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Random process
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/ Random process \
X, (1)
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/ Random process

First-order distribution (for a particular value of t)

Fy(x:t)=PlX(1,) < x]

, d
First-order density function [y (x;7) = d_FX (x:7)
X

X(1)

™~
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/ 2nd Or(;l’gr Averages \




02-09-2017

/ 2"d Order Averages \

2"d order distribution

Fy(x,x5:1,1,)=PlX(t,)<x, and X(,)<x, ]|

2"d order density function

~2

, %
Jx (x5t 0) =——Fy (), x,i1,,15)

OX 10X 5

v
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Expectations

Ensemble Average
The mean of X(r) is defined by

py (1) = E[X(1)]

X (1) 1s treated as a random variable for a fixed value of ¢

Autocorrelation

+00 +00

R (11.1,) = E[X (1) X (1,)]= I lexzleXz (x1,X 531y, 15 )dx,dx,

—00 —00

Autocovariance
K, (t,5) = Cov[X(8), X(5)] = E{[X(t) — u(DI[X(s) — py ()1}
=Ry (t,5) — u(Du(s)




Random process

The random process X (t) is given by

X (t) = Acos (wt — D),

where A and ® are random variables with the probability density function,

fas (@,0) = % (14 (3a—1)cos ),

for 0<o9o<2mw
and 0<a<l.

Derive (a) iy, (b) 0%, and (¢) Rxx (t1,t2) .
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Random process

{a} The mean can be found by taking the expected value of X (¢} or
E{X(t)} = E{Acos(wt —3}},
which can be expanded to
E{X ()} = E{A({coswtcos® +sinwtsind)} .
Since only A and ¢ are random, coswt and sinwt can be taken ocut of the expectation so that

E{X (t)} = coswtE {Acos P} +sinwiE {Asin P},
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where

Then,

which means that X (¢) is a nonstationary random process.

Random process

E{X (t)} = coswtE {Acosd} +sinwiE {Asin P},

E {A cos *l’}

1 2w
/ / acos@faa (a,d) doda
0 0
1
4
1 2w
E{Asin®} = / / asin$faa (e, d) doda
0 0
0.

E{X@)}= %coswt,
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Random process

(b) The variance can be found using

ok =B{(X(t)-px)’} = B{X*} -k
The root mean square & {X 2} 1s g1ven by

E{Xﬂ} — E{Az(cnswt oS (Ii—i—sinmtsinilijz}
= E{AE cos? wtcosZ ® + A% sin wtsin? ®
+2A2 coswt cos P sinwt sin &}
= cos’wtE {AE cos’ (I)} + sin? wtE {AE sin’ -.I:-}
+2coswtsinwtkE {AE cos ¢ sin (I?'} :
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Random process

(b) The variance can be found

Each term 1n the previous equation can be evaluated as follows

E {Aﬁr cos? G’} = %
E{A%sin*®} = %
E {A? cos @ sin tI)} = 0
Then, .
E{X"} =2
and the variance equals
0% = Rxx(t,t)—pk
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Random process

(¢) The autocorrelation function Ry x (¢1,%2), by definition, 1s given by

Rxx (t1,t2) = E {Ag cos(wt1 — @) cos(wta — P)}
= coswty coswta E{A? cos® B} + sinw (t1 + t2) E {AE cos Psin®}

+ sinwty sinwty E{A® sin® &}

1
= Ecnsm(tl —t9)
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/ Autocorrelation: example\

Consider the random process X(1) X(t) = Ycos wt t =0

where w 15 a constant and ¥ is a uniform r.v. over (0, 1).

Find E[X(1)].
(b) Find the autocorrelation function R (1, s) of X(1).

2
o

(¢) Find the autocovanance function K (1, s) of X(¢)

v
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/ Autocorrelation: example\

EY) = andE{l"E]— Thus,

E[X(f)] = E(Y cos wf) = E(Y) cos wr = 1 cos wf
(b) Ryt 5)=E[X()X(s)]= E(Y? cos wr cos ws)

=E{f2]cnﬁmrcnﬁm$=%cmwcmms

(c) Ky (1, 5)= Ry(t, 5) — E[X(2)]E[X(5)]

1 1
=3 COS (Wf COS W5 ~3 COS (! COS (WS

1
= — COS (Wf COS W5
12

v
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Classification of stochastic
process

Strictly stationary

A random process {X(r),t € T} is said to be stationary or strict-sense stationary if, for all n and for every set
of time instants (¢, €T,i = 1,2, ..., n},

Fy(xpy Xty ont) = Fylx, onxit + 7,00 +1)

Thus both first order and second order distributions are independent of T
F,(x)=F,(xt+9=F,()
fy(a ) = f(0)

py (D= E[X()] = u

Var[X(7)] = o?

Fyo(x,, x50 8, 1,) = Fylx, x50 1, — 1))

frx, X8, 8) = fo(x, x5t — 1)




02-09-2017

-~

1.

Wide sense stationary

If stationary condition of a random process X(t) does
not hold for all n but holds for n <k, then we say that
the process X(t)is stationary to order k.

If X(t) is stationary to order 2, then X(t) is said to be wide-
sense stationary (WSS) or weak stationary.

E[X(#)] = u (constant)

2. Rt s) = EX(OX(s)] = Ry(|s — ¢])

™~

v
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/ Wide sense stationary \

« Stationarity of a random process
IS analogous to
steady state in vibration problems

* One or more of the properties of random process becomes
Independent of time

 Strong sense stationarity (SSS) : defined with respect to
pdf-s

* Wide sense stationarity (WSS) : defined with respect to

moments /
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/ Stationary SS: Few Theorer@

1. If a random process which is stationary to order n is also
stationary to all orders lower than n.

2. I {X(t), t € T} Is a strict-sense stationary random
process, then it is also WSS.

3. If arandom process X(t) is WSS, then it must also be
covariance stationary

v
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SSS: Example

Consider a random process X(f) defined by

X(t) = U cos wt + Vsin wt —0 < << @

where @ 1s constant and UV and V are r.v.’s.
(a) Show that the condition

EU)=EV)=0

is necessary for X(r) to be stationary.

(b) Show that X(¢)is WSS if and only if U/ and V are uncorrelated with equal variance; that is,

E(UV)=0

E(U? = E(V?) = ¢?




(a)

u (1) = E[X()] = E(U) cos wt + E(V) sin wt

must be independent of ¢ for X(¢) to be stationary.

This is possible only if u (£) = 0, that is, E(U) = E(V) = 0.

02-09-2017
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(b) If X(r) is WSS, then

T

E[X%(0)]=E|X* [EE]] = Ryy (0)=0,"

But X(0) = U and X(x/2w) = V; thus,

E(UY) = E(V) = 0,? = 07

Using the above result, we obtain

R(t,t + ©) = E[X(DX( + 7)]
= E{(U/cos wt + Vsin w)[U cos w(t + T) + Vsin w(r + )]}
= ¢g* cos wt + E(UV) sin(2wt + wTt)
Conversely, if E(UV) = 0 and E(U?) = E(V?) = ¢?, then from
the result of part (@) and the above result

u() =0
R(t,t+ 1) = d’cos wr = R (7)
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/ Autocorrelation: Properties\

1. Iti1s an even function of

Ry(7) = Ry (—7)
2. Bounded by its value at origin
[Rx(T)| < R, (0)

3. R.(0) = E[X?]

4. If Xis periodic R,.(7) is also periodic /
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/ R,.(t) (WSS) examples

1) G(t) = Acos(wyt + @), where ¢ is uniform RV with
¢~U (0, 2m). Determine the mean and the autocorrelation ?

Az
Ans = Y cos(wqyT)

2) G(t) = Acos(wt + 6),where w and @ are independent RVs with
6~U(0,2m) and w~U (w4, w,). Determine the mean and
the autocorrelation ?

AZ

= in —sin
2T(wz_wl)[s W, T —SINW, T]
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Erogodicity

Basic idea: Equivalence of temporal and ensemble averages

Ensemble

Direction

/ i et Temporal
A7 ARV~ AR AR A I
b Direction
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/ Erogodicity \

A random process Is said to be Ergodic if it has the property that
the time averages of sample functions of the process are equal to
the corresponding statistical or ensemble averages.

T/2

1
EIX (0] = (X(0) = j x(6)dt

~T/2

The sample autocorrelation can be calculated using the following formula

v

T/2

Ry(t) = (X()X(t+ 1)) = %j x(t)x(t+71)dt

—T/2




Erogodicity

* Consider a sample of a random process: x (1), x (2),......... x (N)

» The sample mean of the sequence could be estimated as:
N-1
_ 1
M(N) == ) %y
n=0

 Since the sample is a realization of a random process it must have a
constant ensemble mean E[X(n)]=m,

If the sample mean m, (N ) of a WSS converges to m,. in a mean square
sense as N— oo, then the random process is said to be Ergodic in mean

lim ML (N ) =m,

N—>o00

02-09-2017
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/ Mean Ergodic Theorem \

Mean Ergodic Theorem 1. Let x(n) be a WSS random process with autocovariance

sequence cy (k). A necessary and sufficient condition for x(n) to be ergodic in the
mean is

. 1 N—1
Jim, 7 2 e =0

Mean Ergodic Theorem 2. Let x(n) be a WSS random process with autocovariance

sequence c, (k). Sufficient conditicns for x (n) to be ergodic in the mean are that
c.{0) < oo and

lim ¢, (k) =0
k— 0o




Sample autocorrelation of a WSS and
Ergodic process

(k) = E[ x(k)x(n — k)]

For each k, the autocorrelation is the expected
value of the process: y,(n) = x(k)x(n — k)

Using Ergodicity properties, the autocorrelation is
finally estimated as :

7k, N) = 3 INZ3 x(0x(n — k)

v
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/ WSS& Ergodic process: example\

Coming back to the random phase sinusoid

G(t) = Acos(wyt + @), where ¢ is uniform RV with ¢~U(0, 21).

.1 (T .1 (T
(X(t)) = TII_I,EOEI_Tx(t)dt :TIEEOEI—TA cos(wot + @) dt =0

(X(OX(t +1) = lim — [Lx(®x(t + 1)dt

= lim %f_TT A? cos(wgt + woT + P)cos(wyt + P)dt

T —oo

AZ
== cos(wyT)




/ FOURIER TRANSFORM\

« Extension of Fourier analysis to non-periodic phenomena
* Discrete to continuous
» Skipping essential steps, in the limit T, >0

o

X{f} —= [ x(t }E_‘j EHfrdf ¢ 1 Fourier transfofm

— 2
2

()= ] X(f)elTtdf /

—
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/ POWER SPECTRUM \

Iinowing that a random process is composed of energy at

many frequencies, we define a random process that is a sum of harmonies,
similarly to the Fourier series. Begin first with a random function of one

harmonic process, X(t) = C cos (wt — ¢¢) , or equivalently,

X(t) = Acoswt + B sinwt,

where 4 and B are independent random wvariables. Assuming both to be
zero mean and identically distributed, we have

B 0
L= o

I W
o =




/ POWER SPECTRUM

The autocorrelation is given by

Rxx(r) = E{X{#®)X({E+ 1)}
= F{(Acoswt+ Bsinwt) (Acosw[t+ 7|+ Bsinw [t + 7|)}.

Expanding the product and utilizing trigonometric identities results in

Rxx (1) = 02 coswr.

T

X(t) = ) Xi(t)

s

— Z (Ay coswyt + By sinwygt),
k=1

Suppose that the frequency content of the random process is expanded,

02-09-2017




POWER SPECTRUM

Suppose that the frequency content of the random process is expanded,

Tre

X(t) = > Xi(t)

Tre

Z (Ap coswyt + Brsinwgt),
k=1

where we make the same assumptions as were made above about A and B.
Following the same procedure as for the above single-frequency process, we

find

Tre VL

Rxx (1) = E Rx, x, (T E 02 COS WT.

The total variance for the process is found by recalling that
?=E{X*(t)} — % = Rxx (0),

the last equality being true for the case where the mean equals zero.

T

-3 o2
k=1

02-09-2017
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POWER SPECTRUM \

One-sided

Probability density p(w) .
p(o) t S D({ﬂjk ~ spectral density
S*(oy e, = &2 ploy. )
I « « | y N
O Wy Wy -+ Wy w
(b)

Each frequency component wy, contributes r:rf_ to the total variance o2. The

fraction of the total is given by the ratio crf, /o2, which can be defined as

Note that >, , p(wr) = 1. Then,

p(wy) as shown in Figure

Tl

Rxx (1) = o2 Zp(wk}coswk'r,
k=1

where p(wy) acts as a weighting function. The above implies that p(wy)

m behaves like a probability density.
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POWER SPECTRUM

\ Probability density p (w) One-sided

plw) J S “(mj" ~ Spectral density
SD{U’& )dw, = o? p(awy )
.| & IS | L0 _
A M -~ 1 >
(’01 mZ"'mk SRR £ P L6}
(@) (b)

Suppose the frequency spectrum becomes very broad, including many
frequencies, that is m — o0, resulting in a continuous frequency spectrum.
Define dw = wj41 —wp. In an analogous manner to how we proceeded from
a discrete to a continuous probability density function, replace o?p(wy) by
S?(w) dw, and the sum above by an integral over the frequency range,

Rxx (T) :/ S°(w) coswT dw.
0

S (w) is called the one-sided spectral density of the random process because
mit distributes the variance of the random process as a density across the /
%‘frequency spectrum. The one-sided spectral density is shown in Figure

5
5
&,
0
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/WIENER KHINCHINE THEOREm

Y :
Sxx (L:J) = % Rxx (“T) e “dr
RXX (T) — S}{x (w) EiWTdLu.




PROPERTIES

real even function,

Since Rxx (1) = Rxx (—7), Sxx (w) is not a complex function but a

Sx;{ (w) = SXX (—w).

For 7 = 0,

a positive quanti

/DO Sxx (w)dw = Rxx (0) :E{Xz(t)} > 0.

On physical grounds, then, it can be argued that since the area under the
power spectral density equals 0% for a zero-mean random process, it must be

ty for any Aw, that is, Sxx (w) > 0.

02-09-2017
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PROPERTIES

For 7 =0,

/DO Sxx (UJ) dw = Rxx (0) = E{Xg(t)} > 0.

The above integral represents average or, mean-square power of the process
X(t)

For an ergodic process, the expected value can be written as

1 T/2
E{X?(t)} ~ lim — o X2(t)dt,

Which is the total energy over the total time or the average power.

Therefore, power spectrum is a measure of the energy
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/Certain important R,.(t) < S, (w)

R(1) =_f:.5~‘[m]e"m¢e’m

S(6) =55 | R(x)e

Jso
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Certain important R, (1) « S, (w)

F Y &
COSE T lﬁ{m_,_mj —8(w—w,)
ANANEA 2 “ 2 ]
ALY T T T
» (D
={th, 0 [y,
F 3 F
2r
el i 2o
/ w‘”
»T _ e
a 0
Y "
in T .
Il/“w. 4 sm{mIl2)}
f \ Tt
|
/ \
s ™ fﬂ\ﬂ_;"' A w (0}
T 0 i 0 2n/T '
F
2 I 1/
E‘IEE-D: T|CO50,T | L E_:'__
\ -ﬂmll II."?\".II
7% ] s j; \ / ;H‘x >0
W ‘U’ L}U W = 0 o




Example

Consider for example R, (1) = sin w,T

The spectral density is related to the autocorrelation func-
tion by Equation

I -
Sxx (w) zﬁj Rxx (1) e ™ "dr.

If the autocorrelation is a pure sine function, Sxx (w) is given by the
integral,

1 = ' —iwT
Sxx (w) = e sinw,re ' drT.
— 3

02-09-2017




Example

Consider for example R, (1) = sin w,T

Using the Euler identity, sinw,7 = [exp (iw,T) — exp (—iw,7)] /24, the spec-
tral density becomes

1 =1 ' : — T
Syx (w) = or % lexp (iw,T) — exp (—iw,T)] e dr
_ % o0 % (E_f[m—wu}’r - E—i{w-l—wuﬁ') dr
1

= E[ﬁ(w—wu)—ﬁ(w—}—uﬂ)].

This example shows that a sine function cannot
be a valid autocorrelation function. Why ?

02-09-2017
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/ Units of Power spectral densim

[Units of X ()]

frequency

Units of PSD:

Ex: X (7) 1s displacement
Units of PSD : — or ——
Hz  (rad/s)
Simuilarly, 1t X(t) 1s acceleration
n/L,E 2 n/L‘Z 2
(s’ (s’)

Hz (rad/s)

Units of PSD:
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Narrow band & broad band processes

X(0) Xo)

3

/ AN n/\/\r! \
\/\/\/\/UU\ —®; =0 Y ®

Narrow-band random process X (t) in time and frequency X (w) domains.

X(9) X(w)

v U/\U\\/A/m\%f\: :

Broad-band random process X (¢} in time and frequency X (w) domains




02-09-2017

Narrow band & broad band processes

A narrow band spectrum can be expressed as a flat spectrum
Sy 1n the frequency band [w; w,]

Sy ()

¥

Sy

‘I!’e
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Narrow band & broad band processes

The autocorrelation function for such a process is evaluated as follows,

Sm(f’))
b
o] Ryx (1) = f S x (w) € duw
L ]

Lt

. = 2 So cos wr dw,

—0);

-0,

w, (O] Lt

where the real part of the complex exponential is retained having made use
of the symmetry of the power spectrum function. The integral is evaluated
to give

Rxx (1) = 2& (sinwoT — sinw; 7). (1)
T

Note that the autocorrelation function consists of two harmonic functions
at frequencies w; and ws. When the frequencies are close to each other)
beating is observed. This is clearer when Equation (1) is written as

Lxx (1) = 4% cos { (%) T} <in { (%) T} _
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ﬂ\larrow band & broad band process%

£

2
R (1) (/)
. © o -
— Lh o Lh — Ln

—
Lhn

P

T(8)

Figure : The autocorrelation function for an ideal narrow-band process.

S, =2 m?2/s, w; = 3 rad/s, and we = 3.5 rad/s.

v
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/ Broad band processes

A broad band process is one that contains significant energy for a
wider range of frequencies
40 1 1 1 1 i 1 1 1 1

. RN
w20 1 " r : " H . r i
‘E H 1 1 1 i H i i i
e H 1 1 1 1 H 1 1 1
:é: 10 . . . i ; ; : . .

s : . . .

-10

25 -2 -15 -1 05 05 1 15 2 2.5

0
T (s)
Figure : The autocorrelation function for an ideal narrow-band process
So =2 m?/s, wy = 0 rad/s, and we = 10 rad/s.




White noise process

What happens when w; = 0 and Lim w, — oo

lim 4&005 Wit W T % sin w2 — % T :ZSnsmng

R};"}{ (T) p— whﬂ—{loo 28(] SIH:}QT
= 2mwS500 (1)

Equation can be confirmed using the definition of the spectral density
given in Equation

Sxx (w) i/ 21506 (7) e Tdr = S

T on oo

02-09-2017
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/ White noise process \

..
Sy (©) ffm

41S,

[
o

o (rad/s) S {HZE

Figure : Two-sided and one-sided white noise spectra.
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Fourier representation of random process

If X; is aresult of many effects that are independent or nearly Independent, then X; is
a Gaussian process according to Central Limit Theorem

If X (¢) is a stationary process on |0,7], its realization can be
represented using the Fourier series

N 21 2mn
X (t) = Zan Ccos Tt + b, sin Tt,
n=1

where the coefficients a,, and b,, are random variables that have identical,

independent normal distributions with zero mean,

Ela,} = FE{b,} =0
E{ag} = E{bﬁ}zgz

T ('
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Fourier representation of random process

Independence implies

Elapybyn} = 0, for1<nm<N
Elapan} = 0, for1<nm<N andn#m
E{b.b,} = 0, for1<nm<N andn #m.

For example, a; is independent of all coefficients except for itself.
It should be noted that the number of Fourier components /N should be
large (at least 200) to duplicate the spectrum accurately.
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Fourier representation of random process

The autocorrelation function is then given by

Rxx{(t) = E{X®HXE+7)}

N 2mn 2mn
— E{(Zancos?t+b sm?t)

n=1

N 27T 2mm
.(Zamcos 7 (t—I—T)+bmsi11T(t—l—T))}

m=1

Show that Ryy(7) 1s given by

27‘?1, 21N

Rxx (1) = Z ol (CDS ——tcos = (t+7)

. 21 27N
+sin —--t cos — (t + 7)

N
9 21n

g, Co8 ——T.

T

n=1
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Fourier representation of random process

Show that Ryx(t) 1s given by Rxx (7)

g 2?Tnt 27N
Slll ——L COS ——
T T
N
> 2mn
— G',n COS T’T
=1
Hint: Since E {a,b,,} = 0 for any n and m, we can write
A 2an 2mm
Ryx(t) = ; mz:l [E {an0.m,} cos ?t Cos T (t+7)

2mn 2mrm

+E {b,b,, } sin ?t COS —7— (t + 'r)] :

N
5 21
E o, | cos thc}s —
n=1

2;”' (t+ 1)

(t—:—’r))

the double summation can be simplified as a single summation

Using F {anam} =0forn#mand E{a2} =E{i2} =02 forn=m
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Fourier representation of random process

.Am”.
A AN
Sideo) N
/ \:\’ The area under the spectral density
N is Ry (0) = E{X{}
I\
i N Thus, 67 = ¥N_, 02
1S, .
o, - -- ® {J’i ~ S% v (Wn) Aw.

Figure: Area under the discretized spectral density curve.

If the functional form of 5%  (w) is given, the integral expression can be
used for accuracy. If S%  (w) is given as discrete data, the approximation
to the integral is used. Note that S% y (w) is one sided in this case.

This suggests that a sample time history of the Gaussian random pro-
cess X (t) can be expressed as a Fourier series with independent Gaussian
Mrandom numbers a,, and b,, with variance 02
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Fourier representation of random
process

Another representation is given by

X (t) = i V20, cos (%7“1& — (pn>

n=1

* 0, Isas prescribed in the previous slide

* ¢, isauniform random variable in [0 27]

This representation does not satisfy the condition of a (Gaussian process
unless N — oo. However, there is no significant difference between two
representations for a large number of Fourier components (N > 1000)

This was shown in Elgar S., Guza, R.T, and Seymour R.J., “Wave Group Statistics

from Numerical Simulations of a Random Sea,” Applied Ocean Research, 7(2), 93-96,
1085
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.

Fourier representation of random

process

X (t) = i V26, cos (%T”t — (pﬂ>

n=1

@, 1S a uniform random variable in [0 2]

The autocorrelation function is then given by

Qarn.
T?

N
Rxx (T) = Znicns T

i=1

v
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Pierson Moskowitz Spectrum \

Ocean waves generated by wind are modeled as random processes. A
much used spectral density of ocean wave elevation n(t) is the Pierson-
Moskowitz spectruin,

2 4
Som (W) = D.U[}Sﬁlg exXp [—0.74 (i) ] m?s,

W Viw

where w > (), g is the gravitational constant, and V" is the wind speed at
a height of 19.5 m above the still water level. Any consistent set of units
for g and V can be used, with w in rad/s.
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Example

Consider a process with the spectral density

Find sample responses for (a) w1 = 10 rad/s and ws = 11 rad/s,

1

Sxx (w) =

2 (wo —w1)

m?s, for w1 < |w| < wo

Step-1  Sxx(w) = =ms
Let Aw = 0.1 rad/s. T —

ﬁgn: *./i %0.1
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Example

Choose 10 random uniform variates on [0,27) for ¢,,. Let N = 10. From the random number table, using
©; =0+ pi(2m —0),

¢ = 0.34363(27) = 2.159 rad
Yo = 0.79718(27) = 5.009 rad

010 = 0.66529(27) = 4.180 rad.

N
1
X(@) = V2 50.1 Z:lccns(wﬂt—cpﬂ)

= 0.3162[cos (10.05¢ — 2.159) + cos (10.15¢ — 5.009) + - - - -
+ cos (10.95¢ — 4.180)]
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Matlab code

clc; clear all; close all
del _omega=0.1; % delta-omega =0.1;

omegal=10.05: del_omega : 10.95;
T =2*pi/del_omega; % Note that T =2 * pi / delta-omega
del_t=T/100;

tl= O:del t:T;
Nens=1; % No of realizations

phil=2*pi*rand(Nens, length(omegal));
X1=zeros(length(tl1),Nens);

for jj=1:Nens
for i=1:length(t1)
for j=1:length(omegal)
[omegal’ phil’]
X1(i,jj)=X1(i,jj)+0.3162*cos(omegal(l,j)*tL1(1,i)-phil(jj.j));
end
end
end
figure, subplot(2,1,1), plot(t1,X1), xlabel('t (secs)'), ylabel("X(t) (m)")
title('Sample Time History for Sxx(w)=0.5 m"2”)




/ SDOF system under Impulse \
P(t)

- €
| _
) +OO-.« nf— =T
o =) _{ 0 ithr
t—5 || t+3 [M Ot —7)dt =1 =mAz(t =71)
L - t

1

rTr) = —

' (7) m

Dirac delta function /




/ SDOF Impulse response \

mz(t) + cx(t) + kx(t) = 6(t — 1)

Solution:

r(t—17) =

1
Mmwp

—Cwn (t—T)

€ sinwp (t — 7)




/ Convolution integral \
ma(t) + cx(t) + kx(t) = P(t)
4

P(rydr . .. .
dr — if_f@““(t—’) SIN Wp (t — T)

mwp

0 L[ om(t—T)
T & x(t) = / P(r)e= "N ginwp, (t — 7) dr
0

mwp /

_




Frequency Response

Approach the solution to the equation
&+ 2wnpd + wiz = F(t)

using Fourier transforms
(iw)g + i12Cwpw + wi] X (w) = F(w)

Therefore,

(iw)2 + i2Cwpw + w?




/ Frequency Response \

The quantity | _* (w) — H (iw) = 1
(iw)? + i2Cwnw + w2

1s called frequency response function

Now consider the same equé,tion of motion with

Ft) =6(t)




/ Impulse Response \

Ft) =6(t)

By def the response to a unit impulse load is called
the impulse response function and is denoted as g (f)
The equation of motion is given by

. . . 2 -

g+ 20wng +w,g=0(1).
Take the Fourier transtorm of the equation of motion,

G(w) = !

27 [(iw)Q + 12¢wpw + wﬂ /

___~




/ Impulse Response \

1
27 [(iw)2 + 12 wpw + wﬁ]

X (w) =27G (w) F (w)
and G (w) is related to H (w) by
H (w) = 27G (w)

— /_DL g (t) exp (—iwt) dt




LINEAR SYSTEM RESPONSE TO
STOCHASTIC EXCITATION

x(t) h(1) Y1)

INPUL ——- System

» Output

Figure A single-input, single-output system

r

Y1) = f h(t — ) (e))d

—0

o0
py = Iu_rfh{:'r}dr
0

LT0OG/¢/6




LINEAR SYSTEM RESPONSE TO STOCHASTIC
EXCITATION: AUTOCORRELATION

x(t) (1) H(t)

INPUL m— System — Output

Figure A single-input, single-output system

t

(1) = [ Wt — t)x()dn

—0

o0 OO
Ryy(t) = Ely(t)y(t + 1)l = E |:f f hitp)x(t — tph(o))x(t + 1 — rf:}dr](frv:|
0 0

[s 5w ]
= f[h{r] YW())E [x(t — Ty x(t + 17— D)]ldnidn
0 0

00 00
R;-_-L-{T\] = f f hitph(o) R (t+ 11 — mMdnidn
0 0

LT0OG/¢/6




LINEAR SYSTEM RESPONSE TO STOCHASTIC
EXCITATION: AUTO-SPECTRAL DENSITY

Taking the Fourier transform of autocorrelation
00
Sy (f) = f Ryy(r)e T dr
—o0

0 s o0
= f h(t)e! 7 " d f h(ry)e ¥ 2 dr, f Ron(t + 11 — 1p)e 2 Etn—m) gy
0 0 —00

Let t + 11 — 12 = u in the last integral to yield

Sy (f) = [H( I Sex(f)

LT0OG/¢/6




LINEAR SYSTEM RESPONSE TO STOCHASTIC
EXCITATION: CROSS CORRELATION &SPECTRUM

LT0OG/¢/6

Ry@® = [ hRu(e = )i @
0

The Fourier transform of Equation (1) gives the frequency domain equivalent as

e &) o0 oo

Sx:p(f) - f ny(r}g—jirrfrdr :fh("fl)f_jinfﬂdfl f Rxx(r - Tl)E_jz?TffT—njdr

—o0 0 —0

thus

Sx}'{f) = H(f)Sxx(f)




