CE 513: STATISTICAL METHODS IN CIVIL ENGINEERING

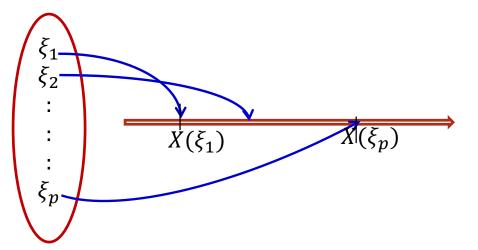
Lecture- 11: Random process

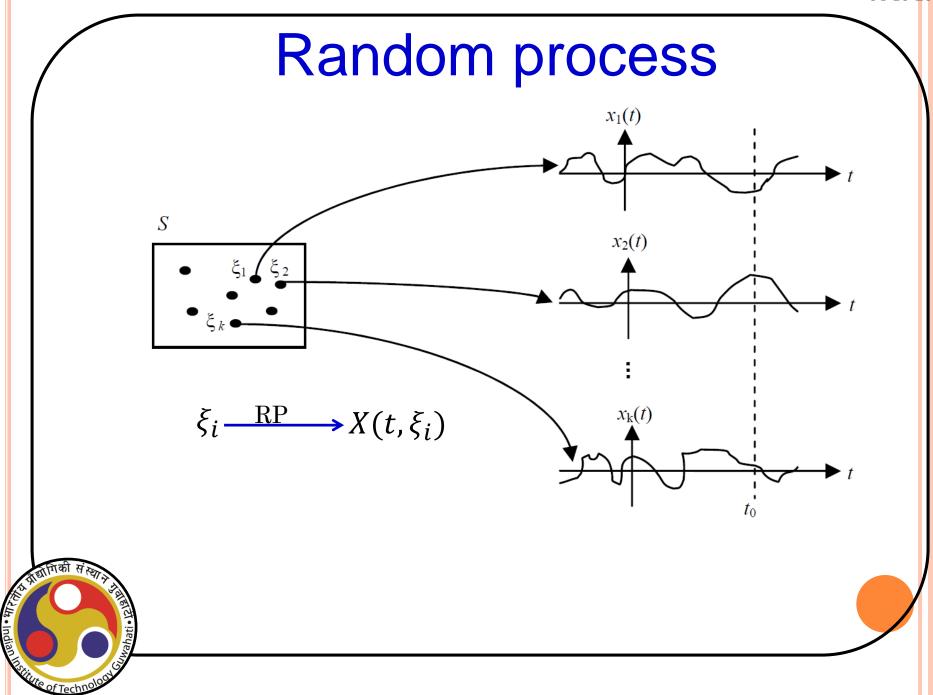
Dr. Budhaditya Hazra

Of Techno

Room: N-307 Department of Civil Engineering

Recall: Random Variable Def





$$\xi_i \xrightarrow{\text{RP}} X(t,\xi_i)$$

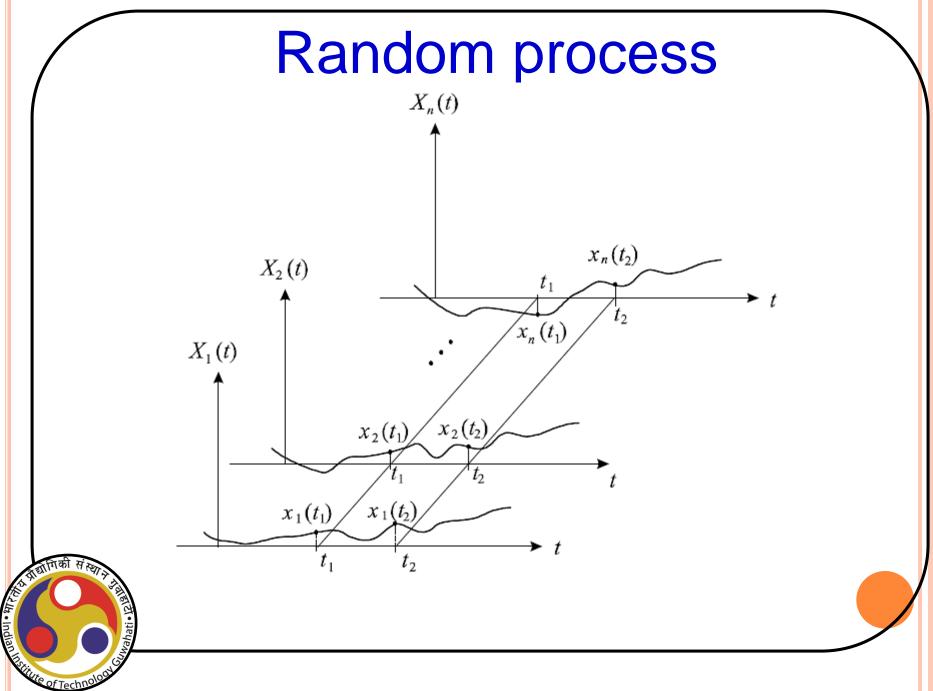
A random process is a function denoted by $X(t,\xi)$

(*a*)for a fixed value of $t, X(t, \xi)$ is a random variable,

(b) for a fixed value of $\xi X(t, \xi)$ is a function of time (a realization),

(c) for fixed values of t and ξ , $X(t, \xi)$ is a number, and

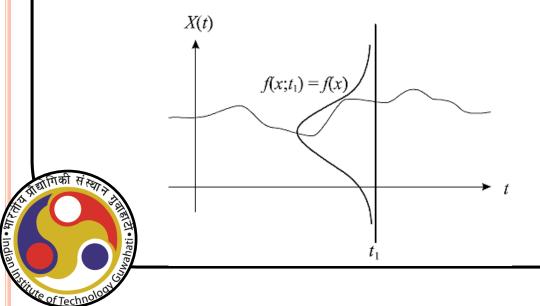
(d) for varying t and ξ , $X(t, \xi)$ is collection of time histories (ensemble)



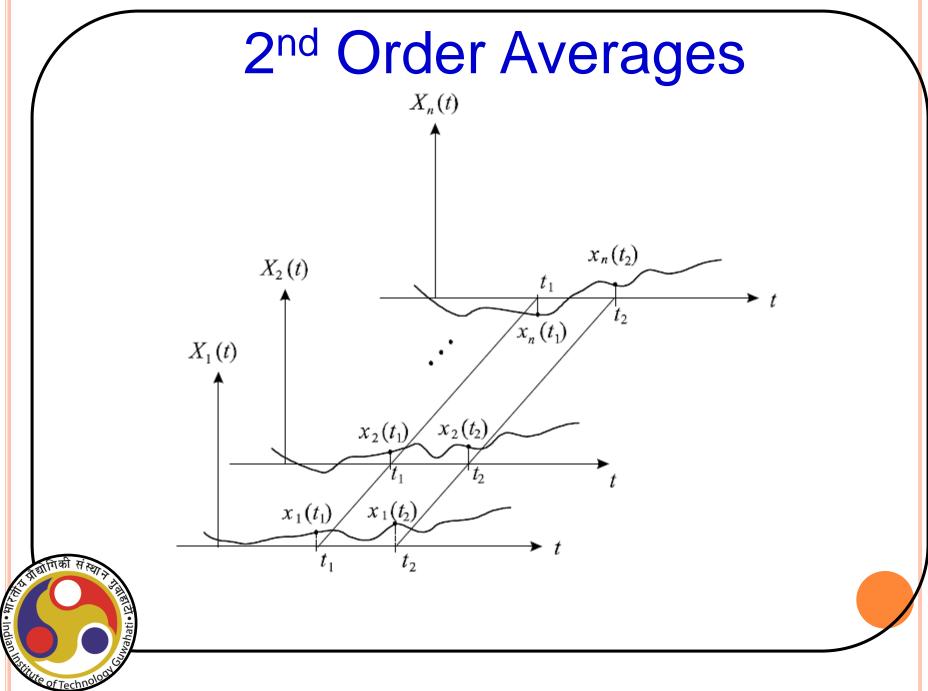
First-order distribution (for a particular value of t)

$$F_X(x;t) = P[X(t_0) \le x]$$

First-order density function $f_X(x;t) = \frac{d}{dx}F_X(x;t)$



04-10-2018



2nd Order Averages

2nd order distribution

$$F_X(x_1, x_2; t_1, t_2) = P[X(t_1) \le x_1 \text{ and } X(t_2) \le x_2]$$

2nd order density function

$$f_X(x_1, x_2; t_1, t_2) = \frac{\partial^2}{\partial x_1 \partial x_2} F_X(x_1, x_2; t_1, t_2)$$

Expectations

Ensemble Average

The mean of X(t) is defined by

 $\mu_X(t) = E[X(t)]$

X(t) is treated as a random variable for a fixed value of t

Autocorrelation

$$R_{xx}(t_1, t_2) = E[X(t_1)X(t_2)] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_1 x_2 f_{X_1X_2}(x_1, x_2; t_1, t_2) dx_1 dx_2$$

Autocovariance

e of Technol

$$K_{X}(t,s) = \operatorname{Cov}[X(t), X(s)] = E\{[X(t) - \mu_{X}(t)][X(s) - \mu_{X}(s)]\}$$
$$= R_{X}(t,s) - \mu_{X}(t)\mu_{X}(s)$$

The random process X(t) is given by

$$X(t) = A\cos\left(\omega t - \Phi\right),\,$$

where A and Φ are random variables with the probability density function,

$$f_{A\Phi}(a,\phi) = \frac{1}{2\pi} \left(1 + (3a-1)\cos\phi \right),$$

for $0 \le \phi \le 2\pi$
and $0 \le a \le 1.$

Derive (a) μ_X , (b) σ_X^2 , and (c) $R_{XX}(t_1, t_2)$.

(a) The mean can be found by taking the expected value of X(t) or

$$E\left\{X\left(t\right)\right\} = E\left\{A\cos(\omega t - \Phi)\right\},\$$

which can be expanded to

$$E\left\{X\left(t\right)\right\} = E\left\{A(\cos \omega t \cos \Phi + \sin \omega t \sin \Phi)\right\}.$$

Since only A and ϕ are random, $\cos \omega t$ and $\sin \omega t$ can be taken out of the expectation so that

 $E\{X(t)\} = \cos \omega t E\{A\cos \Phi\} + \sin \omega t E\{A\sin \Phi\},\$

 $E\left\{ X\left(t\right) \right\} =\cos \omega tE\left\{ A\cos \Phi \right\} +\sin \omega tE\left\{ A\sin \Phi \right\}$

where

$$E \{A\cos\Phi\} = \int_0^1 \int_0^{2\pi} a\cos\phi f_{A\Phi}(a,\phi) d\phi da$$
$$= \frac{1}{4}$$
$$E \{A\sin\Phi\} = \int_0^1 \int_0^{2\pi} a\sin\phi f_{A\Phi}(a,\phi) d\phi da$$
$$= 0.$$

Then,

$$E\left\{X\left(t\right)\right\} = \frac{1}{4}\cos\omega t,$$

which means that X(t) is a nonstationary random process.

(b) The variance can be found using

$$\sigma_X^2 = E\left\{ (X(t) - \mu_X)^2 \right\} = E\left\{ X^2 \right\} - \mu_X^2$$

The root mean square $E\left\{X^2\right\}$ is given by

$$E \{X^2\} = E \{A^2(\cos\omega t\cos\Phi + \sin\omega t\sin\Phi)^2\}$$

= $E\{A^2\cos^2\omega t\cos^2\Phi + A^2\sin^2\omega t\sin^2\Phi + 2A^2\cos\omega t\cos\Phi\sin\omega t\sin\Phi\}$
= $\cos^2\omega tE \{A^2\cos^2\Phi\} + \sin^2\omega tE \{A^2\sin^2\Phi\} + 2\cos\omega t\sin\omega tE \{A^2\cos\Phi\sin\Phi\}\}.$

(b) The variance can be found

Each term in the previous equation can be evaluated as follows

Then,

 $E \left\{ A^2 \cos^2 \Phi \right\} = \frac{1}{6}$ $E \left\{ A^2 \sin^2 \Phi \right\} = \frac{1}{6}$ $E \left\{ A^2 \cos \Phi \sin \Phi \right\} = 0.$ $E \left\{ X^2 \right\} = \frac{1}{6}$

and the variance equals

$$\begin{aligned} v_X^2 &= R_{XX}(t,t) - \mu_X^2 \\ &= E\left\{X^2\right\} - \mu_X^2 = \frac{1}{6} - \frac{1}{16}\cos\omega^2 t. \end{aligned}$$

14

(c) The autocorrelation function $R_{XX}(t_1, t_2)$, by definition, is given by

$$R_{XX}(t_1, t_2) = E \left\{ A^2 \cos(\omega t_1 - \Phi) \cos(\omega t_2 - \Phi) \right\}$$

= $\cos \omega t_1 \cos \omega t_2 E \{ A^2 \cos^2 \Phi \} + \sin \omega (t_1 + t_2) E \left\{ A^2 \cos \Phi \sin \Phi \right\}$
+ $\sin \omega t_1 \sin \omega t_2 E \{ A^2 \sin^2 \Phi \}$
= $\frac{1}{6} \cos \omega (t_1 - t_2).$

 $t \ge 0$

Autocorrelation: example

Consider the random process X(t) $X(t) = Y \cos \omega t$

where ω is a constant and Y is a uniform r.v. over (0, 1).

- (a) Find E[X(t)].
- (b) Find the autocorrelation function $R_x(t, s)$ of X(t).
- (c) Find the autocovariance function $K_x(t,s)$ of X(t)

Autocorrelation: example

(a)
$$E(Y) = \frac{1}{2}$$
 and $E(Y^2) = \frac{1}{3}$. Thus,

 $E[X(t)] = E(Y \cos \omega t) = E(Y) \cos \omega t = \frac{1}{2} \cos \omega t$

(b)
$$R_X(t, s) = E[X(t)X(s)] = E(Y^2 \cos \omega t \cos \omega s)$$

= $E(Y^2) \cos \omega t \cos \omega s = \frac{1}{3} \cos \omega t \cos \omega s$

(c)
$$K_{X}(t,s) = R_{X}(t,s) - E[X(t)]E[X(s)]$$
$$= \frac{1}{3}\cos\omega t \cos\omega s - \frac{1}{4}\cos\omega t \cos\omega s$$
$$= \frac{1}{12}\cos\omega t \cos\omega s$$

Classification of stochastic process

Strictly stationary

A random process $\{X(t), t \in T\}$ is said to be *stationary* or *strict-sense stationary* if, for all *n* and for every set of time instants $(t_i \in T, i = 1, 2, ..., n\}$,

$$F_{X}(x_{1},...,x_{n};t_{1},...,t_{n})=F_{X}(x_{1},...,x_{n};t_{1}+\tau,...,t_{n}+\tau)$$

Thus both first order and second order distributions are independent of t

 $F_X(x; t) = F_X(x; t + \tau) = F_X(x)$ $f_X(x; t) = f_X(x)$ $\mu_X(t) = E[X(t)] = \mu$ $Var[X(t)] = \sigma^2$

Of Techno

 $F_X(x_1, x_2; t_1, t_2) = F_X(x_1, x_2; t_2 - t_1)$ $f_X(x_1, x_2; t_1, t_2) = f_X(x_1, x_2; t_2 - t_1)$

Wide sense stationary

If stationary condition of a random process X(t) does not hold for all n but holds for $n \le k$, then we say that the process X(t) is stationary to order k.

If X(t) is stationary to <u>order 2</u>, then X(t) is said to be widesense stationary (WSS) or weak stationary.

1.
$$E[X(t)] = \mu$$
 (constant)

2.
$$R_X(t,s) = E[X(t)X(s)] = R_X(|s-t|)$$

Wide sense stationary

• Stationarity of a random process is analogous to steady state in vibration problems

of Techn⁶

- One or more of the properties of random process becomes independent of time
- Strong sense stationarity (SSS) : defined with respect to pdf-s
- Wide sense stationarity (WSS) : defined with respect to moments

Stationary SS: Few Theorems

- 1. If a random process which is stationary to order **n** is also stationary to all orders lower than **n**.
- 2. If {X(t), $t \in T$ } is a strict-sense stationary random process, then it is also WSS.
- 3. If a random process X(t) is WSS, then it must also be covariance stationary

SSS: Example

Consider a random process X(t) defined by

```
X(t) = U \cos \omega t + V \sin \omega t \qquad -\infty < t < \infty
```

where ω is constant and U and V are r.v.'s.

(a) Show that the condition

$$E(U) = E(V) = 0$$

is necessary for X(t) to be stationary.

(b) Show that X(t) is WSS if and only if U and V are uncorrelated with equal variance; that is,

E(UV) = 0 $E(U^2) = E(V^2) = \sigma^2$

(a)

 $\mu_{X}(t) = E[X(t)] = E(U) \cos \omega t + E(V) \sin \omega t$

must be independent of t for X(t) to be stationary.

This is possible only if $\mu_x(t) = 0$, that is, E(U) = E(V) = 0.

04-10-2018

(b) If X(t) is WSS, then

SHE H

e of Technolog

$$E[X^{2}(0)] = E\left[X^{2}\left(\frac{\pi}{2\omega}\right)\right] = R_{XX}(0) = \sigma_{X}^{2}$$

But X(0) = U and $X(\pi/2\omega) = V$; thus,

$$E(U^2) = E(V^2) = \sigma_{\chi}^2 = \sigma^2$$

Using the above result, we obtain

$$R_{x}(t, t + \tau) = E[X(t)X(t + \tau)]$$

= $E\{(U\cos\omega t + V\sin\omega t)[U\cos\omega(t + \tau) + V\sin\omega(t + \tau)]\}$
= $\sigma^{2}\cos\omega\tau + E(UV)\sin(2\omega t + \omega\tau)$

Conversely, if E(UV) = 0 and $E(U^2) = E(V^2) = \sigma^2$, then from the result of part (a) and the above result

$$\mu_x(t) = 0$$

$$R_x(t, t + \tau) = \sigma^2 \cos \omega \tau = R_x(\tau)$$

$R_x(\tau)$ (WSS) examples

1) $G(t) = A\cos(\omega_0 t + \phi)$, where ϕ is uniform RV with $\phi \sim U(0, 2\pi)$. Determine the mean and the autocorrelation ?

$$\operatorname{Ans} = \frac{A^2}{2} \cos(\omega_0 \tau)$$

Of Techno

2) $G(t) = A \cos(\omega t + \theta)$, where ω and θ are independent RVs with $\theta \sim U(0, 2\pi)$ and $\omega \sim U(\omega_1, \omega_2)$. Determine the mean and the autocorrelation ?

$$\operatorname{Ans} = \frac{A^2}{2\tau(\omega_2 - \omega_1)} \left[\sin \omega_2 \tau - \sin \omega_1 \tau \right]$$

Autocorrelation: Properties

1. It is an even function of τ

$$R_{\chi}(\tau) = R_{\chi}(-\tau)$$

2. Bounded by its value at origin

 $|R_{\chi}(\tau)| \le R_{\chi}(0)$

 $3. \quad R_x(0) = E[X^2]$

4. If X is periodic $R_x(\tau)$ is also periodic

Autocorrelation: Example

A random process Y(t) is given by $Y(t) = X(t) \cos(\omega t + \Phi)$, where X(t), a zero mean wide-sense stationary random process with autocorrelation function $R_X(\tau) = 2e^{-2\lambda|\tau|}$ is modulating the carrier $\cos(\omega t + \Phi)$. The random variable Φ is uniformly distributed in the interval $(0, 2\pi)$, and is independent of X(t). We have to find the mean, variance, and autocorrelation of Y(t):

Autocorrelation: Example

Mean. The independence of X(t) and Φ allows us to write

 $E[Y(t)] = E[X(t)]E[\cos(\omega t + \Phi)]$

and with E[X(t)] = 0 and $E[\cos(\omega t + \Phi)] = 0$ E[Y(t)] = 0

Variance. Since X(t) and Φ are independent, the variance can be given by

$$\sigma_Y^2 = E[Y^2(t)] = E[X^2(t)\cos^2(\omega t + \Phi)] = \sigma_X^2 E[\cos^2(\omega t + \Phi)]$$

However

ofTechnol

$$E[\cos^{2}(\omega t + \Phi)] = \frac{1}{2}E[1 + \cos(2\omega t + 2\Phi)] = \frac{1}{2} \text{ and } \sigma_{X}^{2} = C_{X}(0) = R_{X}(0) = 2$$

and hence $\sigma_Y^2 = \sigma_X^2/2 = 1$.

Autocorrelation: Example

Autocorrelation:

$$R_{Y}(\tau) = E[Y(t)Y(t+\tau)] = E[X(t)\cos(\omega t + \Phi)X(t+\tau)\cos(\omega t + \omega\tau + \Phi)]$$
$$= R_{X}(\tau)\frac{1}{2}E[\cos(\omega\tau) + \cos(2\omega t + \omega\tau + 2\Phi)]$$
$$= \frac{R_{X}(\tau)}{2}\cos(\omega\tau) + \frac{R_{X}(\tau)}{2}E[\cos(2\omega t + \omega\tau + 2\Phi)]$$

 $E[\cos(2\omega t + \omega \tau + 2\Phi)] = 0$, and hence

$$R_Y(\tau) = \frac{R_X(\tau)}{2} \cos(\omega \tau) = e^{-2\lambda|\tau|} \cos(\omega \tau)$$

A graph of $R_{Y}(\tau)$ is shown in Fig. with $\lambda = 0.5$ and $\omega = 2\pi$.

Cross-correlation

- 1. Two processes X(t) and Y(t) are called jointly stationary
 - ✤ if each of them are WSS individually

$$R_{xy}(t,t+\tau) = R_{xy}(\tau) R_{yx}(t,t+\tau) = R_{yx}(\tau)$$

Of Techno

2. $R_{xy}(\tau)$ and $R_{yx}(\tau)$ are mirror images of each other $R_{xy}(\tau) = R_{yx}(-\tau)$

Consider a time function that switches between two values +a and -a as shown The crossing times t_i are random and we assume that it is modelled as a Poisson process with a rate parameter λ . Then, the probability of k crossings in time τ is

$$p_k = \frac{e^{-\lambda|\tau|}(\lambda|\tau|)^k}{k!}$$

where λ is the number of crossings per unit time.

1197

^e of Technol

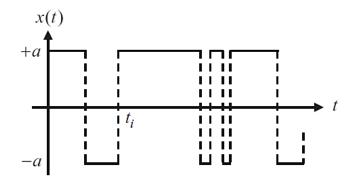


Figure Asynchronous random telegraph signal

If we assume that the process is in steady state, i.e. $t \to \infty$, then P[X(t) = a] = P[X(t) = -a] = 1/2

So the mean value $\mu_x = E[x(t)] = 0$.

The product $x(t)x(t + \tau)$ is either a^2 or $-a^2$

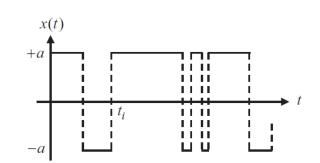
x(t)

of Technol

it is a^2 if the number of crossings is even in time τ

 $-a^2$ if the number of crossings is odd in time τ^2

The total probability for a^2 (i.e. an even number of crossings occurs) is $\sum_{k=0}^{\infty} p_{2k}$, and the total probability for $-a^2$ is $\sum_{k=0}^{\infty} p_{2k+1}$



Thus, the autocorrelation function becomes

$$R_{xx}(\tau) = E\left[x(t)x(t+\tau)\right] = \sum_{k=0}^{\infty} \left[a^2 p_{2k} - a^2 p_{2k+1}\right]$$
$$= a^2 e^{-\lambda|\tau|} \left[\sum_{k=0}^{\infty} \left(\frac{(\lambda|\tau|)^{2k}}{(2k)!} - \frac{(\lambda|\tau|)^{2k+1}}{(2k+1)!}\right)\right] = a^2 e^{-\lambda|\tau|} \left[\sum_{k=0}^{\infty} \frac{(-\lambda|\tau|)^k}{k!}\right]$$
$$= a^2 e^{-2\lambda|\tau|}$$

- Note that, as the parameter λ gets larger, $R_x(\tau)$ becomes narrower
- We use this to define a special WSS called White Noise

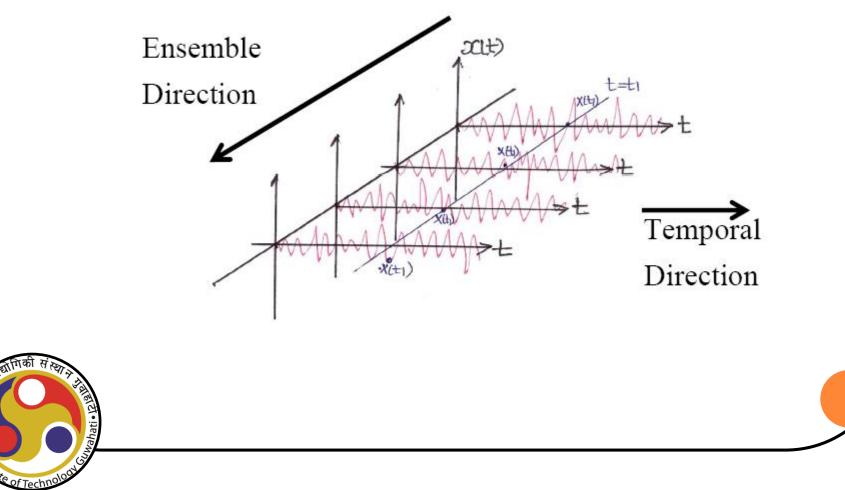
Of Techno

- As $\lambda \rightarrow \infty$, the process is very erratic and $R_x(\tau)$ becomes a Dirac delta function
- In order that $R_x(\tau)$ doesn't disappear completely, a becomes very large

This gives an idea of a 'completely erratic' random process whose autocorrelation (autocovariance) function is like a delta function, and the process that has this property is called *white noise*, i.e.

Autocorrelation function of white noise: $R_{xx}(\tau) = k\delta(\tau)$

Basic idea: Equivalence of temporal and ensemble averages



Erogodicity

A random process is said to be Ergodic if it has the property that the time averages of sample functions of the process are equal to the corresponding statistical or ensemble averages.

$$E[X(t)] = \langle X(t) \rangle = \frac{1}{T} \int_{-T/2}^{T/2} x(t) dt$$

The sample autocorrelation can be calculated using the following formula

$$R_X(\tau) = \langle X(t)X(t+\tau) \rangle = \frac{1}{T} \int_{-T/2}^{T/2} x(t)x(t+\tau) dt$$

Erogodicity

- Consider a sample of a random process: x (1), x (2),.....x (N)
- The sample mean of the sequence could be estimated as:

$$\widehat{m_x}(N) = \frac{1}{N} \sum_{n=0}^{N-1} x_n$$

• Since the sample is a realization of a random process it must have a constant ensemble mean $E[X(n)] = m_x$

If the sample mean $\widehat{m_x}(N)$ of a WSS converges to m_x in a *mean* square sense as $N \rightarrow \infty$, then the random process is said to be Ergodic in mean

 $\lim_{N\to\infty}\widehat{m_x}(N)=m_x$

of Technol

Mean Ergodic Theorem

Mean Ergodic Theorem 1. Let x(n) be a WSS random process with autocovariance sequence $c_x(k)$. A necessary and sufficient condition for x(n) to be ergodic in the mean is

$$\lim_{N\to\infty}\frac{1}{N}\sum_{k=0}^{N-1}c_x(k)=0$$

Mean Ergodic Theorem 2. Let x(n) be a WSS random process with autocovariance sequence $c_x(k)$. Sufficient conditions for x(n) to be ergodic in the mean are that $c_x(0) < \infty$ and

 $\lim_{k\to\infty}c_x(k)=0$

Sample autocorrelation of a WSS and Ergodic process

 $r_x(k) = E[x(k)x(n-k)]$

For each k, the autocorrelation is the expected value of the process: $y_k(n) = x(k)x(n-k)$

Using Ergodicity properties, the autocorrelation is finally estimated as :

$$\widehat{r}_{x}(k,N) = \frac{1}{N} \sum_{n=0}^{N-1} x(k) x(n-k)$$

of Technol

WSS& Ergodic process: example

Coming back to the random phase sinusoid

of Technol

 $G(t) = A\cos(\omega_0 t + \phi)$, where ϕ is uniform RV with $\phi \sim U(0, 2\pi)$.

$$\langle X(t) \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) dt = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} A \cos(\omega_0 t + \phi) dt = 0$$

$$\langle X(t)X(t+\tau) \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t)x(t+\tau)dt$$

$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} A^2 \cos(\omega_0 t + \omega_0 \tau + \phi) \cos(\omega_0 t + \phi)dt$$

$$= \frac{A^2}{2} \cos(\omega_0 \tau)$$

Applications

Noisy signals

of Techno

Consider a signal buried in white-noise, i.e. y(t) = s(t) + n(t)

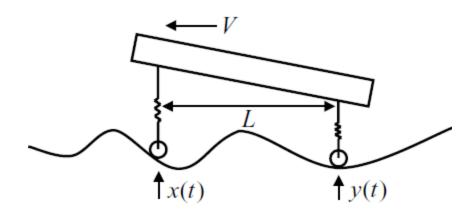
Assume: Noise and signal are uncorrelated and with mean = 0

Therefore: $R_{sn}(\tau) = E[s(t)n(t+\tau)] = \mu_s \mu_n$ $R_{yy}(\tau) = E[(s(t) + n(t))(s(t+\tau) + n(t+\tau))]$ $= E[s(t)s(t+\tau)] + E[n(t)n(t+\tau)] + 2\mu_s \mu_n$

 $R_{yy}(\tau) = R_{ss}(\tau) + R_{nn}(\tau)$

As $Rnn(\tau)$ decays very rapidly, the autocorrelation function of the signal $Rss(\tau)$ will dominate for larger values of τ

Application of cross-correlation



Consider a wheeled vehicle moving over rough terrain as shown in Figure.

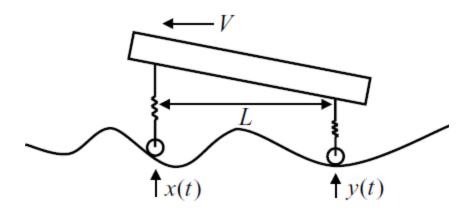
- Let the time function (profile) experienced by the leading wheel be *x*(*t*) and that by the trailing wheel be *y*(*t*)
- Let the autocorrelation of x (t) be $R_{xx}(\tau)$

Of Technol

• Assume that the vehicle moves at a constant speed *V*. Then, $y(t) = x(t - \Delta)$ where $\Delta = L/V$

$$R_{xy}(\tau) = E[x(t)y(t+\tau)] = E[x(t)x(t+\tau-\Delta)]$$
$$= R_{xx}(\tau-\Delta)$$

Application of cross-correlation



• Let x (t) and y(t) be observed in presence of white noise ($\sim N(0, \sigma^2)$)

$$x(t) = s(t) + n_x(t)$$

$$y(t) = s(t - \Delta) + n_y(t)$$

The cross-correlation function $R_{xy}(\tau)$ is (assuming zero mean values)

$$R_{xy}(\tau) = E[(s(t) + n_x(t)) \left(s(t - \Delta + \tau) + n_y(t + \tau)\right)]$$

= $E[s(t)s(t + \tau - \Delta)] = R_{ss}(\tau - \Delta)$

MATLAB examples

- Autocorrelation of a random phase sinusoid
- Noisy signal
- Time delay problem

Independent Increment Processes

• Independent Increment Process:

of Techn

- {X(t), t> 0} is said to have independent increments when
 X(0), X(t₁) − X(0), X(t₂) − X(t₁), ..., X(t_n) − X(t_{n-1}) are independent
- If {X(t), t> 0 } possesses independent increments and
 X(t + h) X(s + h) has the same distn as X(t) X(s), then process
 X(t) is said to have stationary independent increments.

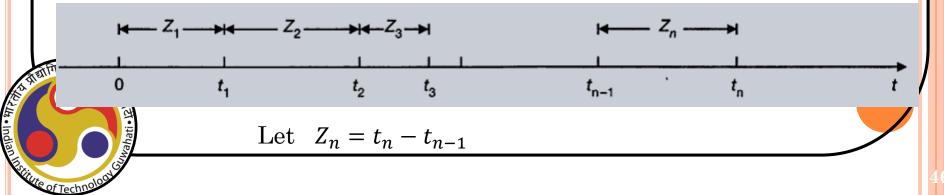
Arrival Process

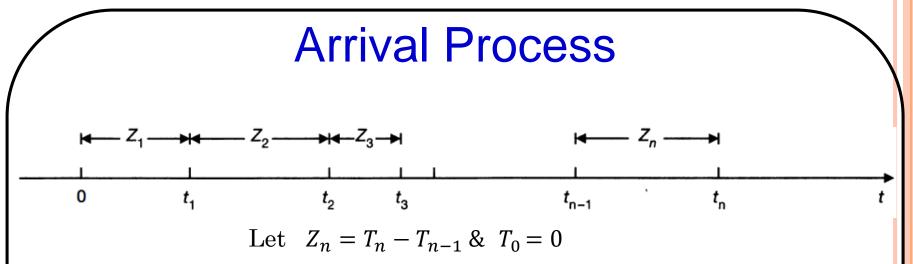
Let t represent a time variable

- Suppose an experiment begins at t = 0
- Events of a particular kind occur randomly,

the first at T_1 , the second at T_2 , and so on.

- The RV (T_i) denotes the time at which the *i*th event occurs, and
- The values t_i of T_i (i= 1, 2, ...) are called points of occurrence





Then Z_n denotes the time between the (n - 1)st and the nth events

The sequence of ordered RV's $\{Z_n, n \ge 1\}$ is sometimes called an interarrival process.

Observe that $T_n = Z_0 + Z_1 + Z_2 + \dots + Z_n$

Of Techn

The sequence $\{T_n, n \ge 1\}$ is called Arrival Process

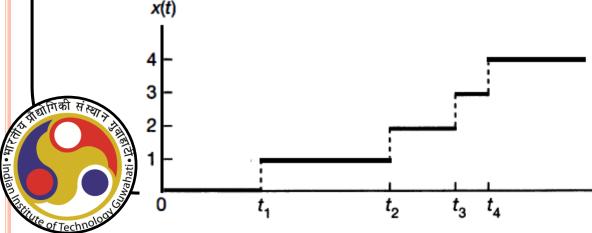
Counting Process

A random process $\{X(t), t \ge 0\}$ is said to be a counting process if:

- X(t) represents the total number of events that have occurred in the interval (0, t)
- $X(t) \ge 0$ and X(0) = 0
- X(t) is integer valued & $X(s) \le X(t)$ if s < t
- X(t)-X(s) equals to the no of events that have occurred in the interval (s, t)

Counting Process

- X(t) represents the total no of events that have occurred in the interval (0, t)
- $X(t) \ge 0 \& X(0) = 0; X(t)$ is integer valued $\& X(s) \le X(t)$ if s < t
- X(t)-X(s) equals to the no of events that have occurred in the interval (s, t)
- X(t) is a independent increment process if the <u>no of events</u> which occur in disjoint time intervals are independent
- A counting process X(t) possesses stationary increments if X(t + h) X(s + h) has the same dist. as X(t) X(s)



Poisson counting Process

A counting process X(t) is said to be a Poisson process with rate (or intensity) λ (> 0) if

1. X(O) = 0.

Of Technol

2. X(t) has independent increments.

3. The number of events in any interval of length t is Poisson distributed with mean λt

$$P[X(t+s) - X(s) = n] = e^{-\lambda t} \frac{(\lambda t)^n}{n!} \qquad n = 0, 1, 2, \dots \qquad \text{for all } s, t > 0,$$
$$E[X(t)] = \lambda t \qquad \qquad \text{Var}[X(t)] = \lambda t$$

Thus, the expected number of events in the unit interval (0, 1), or any other interval of unit length, is just λ (hence the name of the rate or minimum).

Example

Suppose vehicle are passing a bridge with the rate of two per minute.

Q1. In 5 minutes, what is the average number of vehicles?

Q2. what is the variance in 5 minutes ?

Q3. What is the probability of at least one vehicle passing the bridge in that 5 minutes?

To determine the above, the Poisson process is assumed ,where v(t) is the number of vehicles in the interval [0, t], with a rate of $\lambda = 2$.

$$P\{V(t) = n\} = \frac{(\lambda t)^n}{n!} e^{-\lambda t}, n = 1, 2, 3, \dots$$

For t=5
$$P\{V(t) = 5\} = \frac{5 \cdot 2^n}{n!} e^{-5 \cdot 2} \Rightarrow \mu_v(5) = 10 = \sigma_v^2(5)$$

for the equation of the equa

ofTechnol

Interarrival times for Poisson counting Process

A counting process X(t) is said to be a Poisson process with rate λ (>0) if 1. X(O) = 0 & X(t) has independent increments.

2. The no of events in any interval of length <u>t</u> is Poisson distributed with mean λt

$$P[X(t+s) - X(s) = n] = e^{-\lambda t} \frac{(\lambda t)^n}{n!} \qquad n = 0, 1, 2, \dots \qquad \text{for all } s, t > 0,$$

The time intervals between successive events (ti) or interarrival times in a Poisson's process X(t) with rate λ are IID exponential with parameter λ

Let Z1, Z2, ••• be the r.v. 's representing the lengths of interarrival times in the Poisson process X(t)

 $\{Z1 > t\}$ takes place if and only if no event of the Poisson process occurs in the interval (0, t),

Of Technol

$$P\{Z_1 \le t\} = 1 - P\{Z_1 > t\} = 1 - e^{-\lambda t}$$

Interarrival times for Poisson counting Process

The time intervals between successive events (ti) or interarrival times in a Poisson's process X(t) with rate λ are IID exponential with parameter λ

Let $Z_1, Z_2, \bullet \bullet \bullet$ be the r.v. 's representing the lengths of interarrival times in the Poisson process X(t).

 $\{Z_1 > t\}$ takes place if and only if <u>no event</u> of the Poisson process occurs in the interval (0, t),

$$P\{Z_1 \le t\} = 1 - P\{Z_1 > t\} = 1 - e^{-\lambda t}$$

$$P \{Z_2 > t\} = \int P\{Z_2 > t | Z_1 = \tau\} f_1(\tau) d\tau$$

= $\int P\{X(t + \tau) - X(\tau) = 0\} f_1(\tau) d\tau = e^{-\lambda t}$

which indicates that Z_2 is also an exponential with parameter λ and is independent of Z_1 .

Repeating the same argument, we conclude that Z_1 , Z_2 , are iid exponential r.v.'s with parameter λ

Of Technol

Arrival times for Poisson counting Process

Let $T_n = Z_0 + Z_1 + Z_2 + \dots + Z_n$ denote the time of the n^{th} event of a Poisson process X(t) with rate λ .

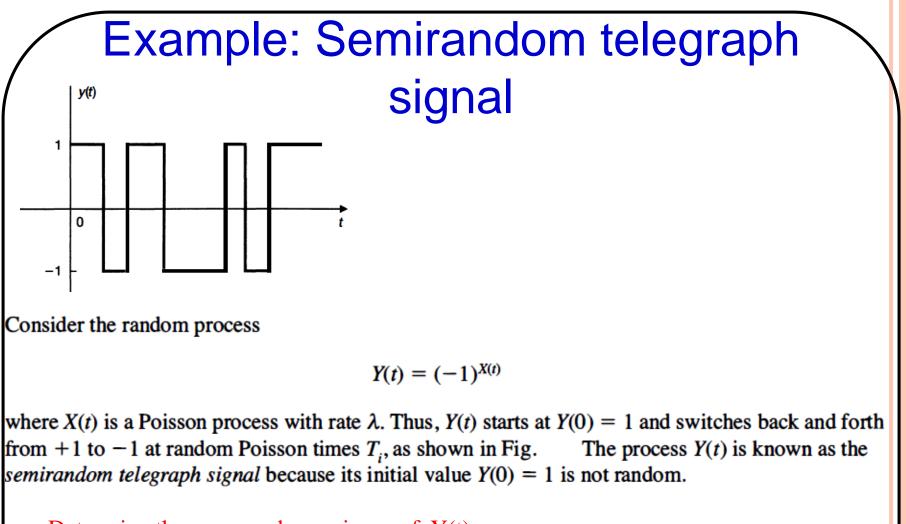
<u> T_n is a gamma r.v. with parameters (n, λ) </u>

2f Techn

we know that Z_n are iid exponential r.v.'s with parameter λ .

It can be proved that the sum of n iid exponential r.v.'s with parameter λ is a gamma RV with parameters (n, λ)

$$f_{T_n}(t) = \begin{cases} \lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!} & t > 0\\ 0 & t < 0 \end{cases}$$



Determine the mean and covariance of Y(t)

e of Technol

Example: Semirandom telegraph signal $Y(t) = \begin{cases} 1 & \text{if } X(t) \text{ is even} \\ -1 & \text{if } X(t) \text{ is odd} \end{cases}$ P[Y(t) = 1] = P[X(t) = even integer] $= e^{-\lambda t} \left[1 + \frac{(\lambda t)^2}{2!} + \cdots \right] = e^{-\lambda t} \cosh \lambda t$ P[Y(t) = -1] = P[X(t) = odd integer] $= e^{-\lambda t} \left[\lambda t + \frac{(\lambda t)^3}{2!} + \cdots \right] = e^{-\lambda t} \sinh \lambda t$ $\mu_{Y}(t) = E[Y(t)] = (1)P[Y(t) = 1] + (-1)P[Y(t) = -1]$ $= e^{-\lambda t} (\cosh \lambda t - \sinh \lambda t) = e^{-2\lambda t}$

Example: Semirandom telegraph signal

 $Y(t) = \begin{cases} 1 & \text{if } X(t) \text{ is even} \\ -1 & \text{if } X(t) \text{ is odd} \end{cases}$

ofTechnol

Similarly, since $Y(t)Y(t + \tau) = 1$ if there are an even number of events in $(t, t + \tau)$ for $\tau > 0$ and $Y(t)Y(t + \tau) = -1$ if there are an odd number of events, then for t > 0 and $t + \tau > 0$,

$$R_{Y}(t, t+\tau) = E[Y(t)]Y(t+\tau)]$$

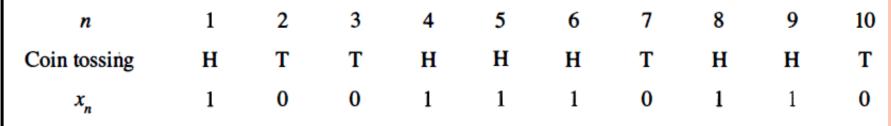
$$= (1) \sum_{n \text{ even}} e^{-\lambda\tau} \frac{(-\lambda\tau)^{n}}{n!} + (-1) \sum_{n \text{ odd}} e^{-\lambda\tau} \frac{(\lambda\tau)^{n}}{n!}$$

$$= e^{-\lambda\tau} \sum_{n=0}^{\infty} \frac{(-\lambda\tau)^{n}}{n!} = e^{-\lambda\tau} e^{-\lambda\tau} = e^{-2\lambda\tau}$$

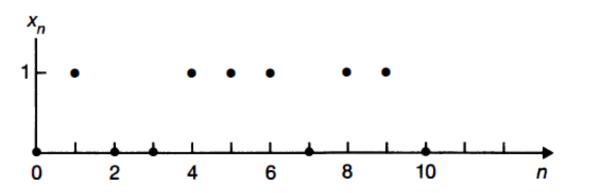
Bernoulli Process

- Let X_1, X_2 be independent Bernoulli RVs with $P(X_n = 1) = p$ and $P(X_n = 0) = q = 1 p$ for all n.
- The collection of RVs {X(n), n≥ 1 } is a random process, and it is called a Bernoulli process.
- A sample sequence of the Bernoulli process can be obtained by tossing a coin consecutively
 - \succ If a head appears, we assign 1,
 - \succ If a tail appears, we assign 0.

Bernoulli Process



The sample sequence $\{x_n\}$ obtained above is plotted in Fig.



Random Walk

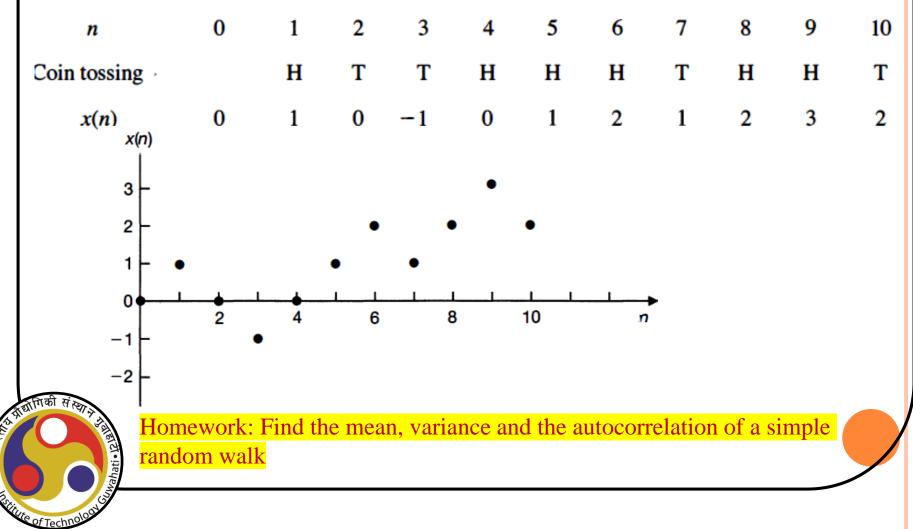
• Let Z_1, Z_2 be independent Bernoulli RVs with $P(Z_n = 1) = p$ and $P(Z_n = -1) = q = 1 - p$ for all n.

$$X_n = \sum_{i=1}^n Z_i$$
 $n = 1, 2, ...$ and $X_0 = 0$

The collection of RVs $\{X(n), n \ge 1\}$ is a random process, and it is called Random Walk

Random Walk

Repeat the same coin tossing exercise as Bernoulli process



Wiener Process

A random process $\{X(t), t > 0\}$ is called a Wiener process if

- 1. X(t) has stationary independent increments.
- 2. The increment X(t)- X(s) (t > s) is normally distributed.
- $3. \quad \mathrm{E}[X(t)] = 0$
- $4. \quad X(0)=0$

Of Technol

The Wiener process is also known as the Brownian motion process, since it originates as a model for Brownian motion, the motion of particles suspended in a fluid.

Wiener Process

A Wiener process X(t) has stationary independent increments in which the

increment X(t)- X(s) (t > s) is normally distributed with:

- $1. \quad \mathbb{E}[X(t)] = 0$
- 2. VAR $[X(t)] = \sigma^2 t$
- 3. When $\sigma^2 = 1$, X(t) is called a STANDARD Wiener process

The autocorrelation function of Wiener process $R_x(t,s) = \sigma^2 \min(t,s)$

Wiener Process with Drift

- 1. X(t) has stationary independent increments.
- 2. The increment X(t)- X(s) (t > s) is normally distributed.
- 3. $E[X(t)] = \mu t$
- $4. \quad X(0)=0$

The pdf of a standard Wiener process with drift coefficient μ is given by :

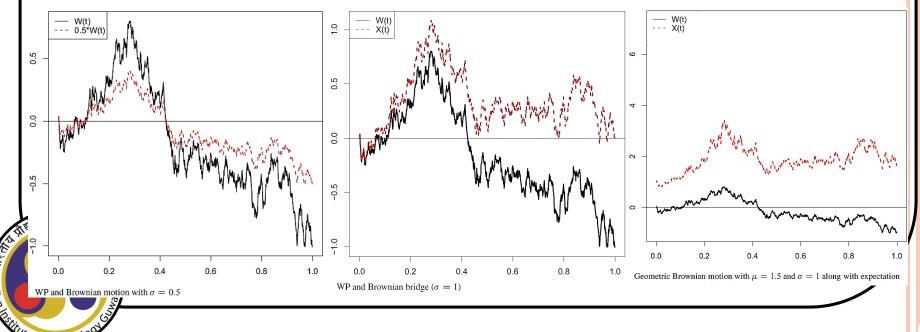
$$f_{X(t)}(x) = \frac{1}{\sqrt{2\pi t}} e^{-(x-\mu t)^2/2t}$$

Other processes related to Wiener

- Brownian Motion: B(t) = 0.5W(t)
- Brownian Bridge: X(t) = B(t) tB(1)

Of Techn

• Geometric Brownian Motion : $G(t) = e^{\mu t + \sigma W(t)}$



Convergence of Random Process

Definitions:

Sequence of RVs: $\{X_n, n \ge 1\}; \quad n \in N$

 $E[X_n^2] < \infty$

of Techn⁶

Mean squared Error: MSE $(X_n, X) \coloneqq E[(X_n - X)^2]$

Limit in mean square: l. i. m. $X_n = X$

Is the same way of stating $\lim_{n \to \infty} MSE(X_n, X) \to 0$

Convergence of Random Process

- Let $\{X_n\}$ converge in mean square to X. Then it holds for $n \to \infty$ (a) $E(X_n) \to E(X)$;
- (b) $E(X_n^2) \to E(X^2)_{;}$
- (c) if $\{X_n\}$ is Gaussian, then X follows a Gaussian distribution as well

