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SET THEORY
EVENTS Sample space

Event A

A

Every subset of  S is an event, including S and the null set Ø

Then

S = the certain event

Ø = the impossible event
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SET THEORY

Equality:

Two sets A and B are equal, denoted A =B, if and only if

Complementation:

Suppose              The complement of set A, denoted  by    , is 

the set containing all elements in S but not in A

Union:

The union of sets A and B, denoted A U B, is the set containing 

all elements in either A or B or both
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SET THEORY

Intersection:

The intersection of sets A and B, denoted by            , is the 

set containing all elements in both A and B.

Difference:

The difference of sets A and B, denoted A \ B, is the set 

containing all elements in A but not in B .
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SET THEORY

Null Set:

The set containing no element is called the null set , denoted  

by Ø. 

Disjoint Sets:

Two sets A and B are called disjoint or mutually exclusive if 

they contain no common element



11-08-2019

6

SET THEORY

The definitions of the union and intersection of two sets can be 

extended to any finite number of sets as follows:
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SET THEORY

If A and B are events in S, then

Similarly, if                       are a sequence of events in  S, 

then
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SET THEORY

Size of Set:

When sets are countable, the size (or cardinality) of set A, denoted

|A|, is the number of elements contained in A. When sets have a

finite number of elements, it is easy to see that size has the

following properties:
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Venn-diagrams
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SET THEORY: Useful identities
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SET THEORY

Commutative Laws

Associative Laws

De Morgan's Laws

Distributive Laws
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FIELDS

Fields:

The elements of a field are called events

• The first condition implies that the set of all outcomes is an event

• The 2nd condition means that the complement of an event is an event

• The 3rd condition implies that the union of 2 events is an event
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Properties of fields
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SIGMA FIELDS

The assumption of equally likely events as we will

study later leads to a lot of problems in computing

probability particularly when of possible outcomes of

a random experiment is infinite.

That is precisely the reason why modeling the event

space as ordinary fields is not adequate and the notion

of sigma field becomes particularly important.
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SIGMA FIELDS

 First condition implies that the set of all outcomes is an event

 2nd condition means that the complement of an event is an 

event

 3rd condition implies that the union of a sequence of events 

is an event
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SIGMA FIELDS

Properties:

A      -field   is also a field

If a field –F is finite, then it is also a    - field

A family of all subsets of Ω is a     - field

If  A and B are in sigma field –F , then                               are

also in –F 
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More on 𝜎- fields/algebras

σ-algebras are a subset of algebras in the sense that all σ-algebras are

algebras, but not vice versa.

Algebras only require that they are closed under pairwise unions while

σ-algebras must be closed under countably infinite unions.

Roll of a die: The sample space is Ω = {1, 2, 3, 4, 5, 6}

In probability space, the σ-algebra is σ (Ω), also called the σ-algebra

generated by Ω. 

Take the elements of Ω and generate the "extended set" consisting of

all unions, compliments, compliments of unions, unions of

compliments, etc. include Φ

With this "extended set“ and the result is σ (Ω), is denoted by Σ.
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Let

However, the collection of the following subsets of S,

is not a field because (2) ∪ (4,5,6) = (2,4,5,6) is not in the field

ℱ1= 𝑆,Φ, 1,2,3 , 4,5,6 , (2)

But we can adjoin the missing sets and make ℱ1 into a field. This is known as 

completion. In the example above, if we adjoin the collection of sets 

to ℱ1, then

ℱ1 ∪ ℱ2= 𝑆,Φ, 1,2,3 , 4,5,6 , 2 , 2, 4, 5, 6 , 1,3 is a field

𝓕𝟐= 𝟐, 𝟒, 𝟓, 𝟔 , 𝟏, 𝟑

Example
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Borel 𝜎- fields
• In many random experiments the outcome is a real number

• We may be interested in finding probability that it belongs to a given

interval (a, b)

• To consider all such events, we need a 𝜎-field of the subsets of the

real number line ℝ, containing all intervals. This makes the

𝜎-field very large especially when we consider all possible intervals.

• Many 𝜎-fields may contain the subsets of {Ai}, but the smallest 𝜎-

field containing the subsets of {𝐴𝑖}, is called the Borel 𝜎-field. The

smallest 𝜎-field for S by itself is F = {𝑆,Φ}
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Measure on a set S: A systematic way to assign a positive number

to each suitable subset of S, intuitively interpreted as its size. In a

sense, it generalizes the concepts of length, area, volume

A brief intro to measure

Examples of measures:

Counting measure: μ(S) = number of elements in S

Lebesgue measure : μ(S) = conventional length of S

That is, if S = [a, b] ⇒ μ(S) = λ[a ,b] = b − a.
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A brief introduction to measure
A pair (X, Σ) is a measurable space if X is a set and  Σ is a nonempty σ-algebra 

of the subsets of X.

A measurable space allows us to define a function that assigns real-numbered 

values to the abstract elements of Σ

Definition:

Let (X, Σ) be a measurable space. 

A set function μ defined on Σ is called a measure iff :

1. 0 ≤ μ(A) ≤ ∞ for any A ∈ Σ.

2. μ(Φ) = 0.

3. (σ-additivity). For any sequence of pairwise disjoint sets {𝐴𝑛} ∈ Σ
S.T.  ڂ𝑛=1

∞ 𝐴𝑛 ∈ Σ
we have  𝜇(ڂ𝑛=1

∞ 𝐴𝑛) = σ𝑛=1
∞ 𝜇(𝐴𝑛)
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Probability measure

A triplet (X, Σ, μ) is a measure space if (X, Σ) is a measurable space 

and μ: Σ → [0; ∞) is a measure

• If μ(X) = 1, then μ is a probability measure, which we usually use 

notation P, and the measure space is a probability space.

• A measure space (Ω, Σ, μ) is called finite if μ(Ω) is a finite real 

number

• A measure μ is called σ-finite if Ω can be decomposed into a 

countable union of measurable sets of finite measure.
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PROBABILITY SPACE

An assignment of real numbers to the events defined in an

event space F leads to probability measure P.

Consider a random experiment with a sample space S, and

let A be a particular event defined in F.

The probability of the event A is denoted by P(A). Thus, the

probability measure is a function defined over F. The triplet

(S, F, P) is known as the probability space.
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FINITELY ADDITIVE PROBABILITY 
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Example
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Example

Is P a finitely additive probability measure ?
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Prove that

Example
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COUNTABLY ADDITIVE PROBABILITY 
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COUNTABLY ADDITIVE PROBABILITY 



11-08-2019

30

Conditional events

B

A/B

• Event B occurs first

• A occurs given that B has 

already occurred

P (A/B) =  ?

= P (A ∩ B) / P(B)
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Example

F

a [P(a) =0.05]
c [P(c) =0.03]

b [P(b) =0.04]

Find the probability of failure of 

the truss ?

Assume: The failures of each of 

the members are mutually 

independent

Hint: Define the failure event first
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• Prob of settlement of each footing = 0.1

• Prob of settlement of each footing  given the other one has settled = 0.8

Find the probability of differential settlement

Example

Hint: Define the failure event (i.e. differential settlement) 

first

A B
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• Sometimes probability of an event A cannot be assigned directly but can 

be assigned conditionally for a number of other events Bi

• Bi must be mutually exclusive and collectively exhaustive

Theorem of total probability
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Example
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Random variable

Random Variable (RV): A finite single valued function that

maps the set of all experimental outcomes in sample space S into

the set of real numbers R, is said to be a RV

A random variable does not return a probability
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Example: a coin toss
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• Random variable is a function X that assigns a rule of

correspondence for every point ξ in the sample space S, a

unique value X(ξ) on the real line ℛ called the range

• Let Σ be the sigma field associated with the sample space and

Σ𝑋 be the sigma field associated with the real line

• The RV X induces a probability measure 𝑃𝑋 in R, and hence X

is a mapping of the probability space {S,Σ,P} to the probability

space {ℛ, Σ𝑋, P𝑋} as shown below:

Random variable
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Random variable

What sort of Sigma field is Σ𝑋
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Discrete Random Variable

• Discrete random variables are generally used to

describe events that are counted, for example: no

of cars crossing the intersection

• Discrete random variables are expressed using 

integers

• The probability content of a discrete random

variable is described using the probability mass

function(PMF) and is denoted by pX(x)
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• The cumulative distribution function(CDF) is defined as a 

function of x, whose value is:

The probability that X is less than or equal to x:  P(X ξ ≤ 𝑥)

• Because the events are mutually exclusive(i.e. X can only 

assume one value at a time) the CDF is obtained simply by 

adding the discrete probabilities as

Discrete Random Variable
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Consider the problem of three nuclear reactors. 

Assume that a reactor will be active and

operating 90% of the time. What is the

probability that at-least two reactors are

operating at a given time?

Example: PMF
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Let

X = no of reactors operational at any given time

A = event that a reactor is active

O = event that a reactor is offline for service

Also let

0 = event that all reactors are offline 

1 = event that 1 reactor is active and 2 are offline 

2 = event that 2 reactors are active and 1 is offline 

3 = event that all 3 reactors are active 

Example: PMF



11-08-2019

45

We are given: P(A) = 0.9, P(O) = 0.1

Assuming the operation of the reactors is statistically 

independent, we can construct the PMF for the random 

variable X as

pX (0) = P(X = 0) = (0.1)(0.1)(0.1) = 0.001

pX(1) = P(X = 1) = 3[(0.9)(0.1)(0.1)] = 0.027

pX (2) = P(X = 2) = 3[(0.9)(0.9)(0.1)] = 0.243

pX (3) = P(X = 3) = (0.9)(0.9)(0.9) = 0.729

Example: PMF
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Therefore, the probability that at least two reactors are operating 

is given by X ≥ 2which is computed as

Example: PMF
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A discrete random variable X can take m possible values X = 

{x1, x2, …, xm} is the sample space

Rolling a die, X= {1, 2, 3, 4, 5, 6}

• P(xk) = Probability of RV X taking a kth value (= xk)

• Expected Value or Mean = 

• Variance of X = 

Properties of RV
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• Bernoulli random variable:  

 Takes only two values, X ≡ {0, 1}

• Occurrence of an event (i.e., X = 1) with 

probability = p 

• No occurrence of event (i.e., X = 0) with 

probability = (1-p) 

Bernoulli trials
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Bernoulli trials
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• Suppose a system has 4 standby or backup units 

The probability of failure of each unit is p per year

• What is the probability that 1 unit will fail in the next year 

?

Unit No. 1 2 3 4 Probability

Sequence

1 F S S S p(1-p)3

2 S F S S (1-p)p(1-p)2

3 S S F S (1-p)2p(1-p)

4 S S S F (1-p)3p

Total:      4 p(1-p)3

F = Fail; S = Safe

Bernoulli trials example



11-08-2019

51

• Suppose, the distribution of the number of failures X in a group 

of 4 machines is a RV

• The RV follows binomial distribution

𝑃 𝑋 = 𝑘 = 4C𝑘
𝑝𝑘(1 − 𝑝)(4−𝑘)

Binomial Distribution
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The number of trials (occurrence of transients or accidents = m)

• The number of failures in m trials = X,  a RV (X ≤ m)

• Probability of failure per transient/accident = p

• Binomial distribution (Prob of exactly k occurrences in m 

trials)

k = 1, 2, 3,…m

• Distribution parameters are = m and p

𝑷 𝑿 = 𝒌 = 𝒎C𝒌
𝒑𝒌(𝟏 − 𝒑)(𝒎−𝒌)

Binomial Distribution
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• Parameters: m = 4 machines and probability of failure p = 0.1

• The distribution of number of failures 

PMF

Binomial Distribution
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• What is the probability that there will be 2 or less failures? 

(Cumulative probability up to 2 )

Answer = P(X=0) + P(X=1) + P(X=2) = 0.97 

Binomial Distribution
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• Binomial distribution converges to the Poisson distribution 

 When probability of failure p →0 (very small) 

 And the population of component 𝒎 → ∞(very large)

 Such that 𝒎𝒑 → 𝝁, constant called mean number of failures

• Poisson distribution gives the distribution of the number of 

failures (N)

Poisson Distribution
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• Probability of failure of a component 

p = 0.0025 per year

• The number of components in service

m = 1000

• Mean number of failures

μ= m p = 2.5 failures per year

Example: Poisson distribution
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