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Random process 
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Random process 
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Random process 

First-order distribution (for a particular value of t) 

 

 

 

First-order density function 
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2nd Order Averages 
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2nd order distribution 

 

 

 

2nd order density function 

6 

2nd Order Averages 
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Expectations 

Ensemble Average 

Autocorrelation 

Autocovariance 
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Random process 
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Random process 
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Random process 
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Random process 
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Random process 
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Random process 
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Autocorrelation: example 
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Autocorrelation: example 
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Classification of stochastic 

process 

Strictly stationary 

Thus both first order and second order distributions are independent of 𝝉 
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If stationary condition of a random process X(t) does 

not hold for all n but holds for n ≤ k, then we say that 

the process X(t)is stationary to order k. 

If X(t) is stationary to order 2, then X(t) is said to be wide-

sense stationary (WSS) or weak stationary. 

Wide sense stationary 
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• Stationarity of a random process  

                        is analogous to 

    steady state in vibration problems 

 

• One or more of the properties of random process becomes 

independent of time 

 

• Strong sense stationarity (SSS) : defined with respect to 

pdf-s 

 

• Wide sense stationarity (WSS) : defined with respect to 

moments 

Wide sense stationary 
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Stationary SS: Few Theorems 

1. If a random process which is stationary to order n is also 

stationary to all orders lower than n. 

 

2.  If {X(t), 𝑡 ∈ 𝑇} is a strict-sense stationary random 

process, then it is also WSS. 

 

3.  If a random process X(t) is WSS, then it must also be 

covariance  stationary 
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SSS: Example 
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Autocorrelation: Properties 

1. It is  an even function of 𝜏                                      
 

𝑅𝑥 𝜏 = 𝑅𝑥 −𝜏  

 

2.   Bounded by its value at origin 

 
𝑅𝑥 𝜏 ≤ 𝑅𝑥 0  

 

3.    𝑅𝑥 0 = 𝐸 𝑋
2  

 

 

4.    If X is periodic 𝑅𝑥 𝜏  is also periodic 
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𝑅𝑥 𝜏   (WSS) examples 

1) 𝐺 𝑡 = 𝐴 cos 𝜔0𝑡 + 𝜙 , where 𝜙 is uniform RV with 

𝜙~𝑈(0, 2𝜋). Determine the mean and  the autocorrelation ? 

 

Ans = 
𝐴2

2
cos 𝜔0𝜏  

 

 

2)  𝐺 𝑡 = 𝐴 cos 𝜔𝑡 + 𝜃 , where 𝜔 and 𝜃 are independent RVs with 

𝜃~𝑈(0, 2𝜋) and 𝜔~𝑈 𝜔1, 𝜔2 . Determine the mean and  

the autocorrelation ? 

 

Ans = 
𝐴2

2𝜏(𝜔2−𝜔1)
[sin𝜔2𝜏 −sin𝜔1𝜏] 
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Erogodicity 

Basic idea: Equivalence of temporal and ensemble averages 



02-09-2017 

26 

Erogodicity 

A random process is said to be Ergodic if it has the property that 

the time averages of sample functions of the process are equal to 

the corresponding statistical or ensemble averages. 

𝐸 𝑋 𝑡 = 𝑋(𝑡) =
1

𝑇
 𝑥 𝑡 𝑑𝑡
𝑇/2

−𝑇/2

 

The sample autocorrelation can be calculated using the following formula 

𝑅𝑋(𝜏) = 𝑋 𝑡 𝑋(𝑡 + 𝜏) =
1

𝑇
 𝑥 𝑡 𝑥 𝑡 + 𝜏  𝑑𝑡
𝑇/2

−𝑇/2
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Erogodicity 

• Consider a sample of a random process:  x (1), x (2),………x (N) 

 

• The sample mean of the sequence could be estimated as: 

𝑚𝑥 (𝑁) =
1

𝑁
 𝑥𝑛

𝑁−1

𝑛=0

 

 

• Since the sample is a realization of  a random process it must have a 

constant ensemble mean E[X(n)]= 𝑚𝑥 

 

If the sample mean 𝑚𝑥 (𝑁 ) of a WSS converges to 𝑚𝑥 in a mean square 

sense as N→ ∞, then the random process is said to be Ergodic in mean 

 
lim
𝑁→∞

𝑚𝑥 (𝑁 ) =𝑚𝑥 
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Mean Ergodic Theorem 
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Sample autocorrelation of a WSS and 
Ergodic process 

𝑟𝑥 𝑘 = 𝐸  𝑥 𝑘 𝑥 𝑛 − 𝑘  

 

    For each k, the autocorrelation is the expected 

     value of the process:  𝑦𝑘 𝑛 = 𝑥 𝑘 𝑥 𝑛 − 𝑘  

 

 

 

    Using Ergodicity properties, the autocorrelation is  

    finally estimated as : 

    

                       𝑟𝑥 𝑘, 𝑁 =
1

𝑁
 𝑥 𝑘 𝑥 𝑛 − 𝑘𝑁−1
𝑛=0  
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WSS& Ergodic process: example 

Coming back to the random phase sinusoid  
 
𝐺 𝑡 = 𝐴 cos 𝜔0𝑡 + 𝜙 , where 𝜙 is uniform RV with 𝜙~𝑈(0, 2𝜋).  
 

𝑋(𝑡) = lim
𝑇→∞

1

2𝑇
 𝑥 𝑡 𝑑𝑡
𝑇

−𝑇
  = lim
𝑇→∞

1

2𝑇
 𝐴 cos 𝜔0𝑡 + 𝜙 𝑑𝑡 = 0
𝑇

−𝑇
 

𝑋 𝑡 𝑋(𝑡 + 𝜏)  = lim
𝑇→∞

1

2𝑇
 𝑥 𝑡 𝑥 𝑡 + 𝜏 𝑑𝑡
𝑇

−𝑇
 

= lim
𝑇→∞

1

2𝑇
 𝐴2 cos 𝜔0𝑡 + 𝜔0𝜏 + 𝜙 𝑐𝑜𝑠 𝜔0𝑡 + 𝜙 𝑑𝑡
𝑇

−𝑇
 

= 
𝐴2

2
cos 𝜔0𝜏  



• Extension of Fourier analysis to non-periodic phenomena 

•  Discrete to continuous 

•  Skipping essential steps, in the limit Tp ∞ 

Fourier transform 

Inverse  

Fourier transform 

FOURIER TRANSFORM 
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POWER SPECTRUM 
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POWER SPECTRUM 
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POWER SPECTRUM 
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POWER SPECTRUM 
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POWER SPECTRUM 
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WIENER KHINCHINE THEOREM 
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PROPERTIES 
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PROPERTIES 

The above integral represents average or, mean-square power of the process 

X(t) 

Which is the total energy over the total time or the average power. 

 

Therefore, power spectrum is a measure of the energy 
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Certain important 𝑅𝑥(𝜏) ↔ 𝑆𝑥 𝜔  
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Certain important 𝑅𝑥(𝜏) ↔ 𝑆𝑥 𝜔  



02-09-2017 

42 

Example 

Consider for example 𝑅𝑥 𝜏 = sin𝜔0𝜏 
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Example 

Consider for example 𝑅𝑥 𝜏 = sin𝜔0𝜏 

This example shows that a sine function cannot 

 be a valid autocorrelation function. Why ? 
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Units of Power spectral density 
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Narrow band & broad band processes 
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Narrow band & broad band processes 

A narrow band spectrum can be expressed as a flat spectrum 

𝑆0 in the frequency band [𝜔1 𝜔2] 
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Narrow band & broad band processes 
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Narrow band & broad band processes 
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A broad band process is one that contains significant energy for a 

wider range of frequencies 

Broad band processes 
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White noise process 

What happens when 𝝎𝟏 = 0 and Lim  𝝎𝟐 → ∞ 
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White noise process 
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Fourier representation of random process 

If 𝑋𝑡  is a result of many effects that are independent or nearly Independent, then 𝑋𝑡 is 

a Gaussian process according  to Central Limit Theorem 
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Fourier representation of random process 
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Show that 𝑅𝑋𝑋 𝜏   is given by 

Fourier representation of random process 
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Show that 𝑅𝑋𝑋 𝜏   is given by 

Fourier representation of random process 

Hint:  
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Fourier representation of random process 

The area under the spectral density 

  is 𝑅𝑥 0 = 𝐸{𝑋𝑡
2} 

 

Thus, 𝜎𝑋
2 =  𝜎𝑛

2𝑁
𝑛=1  
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Fourier representation of random 

process 

• 𝜎𝑛  is as prescribed in the previous slide 

 

• 𝜑𝑛 is a uniform random variable in [0 2𝜋] 
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𝜑𝑛 is a uniform random variable in [0 2𝜋] 

Fourier representation of random 

process 
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Pierson Moskowitz Spectrum 
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Example 

•  Step-1 

 

 

•   

 

 

•   
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Example 
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clc; clear all; close all 

  

 del_omega=0.1;   % delta-omega = 0.1; 

  

omega1= 10.05: del_omega : 10.95;   

 T = 2*pi/del_omega;   % Note that T = 2 * pi / delta-omega 

 del_t= T/100; 

  

t1=   0:del_t:T;   

  

Nens=1;   % No of realizations 

  

phi1=2*pi*rand(Nens, length(omega1));  

 X1=zeros(length(t1),Nens);  

  

for jj=1:Nens 

    for i=1:length(t1) 

        for j=1:length(omega1) 

            [omega1' phi1'] 

            X1(i,jj)=X1(i,jj)+0.3162*cos(omega1(1,j)*t1(1,i)-phi1(jj,j)); 

        end 

    end 

end 

figure, subplot(2,1,1), plot(t1,X1), xlabel('t (secs)'), ylabel('X(t) (m)') 

title('Sample Time History for Sxx(w)=0.5 m^2’) 

Matlab code 
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Dirac delta function 

SDOF system under Impulse 
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Solution: 

SDOF Impulse response 
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Convolution integral 
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Approach the solution to the equation 

using Fourier transforms  

Therefore, 

Frequency Response 



  The quantity 

 

    is called frequency response function 
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Frequency Response 
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Impulse Response 



   

 

 Then   
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Impulse Response 
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LINEAR SYSTEM RESPONSE TO 

STOCHASTIC EXCITATION 
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LINEAR SYSTEM RESPONSE TO STOCHASTIC 

EXCITATION: AUTOCORRELATION 
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LINEAR SYSTEM RESPONSE TO STOCHASTIC 

EXCITATION: AUTO-SPECTRAL DENSITY 
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LINEAR SYSTEM RESPONSE TO STOCHASTIC 

EXCITATION: CROSS CORRELATION &SPECTRUM 


