu/mc ≃ 0.07, | sin θC | must lie between 0.15 and

0.29, independent of the value of ψ.

Now to a possible derivation of Eq. (74). Since SM interactions do not conserve Parity, it

is useful to extend the gauge sector to the left-right symmetric group G ≡ SU(3)C ×SU(2)L×
SU(2)R×U(1)B−L, wherein Parity invariance can be imposed [27]. The (1,2) and (2,1) elements

of Mu,d being complex conjugates of each other will then result. The left–handed and the right–

handed quarks transform as QiL(3, 2, 1, 1/3) +QiR(3, 1, 2, 1/3) under G. Under discrete parity

operation QiL ↔ QiR. This symmetry can be consistently imposed, as WL ↔ WR in the gauge

sector under Parity. The leptons transform as ψiL(1, 2, 1,−1)+ψiR(1, 1, 2,−1) under the gauge

symmetry. Note that ψR, which is a doublet of SU(2)R, contains the right–handed neutrino,

as the partner of eR. Thus there is a compelling reason for the existence of νR, unlike in the

SM, where it is optional.

The Higgs field that couples to quarks should be Φ(1, 2, 2, 0), and under Parity Φ → Φ†. In

matrix form QiL, QiR,Φ read as

QiL =





ui

di





L

, QiR =





ui

di





R

, Φ =





φ0
1 φ+

2

φ−
1 φ0

2



 , (77)

so that the Yukawa Lagrangian for quarks

LYukawa = QLΦY QR +QLΦ̃Ỹ QR + h.c. (78)

is gauge invariant. Here Φ̃ ≡ τ2Φ
∗τ2. Imposing Parity, we see that the Yukawa matrices Y

and Ỹ must be hermitian, Y = Y † and Ỹ = Ỹ †. This is the desired result for deriving Eq.

(74). The VEVs 〈φ0
1〉 and 〈φ0

2〉 can be complex in general, but this will not affect the prediction

for the Cabibbo angle of Eq. (76), since that only requires |(Mu,d)12| = |(Mu,d)21|. Additional

Higgs fields, eg., ∆L(1, 3, 1, 2) + ∆R(1, 1, 3, 2), would be required for breaking the left–right

symmetric gauge group down to the SM and for simultaneously generating large νR Majorana

masses. However, these fields do not enter into the mass matrices of quarks.

To enforce zeros in the (1,1) entries of Mu,d of Eq. (74), we can employ the following U(1)

flavor symmetry: Q1L : 2, Q1R : −2. Q2L : 1, Q2R : −1. Φ1 : 2, Φ2 : 3. Note that two Higgs

bidoublet fields are needed. Φ1 generates the (2,2) entries, while Φ2 generates the (1,2) and

(2,1) entries. There is no (1,1) entry generated, since there is no Higgs field with U(1) charge

of +4. Note also that the Φ̃1,2 fields, which have U(1) charges (−2, −3), do not couple to the

quarks.

While we cannot determine the scale of flavor dynamics in this model, the U(1) flavor

symmetry and the left–right symmetry, which were crucial for the derivation of Eq. (76),
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could show up as new particles at the LHC. In general, one would also expect multiple Higgs

bosons. We should note that the full theory is more elaborate compared to the minimal left–

right symmetry without the flavor symmetry (two, instead of one bi-doublet Higgs fields are

needed), but the effective theory is simpler, with the mass matrices being predictive.

3.2 Three family generalization

Eq. (74) can be generalized for the case of three families, a la Fritzsch [28]. The up and down

quark mass matrices have hermitian nearest neighbor interaction form:

Mu,d =









0 A 0

A∗ 0 B

0 B∗ C









u,d

. (79)

Such matrices have factorizable phases, i.e., Mu,d = Pu,dM̂u,dP
∗
u,d, where M̂u,d are the same

as in Eq. (79), but without any phases, and Pu,d are diagonal phase matrices. Only two

combinations of phases will enter into the CKM matrix, contained in the matrix P = P ∗
uPd =

diag.{eiα, eiβ , 1}. The CKM matrix is then given by

V = OT
uPOd , (80)

where Ou,d are the orthogonal matrices that diagonalize M̂u,d via

OT
u,dM̂u,dM̂

T
u,dOu,d = diag.{m2

u,d, m
2
c,s, m

2
t,b} . (81)

In this model there are a total of eight parameters that describe quark masses, mixings and

CP violation: six real parameters from M̂u,d and the two phases (α, β). (Note that the six

mixing angles that enter into Ou and Od are determined in terms of the quark mass ratios.)

These eight parameters must describe ten observables in the quark sector. There are thus two

true predictions. Furthermore, since (α, β) are phases, they do not count as full parameters.

One finds four relations between masses and mixings [29]:

|Vus| ≃
∣

∣

∣

∣

√

md

ms

− eiψ
√

mu

mc

∣

∣

∣

∣

,

|Vcb| ≃
∣

∣

∣

∣

√

ms

mb

− eiφ
√

mc

mt

∣

∣

∣

∣

,

|Vub| ≃
∣

∣

∣

∣

ms

mb

√

md

mb
+ eiψ

√

mu

mc

(√

ms

mb
− eiφ

√

mc

mt

)∣

∣

∣

∣

,

|Vtd| ≃
∣

∣

∣

∣

mc

mt

√

mu

mt
+ eiψ

√

md

ms

(√

mc

mt
− eiφ

√

ms

mb

)∣

∣

∣

∣

. (82)
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Here the two phases ψ and φ are related to the phases in the diagonal matrix P as ψ = (α−β)

and φ = β. Note that all independent elements of V are determined in this model in terms of

the quark mass ratios and two phase parameters. In the expression for |Vub| in Eq. (82), the

first term is numerically ≃ 6 × 10−4, which is about a factor of 8 less than the value of |Vub|.
Similarly, the first term in the expression for |Vtd| is ∼ 1 × 10−5, which is negligible in relation

to the value of |Vtd|. (For these numerical estimates, I used the values of the running masses

given in Table 1 evaluated at µ = 1 TeV.) If these terms are neglected, one would have the

following predictions:
|Vub|
|Vcb|

≃
√

mu

mc
,

|Vtd|
|Vts|

≃
√

md

ms
. (83)

These predictions are consistent with experimental data.

While the prediction for |Vus| in the Fritzsch ansatz is the same as in the two family model

of Eq. (76), which is successful, the relation for |Vcb| will predict the mass of the top quark to

be in the range (40 − 80) GeV, which is now excluded by data.

There have been attempts to fix the problem of Fritzsch mass matrices by modifying its

form slightly. If small (2,2) elements are allowed in Mu,d, the troublesome relation for |Vcb|
will be removed. However, adding (2,2) entries in Mu and Md introduces two more complex

parameters, and such a model will have no true prediction. The relation of Eq. (76) will

however be maintained, provided that the (2,2) entries are not too large. Furthermore, the

relations of Eq. (83), |Vub|/|Vcb| ≃
√

mu/mc and |Vtd|/|Vts| ≃
√

md/ms, will be preserved [30],

if the new (2,2) entries are small perturbations.

A different alternative is to make the (2,3) and (3,2) entries of Eq. (79) different, while

maintaining the relations between (1,2) and (2,1) entries. This can be achieved by non–Abelian

discrete symmetries. Again, the number of parameters will increase by two compared to the

original Fritszch ansatz. A special case where there is still a true prediction is worth mentioning.

Consider a non–Abelian discrete subgroup G of SU(2) serving as a family symmetry. G is

assumed to have pseudo–real doublet representations, just as SU(2). Let the first two families

of quarks be pseudo–real doublets of G, while the third family quarks are singlets of G. A real

Higgs doublet which is a true singlet of G will generate the (3,3) entries of Mu,d as well as (1,2)

and (2,1) entries. Note that invariance under G will lead to the (1,2) entry being the negative

of the (2,1) entry, a property of the original SU(2) family symmetry. Now, if G is broken by a

Higgs field transforming as a doublet of G, then unequal (2,3) and (3,2) entries in Mu,d can be

generated. This is a concrete modification of the Fritszch ansatz, with (1,2) and (2,1) entries

having the same magnitude, but with the (2,3) and (3,2) entries unrelated.

A model of the type just described has been constructed in Ref. [31]. It is based on the

dihedral group Q6 which contains pseudo–real as well as real doublets. Most interestingly, if
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the origin of CP violation is taken to be spontaneous, then the phase matrix P appearing in Eq.

(80) will have the form P = diag.{e−iφ, eiφ, 1}. (This happens since Mu and Md each will have

a single phase, appearing in the (2,3) and (3,2) entries, apart from irrelevant overall phases, if

all the Yukawa couplings are assumed to be real by virtue of CP invariance.) Such a model

will have one true prediction, since now there are nine parameters describing ten observables.

It was found in Ref. [31] that this prediction, which relates η with ρ, is fully consistent with

data.

We shall return to mass matrix “textures” of the type described here when discussing fermion

masses in the context of Grand Unification in Sec. 5. The nearest neighbor interaction, not

necessarily symmetrical, will find useful applications.

4 Froggatt–Nielsen mechanism for mass hierarchy

The hierarchy in the masses and mixings of quarks and leptons can be understood by assuming a

flavor U(1) symmetry under which the fermions are distinguished. In this approach developed

by Froggatt and Nielsen [32], there is a “flavon” field S, which is a scalar, usually a SM

singlet field, which acquires a VEV and breaks the U(1) symmetry. This symmetry breaking is

communicated to the fermions at different orders in a small parameter ǫ = 〈S〉 /M∗. Here M∗

is the scale of flavor dynamics, and usually is associated with some heavy fermions which are

integrated out. The nice feature of this approach is that the mass and mixing hierarchies will

be explained as powers of the expansion parameter ǫ without assuming widely different Yukawa

couplings. The effective theory below M∗ is rather simple, while the full theory will have many

heavy fermions, called Froggatt–Nielsen fields.

4.1 A two family model

Let me illustrate this idea with a two family example which is realistic when applied to the

second and third families of quarks. Consider Mu and Md for the (c, t) and (s, b) sectors given

by

Mu =





ǫ4 ǫ2

ǫ2 1



 vu , Md =





ǫ3 ǫ3

ǫ ǫ



 vd . (84)

Here ǫ ∼ 0.2 is a flavor symmetry breaking parameter. Every term in Eq. (84) has an order one

coefficient which is not displayed. We obtain from Eq. (84) the following relations for quark

31



masses and |Vcb|:
mc

mt
∼ ǫ4 ,

ms

mb
∼ ǫ2 , |Vcb| ∼ ǫ2 . (85)

All of these relations work well, for ǫ ∼ 0.2. Although precise predictions have not been made,

one has a qualitative understanding of the hierarchies.

How do we arrive at Eq. (84)? We do it in two stages. First, let us look at the effective

Yukawa couplings, which can be obtained from the Lagrangian:

Leff
FN =

[

Q3u
c
3Hu +Q2u

c
3HuS

2 +Q3u
c
2HuS

2 +Q2u
c
2HuS

4
]

+
[

Q3d
c
3HdS +Q3d

c
2HdS +Q2d

c
2HdS

3 +Q2d
c
3HdS

3
]

+ h.c. (86)

Here I assumed supersymmetry, so that there are two Higgs doublets Hu,d. It is not necessary

to assume SUSY, one can simply identify Hu as H of SM, and replace Hd by H̃ . In Eq. (86) all

couplings are taken to be of order one. The symmetry of Eq. (86) is a U(1) with the following

charge assignment.

{Q3, u
c
3} : 0; {Q2, u

c
2} : 2; {dc2, dc3} : 1; {Hu, Hd} : 0; S : −1 . (87)

Now we wish to obtain Eq. (86) by integrating out certain Froggatt–Nielsen fields. This

is depicted in Fig. 6 via a set of “spaghetti” diagrams. As you can see, there are a variety of

fields denoted by Gi, Gi (i = 1− 4) for the up–quark mass generation. Gi have the same gauge

quantum numbers as the uc quark of SM, while Gi have the conjugate quantum numbers. Fi

have the quantum numbers of dc quark, while F i the conjugate quantum numbers.

You can readily read off the flavor U(1) charges of the various Fi and Gi fields from the

spaghetti diagrams. For example, the charge of G1 is −2, while that of G1 is +2. The charges

of G2 is −1 and that of G2 is +1.

All flavor dynamics in this class of models could occur near the Planck scale. As long as the

hierarchy between 〈S〉 and the masses of the Froggatt–Nielsen fields is not too strong, realistic

fermion masses will be generated. Consider for example, Fig. 6 (b) which induces the b–

quark mass. The effective interaction from this diagram goes as Leff
b = Y1Y2 (Q3d

c
3Hd) (S/MF1

),

where Y1,2 are order one Yukawa couplings. If 〈S〉 /MF1
∼ 0.2 or so, realistic b–quark mass

is obtained (with tan β ∼ 10). This allows for both 〈S〉 and MF1
to be near the Planck

scale. From Fig. 6 (f), one can read off the effective Lagrangian inducing the c–quark mass:

Leff
c = Π5

i=1Y
′
i (Q2u

c
3Hu) (S4/M4

G). Here Y ′
i are order one Yukawa couplings, and we assumed

that all of Gi (i = 1− 4) appearing in Fig. 6 (f) have a common mass MG. With all couplings

being order one, mc/mt ∼ 1/400 can be reproduced, with ǫ ∼ 0.2. It should be emphasized

that, although there are various Yukawa couplings, all of them can take order one values.
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Figure 6: Froggatt–Nielsen fields generating effective Yukawa couplings of Eq. (86).
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4.2 A realistic three family Froggatt–Nielsen model

Actually the flavor U(1) that we used in the previous section is anomalous. String theory, when

compactified to four dimension, generically gives an anomalous U(1)A with anomaly cancelation

occuring by the Green–Schwartz mechanism [33]. In this case, we can get rid of the complicated

Froggatt–Nielsen fields, and simply write down higher dimensional operators suppressed by the

string scale. A bonus in this approach is that the small expansion parameter ǫ can be computed

in specific models, where it tends to come out close to 0.2, of order the Cabibbo angle.

An explicit and complete anomalous U(1) model that fits well all quark and lepton masses

and mixings is constructed below. Consider the quark and lepton mass matrices of the following

form [34]:

Mu ∼ 〈Hu〉









ǫ 8 ǫ 6 ǫ 4

ǫ 6 ǫ4 ǫ2

ǫ 4 ǫ2 1









, Md ∼ 〈Hd〉ǫp









ǫ 5 ǫ 4 ǫ 4

ǫ3 ǫ2 ǫ2

ǫ 1 1









,

Me ∼ 〈Hd〉ǫp









ǫ 5 ǫ3 ǫ

ǫ 4 ǫ2 1

ǫ 4 ǫ2 1









, MνD
∼ 〈Hu〉ǫs









ǫ2 ǫ ǫ

ǫ 1 1

ǫ 1 1









,

Mνc ∼MR









ǫ2 ǫ ǫ

ǫ 1 1

ǫ 1 1









⇒ M light
ν ∼ 〈Hu〉2

MR
ǫ2s









ǫ2 ǫ ǫ

ǫ 1 1

ǫ 1 1









. (88)

Here we work with the MSSM gauge group with supersymmetry realized at the TeV scale. Each

entry has an order one pre-factor in the matrices of Eq. (88), which is not explicitly shown.

These matrices can be obtained by the U(1) charge assignment of Table 2. In Eq. (88), the

integer p is allowed to take values 0, 1 or 2, corresponding to tanβ taking large, medium or small

values. The integer s only enters into neutrino masses. Green–Schwarz anomaly cancelation

condition requires s = p in the simplest scheme. With s = p, the charge assignment of Table 2

will be compatible with SU(5) unification. That is to say that the {Qi, u
c
i , e

c
i} fields of a given

generation all have the same U(1)A charge, and similarly, the {dci , Li} fields of a given family

have the same charge. As we discuss in Sec. 5, the former set of SM particles are grouped into

a 10 of SU(5), while the latter set forms a 5.

In the last line of Eq. (88), Mνc stands for the heavy νc Majorana mass matrix. When the

seesaw formula is applied one obtains the light neutrino mass matrix M light
ν , shown also in the

last line of Eq. (88).
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Field U(1)A Charge Charge notation

Q1, Q2, Q3 4, 2, 0 qQi

L1, L2, L3 1 + s, s, s qLi

uc1, u
c
2, u

c
3 4, 2, 0 qui

dc1, d
c
2, d

c
3 1 + p, p, p qdi

ec1,e
c
2,e

c
3 4 + p− s, 2 + p− s, p− s qei

νc1, ν
c
2, ν

c
3 1, 0, 0 qνi

Hu, Hd, S 0, 0, −1 (h, h̄, qs)

Table 2: The flavor U(1)A charge assignment for the MSSM fields and the flavon field S.

All the qualitative features of quark and lepton masses and mixings are reproduced by these

matrices. These include small quark mixings and large neutrino mixings. The mass ratios in

the up–quark sector scale as mu : mc : mt ∼ ǫ8 : ǫ4 : 1, while those in the down quarks scale as

md : ms : mb ∼ ǫ5 : ǫ2 : 1 with an identical scaling for the charged lepton mass ratios. (See the

diagonal entries of Mu,d,e in Eq. (88).) These are all consistent with experimental data. The

quark mixing angles scale roughly as the down quark mass ratios, which is also reasonable. In

the charged lepton sector, the mixing angles are larger, compared to the quark sector. This

arises because of the lopsided structure of Md and Me with Md ∼ MT
e . This is a feature of

SU(5) grand unification, where left–handed lepton doublets are paired with the conjugate of

the right–handed down quarks. As a result, the left–handed leptonic mixing angles will be

related to the right–handed down quark mixing angles, which are allowed to be large since they

are unobservable in the SM [35]. Note also that the hierarchy between light neutrino masses is

weaker, (m1 : m2 : m3) ∼ (ǫ2 : 1 : 1), compared with the charged fermion mass hierarchy. This

feature is also consistent with neutrino oscillation data.

A variety of models based on anomalous U(1) flavor symmetry have been proposed in the

literature. A cross section of these models can be found in Ref. [36, 37, 38].

4.2.1 More about anomalous U(1) flavor symmetry

To see the consistency of the three family model described above, and to see how it may be

subject to experimental scrutiny, let us explore the structure of anomalous U(1) flavor symmetry

and its applications a little further. This will also enable us to compute the small parameter ǫ

in the model of Table 2.

In heterotic string theory the U(1)A anomalies are canceled by the Green–Schwarz mecha-
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nism [33] which requires

A1

k1
=
A2

k2
=
A3

k3
=
AF
3kF

=
Agravity

24
. (89)

Here A1, A2, A3, AF and Agravity are the U(1)2
Y × U(1)A, SU(2)2

L × U(1)A, SU(3)2
C × U(1)A,

U(1)3
A and (Gravity)2 × U(1)A anomaly coefficients. (The subscript F is used to indicate the

anomalous U(1) flavor symmetry group.) All other anomalies (such as U(1)2
A × U(1)Y ) must

vanish. ki (i = 1, 2, 3), kF are the Kac-Moody levels. The non–Abelian levels k2 and k3 must

be integers. The factor 1/3 in front of the cubic anomaly AF has a combinatorial origin owing

to the three identical U(1)A gauge boson legs.

Even without a covering grand unified group, string theory predicts unification of all gauge

couplings, including that of the U(1)A and gF , at the fundamental scale Mst [39, 40]:

kig
2
i = kFg

2
F = 2g2

st. (90)

Here gi are the U(1)Y , SU(2)L and SU(3)C gauge couplings for i = 1, 2, 3.

With k2 = k3 = 1 we find from Table 2, A2 = (19 + 3s)/2 and A3 = (19 + 3p)/2. Eq.

(89) then requires p = s, i.e., a common exponent for the charged lepton and the neutrino

Dirac Yukawa coupling matrices. With p = s, the condition A1/k1 = A2/k2 fixes k1 to be 5/3,

which is consistent with SU(5) unification. Note also that the charges given in Table 2 become

compatible with SU(5) unification. Since Tr(Y ) = 0 for the fermion multiplets of SU(5), and

since the Higgs doublets carry zero U(1)A charge, the anomaly coefficient [U(1)A]2 × U(1)Y

vanishes, as required. The last equality in Eq. (89) requires

Agravity = Tr (q) = 12(19 + 3p). (91)

This cannot be satisfied with the MSSM fields alone, since Tr(q)MSSM = 5(13 + 3p), which

does not match Eq. (91). We cancel this anomaly by introducing MSSM singlet fields Xk

obeying Tr (q)X = Agravity −Tr (q)MSSM = 163 + 21p. If all the Xk fields have the same charge

equal to +1, they will acquire masses of order Mstǫ
2 through the coupling XkXkS

2/Mst and

will decouple from low energy theory. We will assume that these fields Xk have charge +1.

With the charges of all fields fixed, we are now in a position to determine the U(1)A charge

normalization so that g2
F = g2

2 = g2
3 at the string scale, (We take k2 = k3 = 1.) This nor-

malization factor, which we denote as |qs|, is given by |qs| = 1/
√
kF . All the charges given in

Table 2 are to be multiplied by |qs|. From the Green–Schwarz anomaly cancelation condition

AF/(3kF ) = A2/k2, we have

Tr (q3)

3kF
=

19 + 3p

2k2

, (92)
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from which we find the normalization of the U(1)A charge |qs| = 1/
√
kF to be

|qs| = (0.179, 0.186, 0.181) for p = (0, 1, 2) . (93)

The Fayet–Iliopoulos term for the anomalous U(1)A, generated through the gravitational

anomaly, is given by [41]

ξ =
g2
stM

2
st

192π2
|qs|Agravity , (94)

where gst is the unified gauge coupling at the string scale (see Eq. (90)). By minimizing the

potential from the U(1)A D–term

V =
|qs|2g2

F

8

(

ξ

|qs|
− |S|2 +

∑

a

qfa |f̃a|2 +
∑

k

qXk |Xk|2
)2

, (95)

in such a way that supersymmetry remains unbroken (f̃a are the MSSM sfermions and Xk are

the singlet fields, which do not acquire VEVs), one finds for the VEV of S

ǫ = 〈S〉/Mst =
√

g2
stAgravity/192π2. (96)

For the fermion mass texture in Eq. (88), corresponding to the U(1)A charges given in Table

2, we find

ǫ = (0.177, 0.191, 0.204) for p = (0, 1, 2) . (97)

This shows that the small expansion parameter can indeed be calculated in string–inspired

models. It should be noted that this is a bottom–up approach to model building, it would of

course be desirable to start from string theory and arrive at the spectrum and charges listed in

Table 2.

The masses of the U(1)A gauge boson and the corresponding gaugino are obtained from

MF = |qs|gF 〈S〉/
√

2 and found to be

MF =

(

Mst

54.5
,
Mst

52.5
,
Mst

53.9

)

for p = (0, 1, 2) . (98)

In the momentum range below Mst and above MF , these gauge particles will be active and will

induce flavor dependent corrections to the sfermion soft masses and the A–terms. Implications

of these effects have been studied in Ref. [34, 38], where it has been shown that the process

µ → eγ in this class of models is very close to the current experimental limits. Ongoing

MEG experiment should be able to probe the entire allowed parameter space of these models,

provided that the SUSY particles have masses not exceeding about 1 TeV.
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4.3 The SM Higgs boson as the flavon

Can the SM Higgs field itself be the flavon field? Clearly, then new flavor dynamics must

happen near the TeV scale. This is apparently possible with significant consequences for Higgs

boson physics, as I shall now outline [42, 43].

Consider an expansion in H†H/M2, which is a SM singlet that can play the role of S. Here

H is the SM Higgs doublet and M is the scale of new physics. Immediately you may wonder

how this is possible, since H†H cannot carry any U(1) quantum number. But think of SUSY

at the TeV scale. SUSY has two Higgs doublets, Hu and Hd, in which case the combination

HuHd can carry U(1) charge. When reduced to SM this expansion in terms of H†H can be

consistent.

Consider the following mass matrices for quarks in terms of the expansion parameter

ǫ =
v

M
. (99)

Mu =









hu11ǫ
6 hu12ǫ

4 hu13ǫ
4

hu21ǫ
4 hu22ǫ

2 hu23ǫ
2

hu31ǫ
4 hu32ǫ

2 hu33









v , Md =









hd11ǫ
6 hd12ǫ

6 hd13ǫ
6

hd21ǫ
6 hd22ǫ

4 hd23ǫ
4

hd31ǫ
6 hd32ǫ

4 hd33ǫ
2









v . (100)

The charged lepton mass matrix is taken to have a form similar to Md, with the couplings

hdij replaced by hℓij. These matrices give good fit to masses and mixings, as in the case of

anomalous U(1) model with ǫ ∼ 1/7 and all the couplings hu,dij being of order one. The masses

of the quarks and leptons can be read off from Eq. (100) in the approximation ǫ≪ 1:

{mt, mc, mu} ≃ {|hu33|, |hu22|ǫ2, |hu11 − hu12h
u
21/h

u
22|ǫ6}v,

{mb, ms, md} ≃ {|hd33|ǫ2, |hd22|ǫ4, |hd11|ǫ6}v,
{mτ , mµ, me} ≃ {|hℓ33|ǫ2, |hℓ22|ǫ4, |hℓ11|ǫ6}v. (101)

The quark mixing angles are found to be:

|Vus| ≃
∣

∣

∣

∣

hd12
hd22

− hu12
hu22

∣

∣

∣

∣

ǫ2,

|Vcb| ≃
∣

∣

∣

∣

hd23
hd33

− hu23
hu33

∣

∣

∣

∣

ǫ2,

|Vub| ≃
∣

∣

∣

∣

hd13
hd33

− hu12h
d
23

hu22h
d
33

− hu13
hu33

∣

∣

∣

∣

ǫ4. (102)

With ǫ = 1/6.5 and with all couplings hu,dij being of order one, excellent fits to the quark
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masses and CKM mixing angles can be found. As an example, take the couplings to be

{|hu33|, |hu22|, |hu11 − hu12h
u
21/h

u
22|} ≃ {0.96, 0.14, 0.95},

{|hd33|, |hd22|, |hd11|} ≃ {0.68, 0.77, 1.65},
{|hℓ33|, |hℓ22|, |hℓ11|} ≃ {0.42, 1.06, 0.21}. (103)

The corresponding quark masses at µ = mt(mt) are:

{mt, mc, mu} ≃ {166, 0.60, 2.2 × 10−3} GeV,

{mb, ms, md} ≃ {2.78, 7.5 × 10−2, 3.8 × 10−3} GeV,

{mτ , mµ, me} ≃ {1.75, 0.104, 5.01 × 10−4} GeV. (104)

All these are in agreement with values quoted in Table 1. Furthermore, the CKM mixing angles

are also reproduced correctly with this choice of couplings.

In this scheme, the Yukawa coupling matrices of the physical quark fields are no longer

proportional to the corresponding mass matrices. We obtain for the Yukawa couplings,

Yu =









7hu11ǫ
6 5hu12ǫ

4 5hu13ǫ
4

5hu21ǫ
4 3hu22ǫ

2 3hu23ǫ
2

5hu31ǫ
4 3hu32ǫ

2 hu33









, Yd =









7hd11ǫ
6 7hd12ǫ

6 7hd13ǫ
6

7hd21ǫ
6 5hd22ǫ

4 5hd23ǫ
4

7hd31ǫ
6 5hd32ǫ

4 3hd33ǫ
2









. (105)

Take for example, the (3,3) entry in Md. It arises from the operator hd33Q3d
c
3H̃(H†H)/M2.

The contribution to the mass matrix from this operator is hd33vǫ
2, while the contribution to the

Yukawa coupling is (h/
√

2)hd33(3ǫ
2). The flavor factors (3 in this example) are not the same for

various entries, and would result in flavor violation in Higgs interactions.

There is a tree–level contribution mediated by the Higgs boson for K0 − K̄0 mass difference

in this scheme. The new contribution, ∆mHiggs
K , is given by

∆mHiggs
K ≃ 4

3

f 2
KmKBK

m2
h0

ǫ12 [ {1

6

m2
K

(md +ms)2
+

1

6
}Re

[

(

hd12 + hd∗21√
2

)2
]

− {11

6

m2
K

(md +ms)2
+

1

6
}Re

[

(

hd21 − hd∗12√
2

)2
]

] . (106)

Here BK is the bag parameter. Using BK = 0.75, fK ≃ 160 MeV, ǫ ≃ 1/6.5 ms(1 GeV) = 175

MeV, md(1 GeV) = 8.9 MeV, and with hd12 = 1, hd21 = 0.5, we obtain ∆mHiggs
K ≃ 3.1 × 10−17

GeV, for mh0 = 100 GeV. This is two orders of magnitude below the experimental value. We

see broad consistency with data, primarily because of the appearance of high powers of ǫ in
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processes involving the light generations. For heavy flavors, this suppression is not that strong.

For example, the tch0 vertex has a coefficient

Lt−cFCNC =
2ǫ2h0

√
2

(hu23 c t
c + hu32 t c

c) + h.c. (107)

This can lead to a branching ratio for t → ch0 at the level of (0.1 − 1)%, depending on the

actual value of the order one coupling huij. This decay may be observable at the LHC.

The most striking signature of this scenario is that the decay branching ratios of the Higgs

boson will be modified considerably compared to the SM. Decays into light fermions are en-

hanced, while decay into W pair is not. For a specific set of flavor quantum numbers, the decay

branching ratios are shown in Fig. 7, adopted from Ref. [43]. The solid lines correspond to

branching ratios in the present model, while the dashed lines are the corresponding ones in the

SM. Note that the branching ratio for h → bb is enhanced. While the h → WW ∗ decay rate

becomes comparable to h → bb in the SM for a Higgs boson mass of 135 GeV, this crossover

occurs at mh = 175 GeV in the present case. Branching ratio for h → µ+µ− has increased,

while the branching ratio for h→ γγ has diminished. These predictions are readily testable at

the LHC once the Higgs boson is detected.

Figure 7: Higgs branching ratios with the SM Higgs as a flavon field [43]. The solid lines corre-

spond to branching ratios with Higgs as a flavon, while the dashed lines are the corresponding

SM branching fractions.
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5 Grand Unification and the flavor puzzle

In this section we will develop ideas of Grand Unification which can provide significant insight

into the flavor puzzle. When assisted by flavor symmetries, grand unified theories (GUTs) have

great potential for addressing many of the puzzles.

Grand Unification is an ambitious program that attempts to unify the strong, weak and

electromagnetic interactions [44, 45, 46]. It is strongly suggested by the unification of gauge

couplings that happens in the minimal supersymmetric standard model. This is shown in Fig.

8, where the three gauge couplings of the standard model are extrapolated to high energies

assuming weak scale supersymmetry. It is clear that data supports the merging of all three

couplings to a common value. Besides its aesthetic appeal, in practical terms, grand unified

theories reduce the number of parameters. For example, the three gauge couplings of the SM

are unified into one at a very high energy scale ΛGUT ≃ 2×1016 GeV. The apparent differences

in the strengths of the various forces is attributed to the spontaneous breakdown of the GUT

symmetry to the MSSM and the resulting renormalization flow of the gauge couplings. SUSY

GUTs are perhaps the best motivated extensions of the SM. They explain the quantization

of electric charge, as well as the quantum numbers of quarks and leptons. They provide ideal

settings for understanding the flavor puzzle, which will be the focus of this discussion.
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Figure 8: Evolution of the inverse gauge couplings (α−1
1 , α−1

2 , α−1
3 ) (from top to bottom) in

the MSSM as a function of momentum.

The simplest GUT model is based on SU(5) [45]. I will assume low energy supersymmetry,

motivated by the gauge coupling unification and a solution to the hierarchy problem. For

an understanding of quark–lepton masses and mixings SUSY is not crucial, but within the
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context of SUSY there will be many interesting flavor violating processes. In SU(5), the fifteen

components of one family of quarks and leptons are organized into two multiplets: A 10–plet

and a 5–plet. The 5 is of course the anti–fundamental representation of SU(5), while the 10

is the anti-symmetric second rank tensor. These are represented by the following matrices:

ψ(10) :
1√
2





















0 uc3 −uc2 u1 d1

−uc3 0 uc1 u2 d2

uc2 −uc1 0 u3 d3

−u1 −u2 −u3 0 ec

−d1 −d2 −d3 −ec 0





















, χ(5̄) :





















dc1

dc2

dc3

e

−νe





















. (108)

Each family of quarks and leptons is organized in a similar form. It is very nontrivial that this

assignment of fermions under SU(5) is anomaly free. The anomaly from the 5–plet is canceled

by the anomaly from the 10–plet. Note that quarks and leptons are unified into common

multiplets. Furthermore, particles and antiparticles are also unified. These features imply that

baryon number, which is a global symmetry of the SM, is violated, and that proton will decay.

Because the unification scale is rather large, ΛGUT ≈ 2×1016 GeV, the decay rate of the proton

is very slow, with a lifetime of order 1035 years. This is consistent with, but not very far from

current experimental limits. Note that there is no νc field in the simplest version of SU(5), but

it can be added as a gauge singlet, as in the SM.

The symmetry breaking sector consists of two types of Higgs fields. One is an adjoint 24H–

plet Σ, which acquires vacuum expectation value and breaks SU(5) down to the SM gauge

symmetry. The VEV of this traceless hermitian matrix is chosen as

〈Σ〉 = V.diag

{

1, 1, 1, −3

2
, −3

2

}

. (109)

Under SU(5) gauge transformation Σ → U ΣU †. It is then clear that the VEV structure of

Eq. (109) will leave invariant an SU(3) × SU(2) × U(1) subgroup, identified as the SM gauge

symmetry. 12 of the 24 gauge bosons of SU(5) will acquire mass of order V ∼ ΛGUT ≈ 2×1016

GeV, leaving the remaining 12 SM gauge bosons massless.

Σ cannot couple to the fermions. A pair of {5H + 5H} Higgs fields, denoted as (H + H),

are used for generating fermion masses and for electroweak symmetry breaking. H contain

the Hu field of MSSM, while H contains the Hd field. These (H + H) fields also contain

color–triplet components, which must acquire GUT–scale masses, since they mediate proton

decay. In minimal SUSY SU(5) this splitting of color triplets and weak doublets is done by a

special arrangement, by precisely tuning the mass term MHHH and the coupling λHHΣ of the
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superpotential, so that the SU(2)L doublet components remain light, while their color–triplet

partners acquire large masses. This is possible, since the VEV of Σ breaks the SU(5) symmetry.

The Yukawa couplings of fermions and the (H ,H) fields are obtained from the superpoten-

tial

WYuk =
(Yu)ij

4
ψαβi ψγδj H

ρǫαβγδρ +
√

2 (Yd)ijψ
αβ
i χjαHβ . (110)

Here (i, j) are family indices, and (α, β...) are SU(5) indices with ǫ being the completely

antisymmetric Levi–Cevita tensor. The H field has components similar to χ of Eq. (108),

so that its fifth component is neutral and acquires a VEV:
〈

H5

〉

= vd. Similarly, the fifth

component of H acquires a VEV: 〈H5〉 = vu. When these VEVs are inserted in Eq. (110), the

following mass terms for quarks and leptons are generated:

Lmass =
1

2
(Yu)ij vu (uiu

c
j + uju

c
i) + (Yd)ij vd (did

c
j + eciej) + h.c. (111)

This leads to the following fermion mass matrices:

Mu = Yu vu , Md = Yd vd , Mℓ = Y T
d vd . (112)

Note that Mu is a symmetric matrix in family space. Furthermore, there are only two Yukawa

coupling matrices describing charged fermion masses, unlike the three matrices we have in the

SM. The reason for this reduction of parameters is the higher symmetry and the unification of

quarks with leptons. Specifically, we have the relation

Md = MT
ℓ . (113)

This identity leads to the asymptotic (valid at the GUT scale) relations for the mass eigenvalues

m0
b = m0

τ , m
0
s = m0

µ, m
0
d = m0

e , (114)

where the superscript 0 is used to indicate that the relation holds at the GUT scale.

In order to test the validity of the prediction of minimal SUSY SU(5), we have to extrapolate

the masses from GUT scale to low energy scale where the masses are measured. This is done

by the renormalization group equations. The evolution of the b–quark and τ–lepton Yukawa

couplings (λb and λτ ), which are proportional to b–quark and τ–lepton masses, is shown in Fig.

9 for two differen values of tan β = (1.7, 50). tan β = vu/vd is the ratio of the two Higgs VEVs

in MSSM. Here we have extrapolated the Yukawa couplings derived from the observed masses

from low scale to the GUT scale. It is remarkable that unification of masses occurs in this

simple context. The main effect on the evolution comes from QCD enhancement of b quark

mass as it evolves from high energy to low energy scale, which is absent for the τ lepton.
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Figure 9: Evolution of the b–quark and τ–lepton Yukawa couplings in the MSSM for tanβ = 1.7

(left panel) and 50 (right panel). mb(mb) = 4.65 GeV has been used here.

Why these two specific values of tan β? As it turns out, b− τ mass unification occurs only

for specific values of tanβ, either for large values, or very small values. In Fig. 10 we plot

the allowed values of tanβ as a function of the strong coupling αs [47]. From this figure, it

is clear that intermediate values of tanβ would lead to deviation from m0
b = m0

τ by as much

as 25%. For low and large values of tanβ, there is always good solution for mb(mb), while

for intermediate values there is no acceptable solution. It should be mentioned that there are

significant finite corrections to the b–quark mass from loops involving the gluino, which is not

included in the RGE analysis. These graphs, while loop suppressed, are enhanced by a factor

of tan β, and thus can be as large 30-40% for mb(mb) [48]. So even intermediate values of tanβ

are not totally excluded.

The last two relations of Eq. (114) turn out to be not acceptable when compared to low

energy values of the masses. One can see this without going through the RGE evolution. Eq.

(114) implies m0
s/m

0
d = m0

µ/m
0
e. These mass ratios are RGE independent, so one can compare

them directly with observations. We have seen that ms/md ≃ 20, while mµ/me ≃ 200. So this

relation is off by an order of magnitude.

There is an elegant way of fixing the light fermion masses in SU(5). Consider modifying

Eq. (114) to the following relations:

m0
b = m0

τ , m
0
s =

1

3
m0
µ, m

0
d = 3m0

e . (115)

These relations were proposed by Georgi and Jarlskog and are known as the GJ relations [49].

The factors of 3 that appears in Eq. (115) have a simple group theoretic understanding in

terms of B − L, under which lepton charges are (−3) times that of quark charges. The RGE

independent quantity from Eq. (115) gives us

ms

md

=
1

9

mµ

me

, (116)
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Figure 10: Deviation in the asymptotic relation m0
b = m0

τ as a function of tanβ and αs [47].

which is in good agreement with observations. There is one other prediction, which can be

taken to be the value of md(1 GeV) ≃ 8 MeV, which is also is good agreement with data,

although recent lattice calculations prefer somewhat smaller values of md.

5.1 A predictive GUT framework for fermion masses

How would one go about deriving the Georgi–Jarlskog mass relations? We invoke a flavor U(1)

symmetry as before. Consider the following mass matrices for up quarks, down quarks and

charged leptons [49, 50, 51, 52].

Mu =









0 a 0

a 0 b

0 b c









, Md =









0 deiφ 0

de−iφ f 0

0 0 g









, Mℓ =









0 d 0

d −3f 0

0 0 g









. (117)

The factor (−3) in charged lepton versus down quark mass matrix is attributed to the B − L

quantum number, and the zeros are enforced by a flavor symmetry. In SU(5) GUT, the (1,2)

and the (2,1) entries of Md (and Mℓ) are unrelated, but in SO(10) GUT discussed in the next
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subsection, they can be related, as in Eq. (117). All parameters are complex to begin with, but

after field redefinitions, only a single complex phase survives. There are 7 parameters in all to

fit the 13 observables (9 masses, 3 mixing angles and one CP phase), thereby resulting in six

predictions. Three of these predictions are the b, s and d–quark masses. We write them at the

low energy scale by incorporating factors denoted as η which are the RGE evolution factors to

go from the weak scale to the GUT scale. For light quark masses, there is a further evolution

to go down from the weak scale to their respective mass (or hadron) scale. The predictions of

the model for the quark masses are given by:

mb = η−1
b/τmτ ;

md/ms

(1 −md/ms)2
= 9

me/mµ

(1 −me/mµ)2
; (ms −md) =

1

3
η−1
s/µ(mµ −me) . (118)

The other three predictions are for the quark mixing angles and the CP phase J . J is the

rephasing invariant CP violation parameter (Jarlskog invariant) which can be defined as

J = Im(VusVcbV
∗
ubV

∗
cs) (119)

and has a value of J ≃ 2.8 × 10−5. We have for the remaining three predictions [52]

|Vcb| = η−1
KMη

1/2
u/t

√

mc

mt

;
|Vub|
|Vcb|

=

√

mu

mc

; (120)

J = η−2
KMηu/t

√

md

ms

√

mc

mt

√

mu

mt

[

1 − 1

4

(√

mu

mc

√

ms

md

+

√

mc

mu

√

md

ms

−
√

mc

mu

√

ms

md

|Vus|2
)2
]

1

2

.

Here ηct = [(m0
c/m

0
t )/(mc(mt)/mt(mt))], ηKM = |V 0

cb|/|Vcb|, etc. One can write down semi–

analytic results for the RGE factors, if the bottom–quark Yukawa coupling hb is much smaller

than the top Yukawa coupling ht, (corresponding to tanβ <∼ 10 or so). These RGE factors can

be expressed then as

ηKM = ηd/b =

(

1 − Yt
Yf

) 1

12

; ηu/t =

(

1 − Yt
Yf

) 1

4

; ηs/µ =

(

α1

αG

)−10/99(
α3

αG

)−8/9

ηb/τ =

(

α1

αG

)−10/99(
α3

αG

)−8/9(

1 − Yt
Yf

)−1/12

. (121)

Here αG is the unified gauge coupling strength, Yt = h2
t at the weak scale and Yf is the fixed

point value of Yt. That is, Yf is the largest value Yt can take consistent with perturbation

theory being valid upto the GUT scale. Numerically, Yf ≃ 1.2. Yt is of course obtained from

Yt = [mt(mt)/vu]
2, which for Mt = 172.5 GeV is Yt ≃ 0.876. Note that the CKM mixing

parameters and the mass ratios in the same charge sector evolve only due to Yukawa couplings.

46



The mass ratio ms/mµ does change with momentum proportional to the gauge interaction

strength.

While five of the six predictions of this model agree well with experiments, the relation for

|Vcb| of Eq. (120) would imply that either the top quark mass is much higher than its observed

value, or that the value of |Vcb| is much larger than allowed. Indeed, if we use an acceptable

value of Mt = 172.5 GeV, wiht Yf = 1.2, Eq. (120) would lead to |Vcb| ≃ 0.053, which is more

than 10 standard deviations away from its central value. If |Vcb| is to be decreased down to

any acceptable value, top quark mass will have to be very close to its perturbative upper limit,

around 200 GeV, which is also excluded by experiments.

We conclude that, although very predictive and simple, the ansatz of Eq. (117) is excluded

by data. It is interesting that while the original Fritszch ansatz of Eq. (79) was excluded since

top quark mass was predicted to be too low, the present ansatz, which was very popular until

a few years ago, is excluded for its prediction of top mass that is too large.

5.2 Fermion masses in a predictive SO(10) model

Now let us turn to an even more interesting class of GUTs, those based on the gauge symmetry

SO(10) [53]. All members of a family are unified into a 16 dimensional spinor representation

of SO(10). This requires the existence of right–handed neutrino νc, leading naturally to the

seesaw mechanism and small neutrino masses. SU(5) has the option of having neutrino mass,

but in that context there is no compelling argument for its existence. SO(10) models are the

canonical grand unified models, owing to the observed neutrino masses, and the fact that all

members of a family are unified into a single 16–dimensional spinor multiplet in SO(10).

The spinor of SO(10) breaks down under SU(5) (which is one of its subgroups) as

16 = 10 + 5 + 1 , (122)

where the 1 is the νc field. The 10 and the 5 fields are identical to the case of SU(5). We

shall again assume low energy supersymmetry. Gauge symmetry breaking is accomplished in

the SUSY limit by introducing Higgs fields in the adjoint 45H, spinor {16H + 16h} and vector

10H representations. Because there is more symmetry in SO(10), more scalars are needed to

achieve symmetry breaking down to the SM. The spinor Higgs fields break SO(10) down to

SU(5) changing the rank of the gauge group, while the adjoint 45H–plet breaks this symmetry

down to the SM. The vector 10H–plet is used for fermion mass generation and for electroweak

symmetry breaking. The MSSM Higgs doublets Hu,d are contained partially in the 10H but

can be partially also in the 16H.
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Let me work out a specific flavor model based on SO(10) supplemented by a U(1) symmetry

[54]. While this model will not be as predictive as the ansatz that generated the GJ relations

in the previous subsection, there are still a number of predictions, and these predictions are

consistent with data. Several variations of the theme can be found in the literature [55], but

here I confine the discussions to the mass matrices of Ref. [54] and its slight generalization

studied in Ref. [56].

The mass matrices for up and down quarks, and Dirac neutrino and charged leptons take

the form:

Mu =









0 ǫ′ 0

−ǫ′ ζu22 σ + ǫ

0 σ − ǫ 1









M0
u; Md =









0 η′ + ǫ′ 0

η′ − ǫ′ ζd22 η + ǫ

0 η − ǫ 1









M0
d

MD
ν =









0 −3ǫ′ 0

3ǫ′ ζu22 σ − 3ǫ

0 σ + 3ǫ 1









M0
u; Mℓ =









0 η′ − 3ǫ′ 0

η′ + 3ǫ′ ζd22 η − 3ǫ

0 η + 3ǫ 1









M0
d .

(123)

Here MD
ν is the Dirac neutrino mass matrix.

Notice the various correlations in these matrices. The overall scale associated with Mu and

MD
ν are identical, while those for Md and Mℓ are the same. The “1” entry in all matrices have

a common origin, arising from the operator 163163 10H. The ǫ entry appears with coefficient

1 in the up and down quark matrices, and with coefficient −3 in the leptonic mass matrices.

This factor (−3) is the ratio of the B − L charge of leptons versus quarks. Specifically, the ǫ

entry arises from an operator 162163 (10H×45H)/M . Here the adjoint 45H, which is a second

rank antisymmetric tensor of SO(10), acquires a VEV in a B − L conserving direction:

〈45H〉 = iτ2 × diag.(a, a, a, 0, 0) . (124)

In the product 10H × 45H, two fragments, an effective 10H and an effective 120H, couple to

the fermions. However, when the VEV of 45H from Eq. (124) is inserted, only the effective

120H is non-vanishing, leading to the relative factor of (−3) between leptons versus quarks.

Note that the ǫ entry arises suppressed by 1/M so that ǫ ≪ 1, an idea familiar from the

Froggatt–Nielsen mechanism. In an analogous fashion, the ǫ′ entry arises from the operator

161162 (10H × 45H)S/M2, where S is an SO(10) singlet flavon filed carrying a flavor U(1)

charge. This entry is then more suppressed compared to the ǫ entry. The σ entry originates

from the operator 162163 10H S/M , and enters into all matrices with equal coefficient, just

as the “1” entry. An operator 16216316H16H/M contributes equally to the down quark and

48



charged lepton mass matrices, but not to Mu and MD
ν , since 16H contains only an Hd–type

field, and not an Hu–type field. The η entry in Md and Mℓ is the sum of the last two operators.

The entry η′ originates from 16116216H16H S
2/M3 operator.

These are precisely the operators one would obtain when the three families of fermions and

the Higgs fields are assigned the following U(1) charges:

163 162 161 10H 16H 16H 45H S

a a+ 1 a + 2 −2a −a− 1/2 −a 0 −1
. (125)

In Ref. [54], where for simplicity, CP violation was ignored, the diagonal (2,2) entries were

not introduced. In subsequent work these (2,2) entries, especially ζd22, were used to accom-

modate CP violation. Here we present the predictions of the model as given in Ref. [54].

An acceptable fit to all mass and mixing parameters is obtained by the following choice of

parameters at the GUT scale:

σ = −0.1096, η = −0.1507, ǫ = 0.0954,

ǫ′ = 1.76 × 10−4, η′ = 4.14 × 10−3 . (126)

With these input, one obtains the following predictions:

mb(mb) = 4.9 GeV, ms(1 GeV) = 116 MeV, md(1 GeV) = 8 MeV

θC ≃
∣

∣

∣

∣

√

md

ms

− eiφ
√

mu

mc

∣

∣

∣

∣

,
|Vub|
|Vcb|

≃
√

mu

mc

≃ 0.07 . (127)

These predictions are in general agreement with data. When the (2,2) entries are included in

the mass matrices, realistic CP violation phenomenology also follows [56].

Light neutrino masses are generated in this scheme via the seesaw mechanism. Note that

the Dirac neutrino mass matrix elements are completely fixed, because of SO(10) symmetry,

from the charged fermion sectors. The mechanism that generates heavy Majorana neutrino

masses for the νc fields should be specified. The model already contains operators that do this,

as given by

WMaj = 16i16j (16H16H)/M . (128)

The natural scale of the cut–off M is M = MPlanck = 2 × 1018 GeV. Then with order one

couplings in Eq. (128), one would obtain, for the (third family) right–handed Majorana mass,

Mνc
3
∼ Λ2

GUT/MPlanck ∼ 1014 GeV. This in turn leads to the light neutrino mass mν ∼ m2
t/Mνc

3
≃

0.05 eV, nicely consistent with the value desired for atmospheric neutrino oscillation data.

In Ref. [54], it was shown, with a specific choice of the flavor structure of Mνc , that large

neutrino oscillation angles arise naturally, while preserving the smallness of quark mixing angles.

Specifically, while |Vcb| ≃ 0.041, sin2 2θ23 ≃ (0.9− 0.99) was obtained, as a function of the light

neutrino mass ratio m2/m3.

49



5.2.1 Flavor violation in SUSY GUTs

How do we go about testing ideas of grand unification in the flavor sector? Since the GUT

scale is below the Planck scale, even though the flavor symmetry is broken near the GUT scale,

soft SUSY breaking parameters can remember flavor violating interaction due to their running

between the Planck scale and the GUT scale. Such running is expected in supergravity models,

where the messengers of SUSY breaking have masses at the Planck scale. The most significant

flavor violation in the model of Ref. [54] arises due to the splitting of the third family sfermions

from those of the first two families. This is seen by the solution to the RGE equations for these

masses [57].

∆m̂2
b̃L

= ∆m̂2
b̃R

= ∆m̂2
τ̃L

= ∆m̂2
τ̃R

≡ ∆ ≈ −
(30m2

o

16π2

)

h2
t log(M∗/MGUT ) . (129)

Here M∗ is the fundamental scale where SUSY breaking messengers reside, with M∗ > MGUT.

ht is the top quark Yukawa coupling. Note that leptons also feel the effect of top Yukawa,

because leptons and quarks are unified. In Eq. (129) m0 is the universal SUSY breaking scalar

mass parameter. One sees that, because of the GUT threshold, universality is not preserved

in this type of models. In going from gauge basis to the mass eigenbasis for the fermions,

Eq. (129) would imply that there will be flavor changing scalar interactions. Because SUSY

particles have masses of order TeV, these flavor violation can manifest in the MSSM sector via

SUSY loops.

The most constraining FCNC process in the present model turns out to be µ → eγ. The

diagrams inducing such processes in SUSY GUT models are shown in Fig. 11. In the present

case it turns out that the decay τ → µγ is not very significant, while the new contributions to

b→ sγ is not negligible. Predictions for the branching ratio for the decay µ → eγ are depicted

in Fig. 12 as a function of slepton mass [57]. Part of the parameter space is already ruled out,

so there is a good chance that this process will be discovered at the MEG experiment at PSI.

There are other sources of flavor violation in SUSY GUTs. A widely discussed process is the

ℓi → ℓjγ decay arising from neutrino mass physics [58]. The heavy right–handed neutrino mass

is expected to be in the range (1010 − 1014) GeV in SUSY GUTs. Even when the supergravity

boundary conditions on the soft SUSY breaking parameters are valid at the GUT scale (and

not the Planck scale), there is a momentum regime µ, Mνc ≤ µ ≤ ΛGUT, where the νc fields

are active. In this momentum regime the neutrino Dirac Yukawa couplings will affect the RGE

evolution of the soft slepton mass parameters and generate lepton flavor violation. The FCNC

effect in the slepton soft squared mass is given by

(∆m2
L̃
)ij ≃ − log(ΛGUT/Mνc)

8π2

{

3m2
0(Y

†
ν Yν)ij + (A†

νAν)ij
}

. (130)
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Figure 11: Rare decays induced by penguin diagrams via the exchange of SUSY particles. The

flavor mixing occurs during the RGE flow between MGUT and M∗.
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Figure 12: Prediction for the branching ratio for µ → eγ in the SUSY SO(10) model as a

function of slepton mass. The horizontal line indicates current experimental limit [57].

Here Yν is the neutrino Dirac Yukawa coupling, while Aν is the corresponding soft trilinear

A–term.

In the MSSM, or in the SUSY SU(5) model, the Yukawa coupling Yν cannot be determined

from neutrino oscillation data. This is because the seesaw formula for light neutrinos goes as

mν ∼ Y 2
ν v

2/Mνc , and knowing mν does not determine Yν uniquely. However, if some of the

entries of Yν are of order (10−2−1), then the decay rate µ→ eγ will be within reach of ongoing
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experiments.

In SUSY SO(10) there is a more crisp prediction for µ→ eγ arising from the neutrino sec-

tor. This happens because SO(10) symmetry relates Yν with the up–quark Yukawa couplings.

Specifically, for the third family, we have (Yν)33 = Yt, the top quark Yukawa coupling. Since Yt

is of order one, the FCNC effects from the neutrino sector in SUSY SO(10) are predicted to be

significant. That is, they cannot be tuned to disappear, unlike in the SUSY SU(5) model.

6 Radiative fermion mass generation

The hierarchical structure of the quark and lepton masses and the quark mixing angles can be

elegantly understood by the mechanism of radiative mass generation. This is an alternative to

the Froggatt–Nielsen mechanism. Here the idea is that only the heaviest fermions (eg. the third

family quarks) acquire tree level masses. The next heaviest fermions (second family quarks)

acquire masses as one loop radiative corrections, which are suppressed by a a typical loop factor

∼ 1/(16π2) ∼ 10−2 relative to the heaviest fermions. The lightest fermions (u and d quarks)

acquire masses as two loop radiative corrections, which are then a factor ∼ [1/(16π2)]2 ∼ 10−4

suppressed relative to the heaviest fermions. Thus, even without putting in small Yukawa

couplings one understands the hierarchy in the mass spectrum of the fermions.

There is another appeal to this idea. If the electron mass is radiatively generated from the

muon mass, then there must be no counter–term needed in the Lagrangian to absorb infinity

associated with the electron mass. In other words, electron mass is “calculable”, in terms of

other parameters of the model. This idea was originally suggested by ’tHooft in his classic

paper on the renormalizability of non–Abelian gauge theories [59]. This also implies that there

must be some symmetry reason for the light fermions not to have tree level masses, otherwise

the idea cannot be implemented consistently. Early attempts along this line were presented in

Ref. [60]. More realistic models came along somewhat later [61, 62, 63, 64, 65].

There is a resurgence of interest in this idea as the LHC turns on, since new particles with

specific properties which may be seen at the LHC are predicted. There exist rather nice models

of this type by Mohapatra and collaborators [61] from the late 80’s. Recently Dobrescu and

Fox have written a nice paper on the subject [64], which I recommend to you. As in past

examples, I will try to convey the main idea, with the understanding that implementation can

vary considerably. I will discuss an implementation which I worked out with Mohapatra based

on the permutation symmetry [62].

Let us focus on the quark sector of the SM first. We wish to have a scenario where only

the top quark and the bottom quark have tree level masses. In the same limit, there should
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be no CKM mixing induced. This can be realized if one has the following “democratic” mass

matrices for up and down quarks.

Mu,d =
mt,b

3









1 1 1

1 1 1

1 1 1









. (131)

Of course, these matrices have rank 1, implying that only the top and the bottom acquire

masses from here. A common unitary matrix will diagonalize Mu and Md, so there is no CKM

mixing induced at this stage.

How do we obtain democratic mass matrices of Eq. (131)? It turns out that the symmetry

of these matrices is S3L × S3R, where S3 is the group of permutation of three letters. The

Lagrangian that would generate Eq. (131) for Mu is of the form

LYukawa = hu(Q1L +Q2L +Q3L)H̃(u1R + u2R + u3R) (132)

which is manifestly symmetric under separate permutations of the left–handed and the right–

handed quark fields. So it is tempting to start with this symmetry group S3L × S3R, but it is

not necessary to have the S3R group, since right-handed rotations are un-physical in the SM.

So consider the following Lagrangian which only has the S3L symmetry.

LYukawa = (Q1L +Q2L +Q3L)H̃(hu1u1R + hu2u2R + hu3u3R)

+ (Q1L +Q2L +Q3L)H(hd1d1R + hd2d2R + hd3d3R) . (133)

By right–handed rotations on uR and dR fields, we can bring Eq. (133) into the form of Eq.

(132). Two combinations of the QiL and (uiR, diR) fields orthogonal to Eq. (133) will be

massless.

These massless QiL modes actually form the 2 dimensional representations of S3. It is

convenient to directly go to the irreducible representations of S3. They are a true singlet 1, an

odd singlet 1′ and a doublet 2 = (x1, x2). The product of two 1′ gives a 1, while the product

of two 2 gives 1 + 1′ + 2. The Clebsch–Gordon coefficients for this product (in a certain basis)

are [66]:





x1

x2



×





y1

y2



 = 1 : (x1y1 + x2y2); 1′ : (x1y2 − x2y1); 2 :





x1y2 + x2y1

x1y1 − x2y2



 . (134)
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Now, consider the following assignment of quarks and scalars under S3:





Q1L

Q2L



 : 2; Q3L : 1; uiR : 1 ,

H : 1,





ω1

ω2



 : 2, ω3 : 1 . (135)

Here the gauge structure is simply that of SM with H being the SM Higgs doublet. In order to

radiatively generate light fermion masses, new ingredients are needed. The simplest possibility

is to introduce scalar fields which have Yukawa couplings connecting the heavy (3rd generation)

and the light fermions. We have assumed existence of ωi(3, 1,−1/3) fields, which can have such

Yukawa couplings, without inducing direct mass terms for the light fermions. Note that these

ωi fields are colored and charged, so they do not acquire vacuum expectation values.

The most general Yukawa couplings allowed in this SM ×S3 model is given by

LYukawa = htQ3LtRH̃ + hbQ3LbRH + h1(Q
T
1LCQ3Lω1 +QT

2LCQ3Lω2)

+ h2(Q
T
1LCQ1L +QT

2LCQ2L)ω3 + h3Q
T
3LCQ3Lω3

+ h4{QT
1LCQ2L +QT

2LCQ1L)ω1 + (QT
1LCQ1L −QT

2LCQ2L)ω2} + h.c. (136)

Here we have redefined the combination of uR that couples to Q3L as simply tR (and similarly

for bR).

Clearly, from Eq. (136), only the top and bottom quarks acquire tree–level masses. There

is no tree–level CKM mixing angle. So by symmetry reason, we have achieved the first stage

of the program. Now, if S3 is unbroken, none of the light fermions will acquire masses, even

though they have Yukawa couplings via the ωi fields. We can break S3 spontaneously, or by

soft bilinear terms in the Higgs potential:

V =
3
∑

i,j=1

µ2
ijω

∗
i ωj + h.c. (137)

With these soft breaking terms, light fermion masses will be induced. In Fig. 13 we have the

one-loop and the two–loop mass generation diagrams.

The one–loop diagram of Fig. 13 only generates charm quark mass, and not the up quark

mass. This can be understood as follows. At tree–level, among the down quarks, only b has a

mass. There is a single linear combination of up quarks which couples to the b quark via the

ωi fields. It is this combination that picks up mass at one–loop. The orthogonal combination

remains massless at this order. Now, the two–loop diagram connects up quarks to both b and
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Figure 13: One–loop diagram inducing charm quark mass (left) and two–loop diagram inducing

up quark mass (right).

s quarks. The inner loop of the two–loop diagram is the one–loop diagram that generates the

s quark mass. As a result, u quark will acquire a mass proportional to the s quark mass at

two–loop.

Including the one–loop diagram, the mass matrix for the (c, t) sector has the form

M1−loop
u =





ǫ aǫ

0 m0
t



 (138)

where a is of order one and the small parameter ǫ is found to be

ǫ ≃
(

h1f

8π2

)

mb

(

µ2
a3

M2
ω

)

log

(

M2
ω

m2
b

)

. (139)

With the Yukawa couplings being order one, we can explain why the charm is much lighter

than the top. The mixing angle Vcb is of order ms/mb, in agreement with observations. The

two–loop diagrams which induce the up and down quark masses also induce the mixings of the

first family. There is a natural hierarchy of mixing angles where |Vus| ≫ |Vcb| ≫ |Vub|.
It is straightforward to extend the S3 model to the leptonic sector. Consider the following

assignment of leptons and ωℓ fields under S3, where ωℓ are (3∗, 1,−1/3) scalar fields. (These

are not the conjugates of the ωi fields from the quark sector, or else, there will be proton decay

mediated by these scalars. We assume separate baryon number conservation, so the proton is

stable.)




ψ1L

ψ2L



 : 2, ψ3L : 1; eiR : 1′

ωℓ : 1, ω′
ℓ : 1′ (140)

The general Yukawa coupling of leptons is given by

L′
Yukawa = h′1Q

T
3LCψ3Lωℓ + h′2(Q

T
1LCψ1L +QT

2LCψ2L)ωℓ

+ h′3(Q
T
1LCψ2L −QT

2LCψ1L)ω
′
ℓ + f ′

abu
T
aRCebRω

′
ℓ + h.c. (141)
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Note that all leptons are massless at the tree level. The one–loop diagram shown in Fig. 14 will

induce the τ lepton mass, and is proportional to the top quark mass with a loop suppression.

Only τ acquires a one–loop mass. The muon mass arises from the two–loop diagram of Fig.

14. The electron remains massless at this order, and acquires a mass only via a three–loop

diagram.

Oe h’ t t

ω ’ω

R

l l

3L 1 f ’3bL
e

bR

Figure 14: One loop diagram inducing τ lepton mass (left) and two–loop diagram inducing the

muon mass (right).

Note that we cannot constrain the masses of the ω fields from this process, since by taking

the masses of the ω fields and the soft breaking µ2 term to large values, the light fermion masses

will remain unchanged.

However, in the supersymmetric version of the radiative mass generation mechanism, the

new scalars should remain light, to about 1 TeV, since the superpotential is un-renormalized.

That is to say that in a SUSY context, in the exact SUSY limit, the frmionic and bosonic loop

diagrams add up to give zero. Once SUSY breaking terms are turned on, these diagrams will

no longer cancel, and will generate finite quark and lepton masses. Thus, there is a prediction

in this scenario. In addition to SUSY particles, LHC should discover these ωi particles and

their superpartners.

7 The strong CP problem and its resolution

There is no indication of CP violation in strong interactions. Yet, the QCD Lagrangian admits

a term

LQCD =
θ g2

32π2
Ga
µνG̃

aµν (142)

which is P and T violating, and thus, owing to CPT invariance CP violating as well. In Eq.

(142), G̃aµν = 1
2
ǫµνρσGa

ρσ is the dual field strength for the gluon. The Lagrangian in Eq. (142)

is a total divergence, since Ga
µνG̃

aµν = ∂µK
µ = ∂µ[ǫ

µνρσAaν(F
a
ρσ − 2

3
ǫabcAbρA

c
σ)]. In a U(1) gauge

theory, the resulting surface term in the action would vanish for finite energy configurations.

56



Thus a term analogous to Eq. (142) does not lead to P or T violation in QED. However, in

QCD, the surface term gives rise to non-zero contributions, owing to finite energy “instanton”

configurations, causing P and T violation.

It is not the parameter θ in Eq. (142) that is physical. Recall that the QCD Lagrangian

also contains quark mass matrices Mu and Md, which are generated after electroweak symmetry

breaking. These matrices are complex, and generate the KM phase for CP violation in weak

interactions. As discussed in Sec. 2, one makes bi–unitary transformations to bring these

matrices into diagonal form: Uu†
L MuU

u
R = diag(mu, mc, mt), and similarly forMd. If UL and UR

belong to the global SU(Nf)L×SU(Nf )R chiral symmetry (Nf is the number of quark flavors),

which has no QCD anomaly, the diagonal quark masses cannot be made real. Specifically,

Det(Mu) → Det(Mu) under such a special bi–unitary transformation. If the phases of the

quark masses are denoted as θu,c,t and θd,s,b, the combination

θQFD = θu + θc + θt + θd + θs + θb = Arg[Det(Mq)] (143)

cannot be removed by anomaly–free rotations. A chiral rotation on the quark fields is necessary

in order to remove this phase. This however will generate an anomaly term in the Lagrangian,

of the same form as in Eq. (142). The physical parameter is then

θ = θ + Arg[DetMq] . (144)

With θ physical, there will be CP violation in strong interactions. However, there are

stringent constraints on the value of θ from experimental limits on the electric dipole moment

(EDM) of the neutron: θ < 10−10. This arises since in the presence of θ neutron EDM can be

shown to have a non-zero value given by

dn ≃
[

10−16 × θ
]

e − cm . (145)

From the experimental limit on neutron EDM, dn < 10−26 e-cm, one obtains the limit θ <

10−10. Why is it that a fundamental dimensionless parameter of the Lagrangian, which should

naturally be of order one, so small is the strong CP problem. If CP were a good symmetry of

the entire Lagrangian, small θ would have been quite natural. However, weak interactions do

break CP invariance, which makes the strong CP problem acute.

There are various proposed solutions to the problem. At some point in time it was thought

that the up quark mass may be zero. If true, that would solve the strong CP problem, since

θu is then un-physical, and therefore θ can be removed from the theory. But now we know,

especially from lattice gauge theory results, that mu = 0 is not an acceptable solution.
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7.1 Peccei–Quinn symmetry and the axion solution

The most widely studied solution of the strong CP problem is the Peccei–Quinn (PQ) mecha-

nism [67], which yields a light pseudo–Goldstone boson, the axion [68]. Here the parameter θ

is promoted to a dynamical filed. This field acquires a non–perturbative potential induced by

the QCD anomaly. Minimization of the potential yields the desired solution θ = 0, solving the

strong CP problem.

In the presence of the θ term in the Lagrangian, non–perturbative QCD effects will induce

a vacuum energy given by

Evac = µ4 cos θ , (146)

where µ ∼ ΛQCD ∼ 100 MeV. This observation is crucially used in the PQ mechanism. What

if θ is a dynamical field? Then this non–perturbative potential will have to be minimized to

locate the ground state (unlike the case where θ is a constant in the Lagrangian). Minimization

of this potential will yield θ = 0, as desired.

The essence of the PQ mechanism can be explained with a simple toy model [69]. Consider

QCD with one quark flavor (q) and no weak interactions. Suppose there is a global U(1)

symmetry under which q → e−iα γ5/2q. Such a symmetry has a QCD anomaly, and can only be

imposed at the classical level. A bare mass for q is then forbidden. Introduce now a complex

color singlet scalar field φ which transforms under this U(1) as φ→ eiαφ. The following Yukawa

interaction is then allowed.

LYuk = Y qLφqR + Y ∗qRφ
∗qL . (147)

The potential for φ also respects the U(1) symmetry, and is given by

V (φ) = −m2
φ|φ|2 + λ|φ|4 (148)

With a negative sign for m2
φ, the φ field will acquire a non-zero VEV, spontaneously breaking

the U(1). In this broken symmetric phase, we can parametrize φ as

φ =
[

fa + φ̃(xµ)
]

eia(x)/fa . (149)

Here fa is a real constant, while φ̃(xµ) and a(xµ) are dynamical (real) fields. The quark q now

acquires a mass, given by Mq = Y fae
ia(x)/fa . Making the quark mass real by a field redefinition

will induce a θ given by

θeff = θ + Arg[DetY ] +
1

fa
a(xµ) . (150)

The crucial point is that now θ is a dynamical field, because of the presence of the a field, the

axion. Without non–perturbative QCD effects, a will be massless, since it is the Goldstone
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boson associated with the spontaneous breaking of the global U(1). The vacuum energy analog

of Eq. (146) is now

Evac = −µ4 cos θeff . (151)

Minimizing this potential with respect the dynamical a field would yield θeff = 0.

The field–dependent redefinition on q, q(xµ) → q(xµ)e−i(a(x
µ)/fa)(γ5/2) would remove the

axion field from quark interactions except via derivatives, originating from the kinetic terms.

The axion also will have couplings to the gluon field strength. These couplings are given by

La = −
(

∂µa

fa

)

qγµγ5q +
g2

32π2

(

a

fa

)

GG̃ . (152)

It is the second term of Eq. (152) that actually induces the potential for the axion. Because of

this potential, axion will have a mass of order ma ∼ Λ2
QCD/fa.

The essentials of realistic axion model are already present in this toy model. We need to

turn on weak interactions, and we need to add three families of quarks. The straightforward

implementation would involve the SM extended to have two Higgs doublets, one coupling to

the up–type quarks, and the other coupling to the down–type quarks [68]. A global U(1) can

then be defined classically, which has a QCD anomaly. The axion will now be part of the

Higgs doublet, with the axion decay constant fa ∼ v ∼ 102 GeV. The couplings of the axion to

quarks, Eq. (152), will now be rather strong. The decay K+ → π+a will occur at an observable

strength. This process has been searched for, but has not been observed. Negative results in

searches for this and other such processes have excluded the weak scale axion model.

Acceptable axion models of the “invisible” type [70, 71] involving high scale PQ symmetry

breaking are fully consistent. In the model of Ref. [70], in addition to the two Higgs doublets,

a complex singlet Higgs scalar S is also introduced. The axion decay constant fa is now the

VEV of S, which can be much above the weak scale. The axion is primarily in S, with very

weak couplings to the SM fermions. There are non–trivial constraints from astrophysics and

cosmology on such a weakly interacting light particle. For example, axion can be produced

inside supernovae. Once produced, they will escape freely, draining the supernova of its energy.

Consistency with supernova observations requires that fa > 109 GeV. Cosmological abundance

of the axion requires that fa < 1012 GeV.

In the invisible axion model of Ref. [71], there is only a single Higgs doublet of the SM.

A Higgs singlet R and a heavy quark Q, which has vectorial properties under the SM, are

introduced. The PQ U(1) symmetry acts on Q and the scalar R. Q acquires its mass only via

its Yukawa coupling with R. (This example is essentially the same as the toy model described

above.) The phase of R is the axion in this case, with phenomenology similar to, but somewhat

different from, the axion model of Ref. [70].
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It should be noted that axion is a leading candidate for the cosmological dark matter. For

reviews of axion physics, astrophysics, cosmology, and detection techniques, see Ref. [72].

7.2 Solving strong CP problem with Parity symmetry

There is another class of solution to the strong CP problem. One can assume Parity [73, 74] to

set θ = 0. If the fermion mass matrices have real determinant, then θ can be zero at the tree

level. Loop induced θ needs to be small, but this is not difficult to realize.

Let me illustrate this idea with the left–right symmetric model which has Parity invariance.

The Yukawa couplings are hermitian in this setup. To make the mass matrices also hermitian,

we must ensure that the VEVs of scalars are real. This is easily done in the SUSY version,

which is what I will describe [74]. In SUSY models, one should also take into account the

contributions from the gluino to θ.

The model is the SUSY version of left–right symmetric model based on the gauge symmetry

SU(3)C×SU(2)L×SU(2)R×U(1)B−L discussed in Sec. 3. Two bi-doublet scalars Φi(1, 2, 2, 0)

(i = 1, 2) are used to generate quark and lepton masses as well as CKM mixings. The relevant

superpotential is given as

W = YuQQ
cΦu + YdQQ

cΦd . (153)

The Yukawa coupling matrices Yu and Yd will be hermitian, owing to Parity invariance. Parity

also implies that the QCD Lagrangian parameter θ = 0 and that the gluino mass is real. The

soft SUSY breaking A–terms, analogous to W in Eq. (153) will also be hermitian. We shall

consider the case where these A terms are proportional to the respective Yukawa matrices.

Furthermore, we assume universal masses for the squarks, as in minimal supergravity, or in

gauge mediated SUSY breaking models.

The quark mass matrices Mu,d are hermitian at tree level since the VEVs of the bi-doublet

scalars turn out to be real. Therefore θ̄ = 0 at tree level. We wish to demonstrate that loop

induced contributions to θ are not excessive. Note that this setup has two hermitian matrices

Yu and Yd which are complex, with all other (flavor singlet) parameters being real.

Since parity is broken at a high scale (denoted as vR), a nonzero value of θ̄ will be induced

at the weak scale through renormalization group extrapolation below vR. This is because the

SM gauge symmetry does not permit the Yukawa couplings to remain hermitian. The induced

θ̄ will have the general structure given by

δθ̄ = ImTr[∆MuM
−1
u + ∆MdM

−1
d ] − 3 Im(∆Mg̃M

−1
g̃ ) (154)

where Mu,d,g̃ denote the tree level contribution to the up–quark matrix, down–quark matrix and

the gluino mass respectively, and ∆Mu,d,g̃ are the loop corrections. To estimate the corrections
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from ∆Mu and ∆Md, we note that the beta function for the evolution of Yu below vR is given

by βYu
= Yu/(16π2)(3Y †

uYu + Y †
d Yd + Gu) with the corresponding one for Yd obtained by the

interchange Yu ↔ Yd and Gu → Gd. Here Gu is a family–independent contribution arising from

gauge bosons and the Tr(Y †
uYu) term. The 3Y †

uYu term and the Gu term cannot induce non–

hermiticity in Yu, given that Yu is hermitian at vR. The interplay of Yd with Yu will however

induce deviations from hermiticity. Repeated iteration of the solution with Yu ∝ YuY
†
d Yd and

Yd ∝ YdY
†
uYu in these equations will generate the following structure:

δθ̄ ≃
(

ln(MU/MW )

16π2

)4
[

c1ImTr
(

Y 2
u Y

4
d Y

4
u Y

2
d

)

+ c2ImTr
(

Y 2
d Y

4
u Y

4
d Y

2
u

)]

, (155)

where MU is the unification scale. Here c1 and c2 are order one coefficients which are not equal.

To estimate the induced θ̄, we choose a basis where Yu is diagonal, Yu = D and Yd = V D′V †

where Duvu = diag(mu, mc, mt), Ddvd = diag(md, ms, mb) with V being the CKM matrix.

The Trace of the first term in Eq. (155) is then Im(D2
iD

4
kD

′4
j D

′2
l VijVklV

∗
ilV

∗
kj). The leading

contribution in this sum is (m4
tm

2
cm

4
bm

2
s)/(v

6
uv

6
d)Im(VcbVtsV

∗
csV

∗
tb). The second Trace in Eq.(155)

is identical, except that it has an opposite sign. Numerically we find

δθ̄ ∼ 3 × 10−27(tanβ)6(c1 − c2) , (156)

which is well below the experimental limit of 10−10 from neutron EDM.

There are also finite corrections to the quark and gluino masses, which are not contained

in the RG equations. Consider first the finite one loop corrections to the quark mass matrices.

A typical diagram involving the exchange of squarks and gluino is shown in Fig. 15, where the

crosses on the Q̃ and Q̃c lines represent (LL) and (RR) mass insertions that will be induced in the

process of RGE evolution. From this figure we can estimate the form for ∆Mu = 2αs

3π
m2
Q̃
Aum

2
ũc

where Q̃ is the squark doublet and ũc is the right–handed singlet up squark. Without RGE

effects, the trace of this term will be real, and will not contribute to θ̄. Looking at the RGE

for m2
ũc upto two loop order, we see that for the case of proportionality of Au and Yu, m

2
ũc

gets corrections having the form m2
0Y

2
u or m2

0Y
4
u or m2

0YuY
2
d Yu. Therefore in ∆MuM

−1
u , the

M−1
u always cancels and we are left with a product of matrices of the form Y n

u Y
m
d Y

p
u Y

q
d · ··. A

similar comment applies when we look at the RGE corrections for m2
Q̃

or Au. If the product

is hermitian, then its trace is real. So to get a nonvanishing contribution to theta, we have to

find the lowest order product of Y 2
u and Y 2

d that is non–hermitian and we get

δθ̄ =
2αs
3π

(

ln(MU/MW )

16π2

)4
(

k1ImTr[Y 2
u Y

4
d Y

4
u Y

2
d ] + k2ImTr[Y 2

d Y
4
u Y

4
d Y

2
u ]
)

(157)

where k1,2 are calculable constants. The numerical estimate of this contribution parallels that

of the previous discussions, δθ̄ ∼ (k1 − k2) × 10−28(tanβ)6. The contributions from the up–
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quark and down quark matrices tend to cancel, but since the d̃c and the ũc squarks are not

degenerate, k1 6= k2 and the cancellation is incomplete.

In Fig. 15 we have also displayed the one–loop contribution to the gluino mass arising

from the quark mass matrix. Here again one encounters the imaginary trace of two hermitian

matrices Yu and Yd, in the case of universality and proportionality of SUSY breaking parameters.

Our estimate for δθ̄ is similar to that of the quark mass matrix of Eq. (157).

This exercise shows that the strong CP problem can be consistently resolved with the

imposition of parity symmetry.

Q

~
Qc

~
Qc

~
Q

~Q

~g � c
Q Q

~
Qc

~
Qc

~
Q

~Q

~g � c
Q ~g

Figure 15: One loop diagram inducing complex correction to the quark mass (left) and to the

gluino mass (right).

7.3 Solving the strong CP problem by CP symmetry

The idea of Ref. [75] is to use CP as a spontaneously broken symmetry. The QCD θ is then

zero. In order to generate KM CP violation in weak interactions, the mass matrices of the up

and down quarks will have to be complex. This can be realized consistently, while keeping the

determinant of the quark mass matrix real by breaking CP spontaneously. Then at tree–level

θ will be zero.

A model of this type can be readily constructed. Consider the addition of three vector–like

D+Dc quarks to the SM. These are SU(2) singlets with Y = ∓2/3, so that they can mix with

the down–type quarks (d, dc) of the SM. Suppose there is a discrete symmetry Z2 under which

the dc quarks reflect sign. Several SM singlet Higgs scalar fields Si with i ≥ 2 are also needed.

Under Z2 these Si fields are odd.

The Yukawa Lagrangian of this theory is given by

LYuk = YuQu
cH + YDQD

cH̃ +MDDd
c + FiDD

cSi + h.c. (158)

CP invariance implies that all the coupling matrices (Yu, YD, MD, Fi) are real. Complex phases

appear only in the VEVs of the Si fields, which break CP spontaneously. The down–type quark
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mass matrix arising from Eq. (158) is given by

Md−D =





0 YDv

MD

∑

i Fi 〈Si〉



 . (159)

When the heavy D states are integrated out, the light 3 × 3 quark mass matrix for the down

quarks will have a complex form, yielding weak CP violation. The determinant of Md−D is

real, owing to its structure (with all complex phases residing in the lower right–hand block).

So θ = 0 in this model at tree level.

Loop corrections will induce non–zero θ at the one loop level, which has a magnitude of

order θ ∼ F 2/(16π2). For F ∼ 10−4, this induced θ will be within experimental limits.

8 Rare B meson decay and new physics

In this section we turn to specific processes where new physics may show up at colliders. It

is quite likely that such processes will show up first in the heaviest fermion (t, b, τ) systems.

Specifically, LHCb will be sensitive to such effects occurring in the B meson system. We focus

on this system here.

New physics may show up at the LHC in decays of the B meson that are rare or forbidden

in the SM. Low energy supersymmetry can provides such possibilities. Specifically, in the

framework of SUSY with minimal flavor violation [76], that is, flavor violation arising only via

the MSSM Yukawa couplings, there are processes that are enhanced at large tanβ which can

be in the observable range.

One such example is the rare decay Bs,d → µ+µ− that has not been observed so far. In the

SM, this process occurs via penguin and box diagrams. The branching ratio has been calculated

to be [77]

Br(Bs → µ+µ−) = (3.35 ± 0.32) × 10−9 ,

Br(Bd → µ+µ−) = (1.03 ± 0.09) × 10−10 . (160)

This prediction is to be compared with the current experimental limits from CDF and D0 [5]

Br(Bs → µ+µ−) < (5.8 ± 0.32) × 10−8 ,

Br(Bd → µ+µ−) < (1.8 ± 0.09) × 10−8 . (161)

There is a lot of room for new physics in these processes. At the LHC, sensitivity of the

experiments will be better than the SM prediction.
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8.1 Bs → µ+µ− in MSSM at large tanβ

Minimal supersymmetry at large tanβ can significantly enhance the decay rate Bs → µ+µ−.

This occurs via exchange of Higgs bosons of MSSM [78]. MSSM Yukawa couplings do preserve

flavor at the tree level, see Eq. (41). That is, in the quark sector only Hu couples to the up–

quarks, while only Hd couples to the down–quarks. There is no tree–level FCNC mediated by

the Higgs boson. However, this situation changes once loop corrections to the Yukawa couplings

are included.

To see this, let us begin by writing the effective Lagrangian for the interactions of the two

Higgs doublets with the quarks in an arbitrary basis:

− Leff = DRYDQLHd +DRYD

[

ǫg + ǫuY
†
U
YU

]

QLH
∗
u + h.c. (162)

Here YD and YU are the 3×3 Yukawa matrices of the microscopic theory, while the ǫg,u are the

finite, loop-generated non-holomorphic Yukawa coupling coefficients. The leading contributions

to ǫg and ǫu are generated by the two diagrams in Fig. 16.
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~
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Q
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L

Q
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L
D
~

R

Q
L

QL

QL
~

Figure 16: One loop diagram inducing τ lepton mass (left) and two–loop diagram inducing the

muon mass (right).

Consider the first diagram in Fig. 16. If all Q̃i masses are assumed degenerate at some scale

Munif then, at lowest order, i = k and the diagram contributes only to ǫg:

ǫg ≃
2α3

3π
µ∗M3f(M2

3 , m
2
Q̃L
, m2

d̃R
) , (163)

where

f(x, y, z) = −xy log(x/y) + yz log(y/z) + zx log(z/x)

(x− y)(y − z)(z − x)
. (164)

Meanwhile, the second diagram of Fig. 16 contributes to ǫu:

ǫu ≃
1

16π2
µ∗AUf(µ2, m2

Q̃L
, m2

ũR
) . (165)
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(We assume that the trilinear A-terms can be written as some flavor-independent mass times

YU.) For typical inputs, one usually finds |ǫg| is about 4 times larger than |ǫu|.
Owing to these loop corrections, the CKM mixing angles receive finite corrections. In

particular,

Vub ≃ V 0
ub

[

1 + ǫg tan β

1 + (ǫg + ǫuy2
t ) tanβ

]

. (166)

The same form also holds for the corrected Vcb, Vtd and Vts.

For ǫu 6= 0, however, the rotation that diagonalized the mass matrix does not diagonalize

the Yukawa couplings of the Higgs fields, leading to FCNC Higgs couplings given by

LFCNC =
ȳbV

∗
tb

sin β
χFC

[

Vtdb̄RdL + Vtsb̄RsL
] (

cosβH0∗
u − sin βH0

d

)

+ h.c. (167)

with the quark fields in the physical/mass eigenbasis, and defining

χFC =
−ǫuy2

t tan β

(1 + ǫg tan β)[1 + (ǫg + ǫuy2
t ) tanβ]

(168)

to parameterize the amount of flavor-changing induced.

We now consider the rare decay B0 → µ+µ−. This occurs via emission off the quark current

of a single virtual Higgs boson which then decays leptonically. The amplitude for the process

B0
(d,s) → µ+µ− is given by:

A = η
QCD

ȳbyµVt(d,s)V
∗
tb

2 sin β
χFC

〈

0|b̄RdL|B0
(d,s)

〉 [

µ̄
(

a1 + a2γ
5
)

µ
]

(169)

where

a1 =
sin(β − α) cosα

m2
H

− cos(β − α) sinα

m2
h

,

a2 = −sin β

m2
A

. (170)

The partial width is then

Γ(B0
(d,s) → µ+µ−) =

η2
QCD

128π
m3
Bf

2
B ȳ

2
by

2
µ |V ∗

t(d,s)Vtb|2 χ2
FC(a2

1 + a2
2). (171)

For SUSY scalar masses of order 500 GeV, we can estimate the branching ratio to be near

current experimental limit for tanβ larger than about 30. The reason for this enhancement has

to do with the dependence of this rate on tanβ. For large values of tanβ, the rate scales as

(tan β)6. Two powers of tanβ arise each from ȳ2
b and y2

µ, while the remaining two powers arise

from χ2
FC .
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New physics contributions in B meson system can arise in SUSY GUTs [79, 80]. Generically,

these models predict large b̃R − s̃R mixing, especially when large neutrino mixing angles are

induced. As a result, there is a SUSY box diagram that contributes to Bs−Bs mixing, shown in

Fig. 17. This contribution can be at the level of 30% of SM box diagram. Now, in the SM, CP

violation arising from mixing in Bs is very small, but the new diagrams can significantly alter

this scenario. There is also new contribution to direct B decays, which can also be comparable

to the SM contribution. These ideas will therefore be tested in the near future at the LHC.

bR
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(δ23)RR
d s

s

_
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Figure 17: New physics contributions to Bs −Bs mixing and b→ sss in SUSY GUTs.

9 Conclusion and Outlook

Flavor physics is quite rich, in these lecture notes I have only scratched the surface of a subset

of the various issues.

It is a great triumph for experiment and theory, that we know so much about the funda-

mental parameters of the flavor sector. Even a few years ago, it looked unlikely that so much

would be learned with such high precision. On the experimental side, the two B factories,

BABAR and BELLE, have contributed tremendously to the improved understanding. We have

seen substantial progress on the theoretical understanding, especially from lattice gauge theory

and Heavy Quark Effective Theory in the last decade. Both have played crucial roles in the

precise determination of the fundamental parameters of the quark flavor sector, viz., quark

masses, CKM mixing angles and CP violation. While we have learned a great deal about the

fundamental parameters of the neutrino sector, in these lectures we focused primarily on the

quark sector.

Knowing the fundamental parameters precisely is only the start. It is imperative that we

seek explanations to these observations. Any such attempt will take us beyond the realms of
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the standard model. There is great hope that the LHC will actually test some of the new ideas

introduced to explain some the puzzles in the flavor sector. It should, however, be cautioned

that flavor dynamics could very well happen near the Planck scale, which would mask its direct

effects. If there is low energy supersymmetry, there is a good chance that flavor physics, even

if it occurs at a very highs scale, transmits information to the SUSY breaking sector, which

may be observed. The prime candidate for these effects are rare decays of the type ℓi → ℓjγ.

Observing such decays will show the existence of new flavor physic, but it would be impossible,

from these processes alone, to distinguish between various possibilities. We have seen that

neutrino mass physics, GUT physics, and flavor physics related to anomalous U(1), all lead to

the prediction that µ → eγ is in the observable range.

I have discussed at some length some, but not all, of the popular ideas that address the

puzzles from the flavor sector. The mixing–mass sum rules in the quark sector appeared quite

promising, but with more precise data, many of the models in this class have already been ex-

cluded. It has become increasingly difficult to find precise patterns in the masses and mixings

that fit observations. Perhaps the best setting to address these issues is supersymmetric grand

unification, supplemented by flavor symmetries. SUSY GUTs are well motivated on indepen-

dent grounds, they have the power to shed light on the flavor puzzle. Some recent ideas along

this line are discussed in Sec. 5. I have also emphasized the close connection between the strong

CP problem and the flavor puzzle. Axion solution to this problem is the most popular, but

using P or CP symmetries seem to work equally well. These ideas may have collider signals,

such as the discovery of right–handed W±
R gauge bosons.

With some luck, the path chosen by Nature may be revealed at the LHC in the coming

years. Let us wait with hope.
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