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Schedule of Lectures 

• Last class before puja break Sept-24 (Sunday): extra class 

• Puja break: Sept-25 (Mon) to Oct-1 (Sun) 

• 4 extra classes on weekends: 5 marks bonus for full 

attendance 

• Grading scheme: Midterm 30 %  

•  End term: 50% 

•  Surprise Quizzes : 20 % 

•   Lectures:  Mon (8-9) 3102; Wed (5 – 6:00 pm) L4; 

                       Tues (12-1:00) 3102 
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INTROCUTION 

• Principle aim of design: SAFETY 

• Often this objective is non-trivial 

• On occasions, structures fail to perform their 

intended function 

• RISK is inherent 

• Absolute safety can never be guaranteed for 

any engineering system; a probabilistic notion 
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A motivating example 

F = 1 KN 

EI = 10000000 Nm2 

L  = 2 m  

mm

EI

FL

2667.0

3

3
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Uncertainties 

• Can we be always certain about EI ? 

• For RCC, fixing a point or a single value of E 

 is fraught with risks 

•  Are we always sure about I ? Or the dimensional  

properties ?  Can be risky again 

• In lot of practical applications, even F cannot be known 

for certain ? 
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F=1+0.1*randn(100,1) ;    % F is normally distributed 

 

EI=10^7+1000*randn(100,1);  % EI is normally distributed 

 

L=2; 

  

 for i=1:100 

        delta(i)= F(i)*L^3/(3*EI(i)); 

end 

Let’s consider the cantilever beam example 

again, now with some uncertainties 
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The displacement becomes uncertain too 
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Practical example: Reliability based design  

Stress (S) > Yield strength (R ) 
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Reliability example 
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Probability 
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Classical definition 
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Sample space 
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Example-1 
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Issues with classical definition 

  

• What is “equally likely”? 

 

•    What if not equally likely? 

  

e.g.: what is the probability that sun would rise 

tomorrow ? 

 

•     No room for experimentation. 
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Frequency def 

 
If a random experiment has been performed n number of times 

and if m outcomes are favorable to event A, then the probability of 

event A is given by 

Frequency definition 

Issues 
 

What is meant by limit here? 

One cannot talk about probability without conducting an experiment 

What is the probability that someone meets with an accident 

tomorrow? 
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Notions lacking definition 

 

 Experiments 

 Trials 

 Outcomes 

 

• An experiment is a physical phenomenon that is 

repeatable. A single performance of an experiment is 

called a trial. Observation made on a trial is called outcome. 

 

• Axioms are statements commensurate with our experience. 

No formal proofs exist. All truths are relative to the 

                         accepted axioms. 

Axioms of probability 
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Sample space 



21-08-2017 

18 

Axioms of probability 

Rigorously speaking the 

axioms of probability requires 

the knowledge of measure 

theory & sigma algebra 
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Problems that we will study 

•  Random Processes: Wind, earthquake & wave loads on           

engineering structures. Hydro-climatological processes like                           

temperature & rainfall data 

• Stochastic Calculus: If 𝐹 𝑥 = 𝑥2 𝑑𝐹 ≠ 2𝑥𝑑𝑥 ; where F(x)   

       is a stochastic function of a random process x 

• Stochastic Differential Equations: 
𝑑𝑥

𝑑𝑡
= 𝑓 𝑥, 𝑡 + 𝐿 𝑥, 𝑡 𝑤(𝑡) ; 

𝑤(𝑡) is a realization of white noise 

• Monte Carlo Simulation 
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Reference material 

1. Probability, reliability and statistical methods in engineering design  

          by A. Halder &  S. Mahadevan 

1. Probability Concepts in Engineering: Emphasis on Applications to Civil and 

Environmental Engineering   by   Alfredo H-S. Ang & Wilson H. Tang  

2. Probability, Statistics, and Reliability for Engineers and Scientists by Bilal M.  

         Ayyub & Richard H. McCuen 

4. Probability, Random Variables, and Stochastic Processes: Papoulis and Pillai 

5. From Elementary Probability to Stochastic Differential Equations with 

MAPLE® by Sasha Cyganowski, Peter Kloeden and Jerzy Ombach  
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Definitions & representations 

Sample space 

Event A 

Complementary event A   

A 
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Either A or B or both occurs 

Both A or B occur 

Intersection and Union 

What are mutually exclusive and 

mutually independent events ? 
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Conditional events 

B 

A/B 

• Event B occurs first 

 

• A occurs given that B has 

already occurred 

 

Pay attention to the chalk-board notes for details 

P (A/B) =  ? 

              = P (AB) / P(B) 
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Example-2 

F 

a [P(a) =0.05]  
c [P(c) =0.03]  

b [P(b) =0.04]  

Find the probability of 

failure of the truss ? 

 

Assume: The failures of 

each of the members are 

mutually independent 

Hint: Define the failure event first 
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• Prob of settlement of each footing = 0.1 

• Prob of settlement of each footing  given the other one has settled = 0.8 

 

• Find the prob of differential settlement 

Example-3 

Hint: Define the failure event (i.e. differential settlement) 

first 

A B 
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• Sometimes probability of an event A cannot be assigned directly but can 

be assigned conditionally for a number of other events Bi 

 

•  Bi  must be mutually exclusive and collectively exhaustive 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem of total probability 
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Example-4 
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Random variable 

Random Variable (RV): A finite single valued function that 

maps the set of all experimental outcomes  in sample space S into 

the set of real numbers R, is said to be a RV 

A random variable does not return a probability 
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Example: a coin toss 
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Discrete Random Variable 
 

• Discrete random variables are generally used 

to describe events that are counted, for 

example: No of cars crossing the intersection 

 

• Discrete random variables are expressed using 

integers 

 

• The probability content of a discrete random 

variable is described using the probability 

mass function(PMF) and is denoted by pX(x) 
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• The cumulative distribution function(CDF) is defined 

as a function of x, whose value is: 

 

     The probability that X is less than or equal to x 

 

• Because the events are mutually exclusive(i.e. X can 

only assume one value at a time) the CDF is obtained 

simply by adding the discrete probabilities as 

Discrete Random Variable 
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Consider the problem of three nuclear 

reactors.  

Assume that a reactor will be active and  

operating 90% of the time. What is the 

 probability that at-least  two reactors are 

 operating at a given time? 

Example: PMF 
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Let 

X = no of reactors in operational at any given time 

A = event that a reactor is active 

O = event that a reactor is offline for service 

 

Also let 

0 = event that all reactors are offline  

1 = event that 1 reactor is active and 2 are offline  

2 = event that 2 reactors are active and 1 is offline  

      3 = event that all 3 reactors are active  

Example: PMF 
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We are given: P(A) = 0.9, P(O) = 0.1 

 

Assuming the operation of the reactors is statistically 

independent, we can construct the PMF for the 

random variable X as 

 

pX (0) = P(X = 0) = (0.1)(0.1)(0.1) = 0.001 

pX(1) = P(X = 1) = 3[(0.9)(0.1)(0.1)] = 0.027 

pX (2) = P(X = 2) = 3[(0.9)(0.9)(0.1)] = 0.243 

pX (3) = P(X = 3) = (0.9)(0.9)(0.9) = 0.729 

Example: PMF 
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Therefore, the probability that at least two reactors are 

operating is given by X ≥ 2which is computed as 

Example: PMF 
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A discrete random variable X can take m possible values X = 

{x1, x2, …, xm} is the sample space 

 

Rolling a die, X= {1, 2, 3, 4, 5, 6} 

 

• P(xk) = Probability of taking a kth value (= xk) ( from PMF) 

 

• Expected Value or Mean =  

 

 

• Variance of X =  

Properties of RV 
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• Bernoulli random variable:   

 

  Takes only two values, X ≡ {0, 1} 

 

• Occurrence of an event (i.e., X = 1) with 

probability = p  

 

• No occurrence of event (i.e., X = 0) with 

probability = (1-p)  

Bernoulli trials 
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Bernoulli trials 
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• Suppose a system has 4 standby or backup units  

    The probability of failure of each unit is p per year 

 

• What is the probability that 1 unit will fail in the next 

year ? 
 

    Unit No. 1 2 3 4 Probability  

       Sequence  

1 F S S S  p(1-p)3  

2 S F S S (1-p)p(1-p)2  

3 S S F S (1-p)2p(1-p)  

4 S S S F (1-p)3p  

                                              Total:      4 p(1-p)3  

            F = Fail; S = Safe 

Bernoulli trials example 
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• Suppose, the distribution of the number of failures X in a 

group of 4 machines is a RV 

 

• The RV follows binomial distribution 

 

𝑃 𝑋 = 𝑘 =  4C𝑘
𝑝𝑘(1 − 𝑝)(4−𝑘) 

Binomial Distribution 
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The number of trials (occurrence of transients or 

accidents = m) 

 

• The number of failures in m trials = X,  a RV (X ≤ m) 

 

• Probability of failure per transient/accident = p 

 

• Binomial distribution (Prob of exactly k occurrences 

in m trials) 

 

                                                                    k = 1, 2,3,…m 

• Distribution parameters are = m and p 

𝑷 𝑿 = 𝒌 = 𝒎C𝒌
𝒑𝒌(𝟏 − 𝒑)(𝒎−𝒌) ;  

Binomial Distribution 
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• Parameters: m = 4 machines and probability of failure p = 0.1 

 

• The distribution of number of failures  

PMF 

Binomial Distribution 
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• What is the probability that there will be 2 or less failures? 

(Cumulative probability up to 2 ) 

 

Answer = P(X=0) + P(X=1) + P(X=2) = 0.97  
 

Binomial Distribution 



21-08-2017 

47 

• Binomial distribution converges to the Poisson distribution  

 

 When probability of failure p →0 (very small)  

 And the population of component 𝒎 → ∞ (very large) 

 Such that 𝒎𝒑 → 𝝁 , constant called mean number of 

failures 

 

• Poisson distribution gives the distribution of the number of 

failures (N) 
 

Poisson Distribution 
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• Probability of failure of a component  

 

               p = 0.0025 per year 

 

• The number of components in service 

                  m = 1000 

 

• Mean number of failures 

                    μ= m p = 2.5 failures per year 

Example: Poisson distribution 
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• A continuous random variable can assume any value 

within a given range e.g. Concrete crushing strength 

 

• The probability content of a continuous random variable is 

described by the probability density function(PDF) 

Continuous RVs 
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•  The probability associated with the random variable in 

a given range is represented by the area under the PDF 

 

 

 

 

 

 

 

 

 

                                     

                               Total area = 1.0 

Continuous RVs 
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CDF 

The cumulative distribution function (CDF) 

 

 

 

• The CDF is equal to cumulative probability (ranges 

between 0 and 1) 

 

• It is apparent from above that the PDF  

    is the first derivative of the CDF 
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Properties of 𝑓X(x) 
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CDF & Quantile function 

• In some cases, we may be interested in finding out what 

is the value of the random variable for a given probability 

 

• Probabilistic bounds that are important for design 

purposes 

 

• The result is called the percentile or quantile value 

 

• For example, the value of the random variable 

associated with 95 % (cumulative) probability is the 

95th percentile value 
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To estimate the percentile values, we must invert the CDF 

as : 

CDF & Quantile function 
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• It is the simplest distribution 

•  It is the most uncertain distribution between a & b 

Uniform distribution 
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Normal distribution 
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Normal distribution 
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The Standard Normal variate is used to transform the 

original random variable x into standard format as 

 

 

 

 

• The Standard Normal distribution is denoted as 

N(0,1)and has a mean of zero and standard 

deviation equal to one 

 

• Because of its wide use, the CDF of the Standard 

Normal variate is denoted as Φ(s) 

Standard normal distribution 
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Example: A reliability problem 
A concrete column is expected to support a stress of 

34 MPa.  

• Assuming the Normal distribution for concrete 

strength, what is the probability of failure?  

•  The sample mean and standard deviation computed 

from tests are equal to 40 Mpa and 4.56 MPa 

Soln: Probability of failure is the area under the Normal PDF 
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• The probability that the concrete strength is less 

than or equal to the applied stress (34 MPa) is 

obtained using the Standard Normal CDF as 

 

 

 

 

•    Therefore, given an estimated average value of 

40 Mpa from the 35 laboratory tests with a standard 

deviation of 4.56 MPa, the probability of failure is 

9.4 % 
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• The logarithmic or Log-Normal distribution is used when the 

random variable cannot take on a negative value 

 

• A random variable follows the Log-Normal distribution if the 

logarithm of the random variable is Normally distributed 

 

•  ln (X) follows the Normal distribution; =>X follows the 

Lognormal distribution 

 
 

Log-Normal distribution 
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Log-Normal distribution 
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• The Log-Normal distribution is related to the Normal 

distribution, and can be evaluated using the Standard 

Normal distribution as 

 

 

 

 

 

•  The distribution parameters are related to the Normal 

distribution parameters as 

 

 
 𝛿= 

𝜎

𝜇
 

Log-Normal distribution 
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The distribution parameters are : 

 

• Shape parameter λ= Mean of ln(x) 

• Scale parameter ζ= STDEV of ln(x) 
 

 

Log-Normal distribution 
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Assuming the concrete strength is described by 

the Log-Normal distribution, what is the 

probability that the concrete strength is less than 

or equal to 34 MPa?  

Soln: The lognormal distribution parameters are : 

Log-Normal distribution 
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• The probability that the concrete strength is less than or 

equal to 34 Mpa is obtained using the Standard Normal 

CDF as 

 

 

 

 

•  Assuming the concrete strength follows the Log-Normal 

distribution (i.e., the LOG of the concrete strength follows 

the Normal distribution), there is a 8.5 %chance that the 

concrete strength is less than or equal to 34 MPa 
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Exponential distribution 
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The cumulative distribution function (CDF) of the 

Exponential distribution is given by: 

 

 

 

 

• The distribution parameters can be estimated using 

the sample data (i.e. sample statistics) 

 

• The scale parameter λ is equal to or simply the 

reciprocal of the sample average 

Exponential distribution 
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Assuming the concrete strength is described by 

the exponential distribution, what is the 

probability that the concrete strength is less than 

or equal to 34 MPa?  

Exponential distribution 



21-08-2017 

74 

• The Weibull probability distribution is a very 

flexible distribution 

• Due to the shape parameter 

• It is used extensively in modeling the time to 

failure distribution analysis 

• The Weibull distribution is derived theoretically as 

a form of an Extreme Value Distribution 

• It is also used to model extreme events like     

strong winds, hurricanes, typhoons etc 

Weibull distribution 
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Weibull distribution 
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Weibull distribution 
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Assuming the concrete strength is described by 

the Weibull distribution, what is the probability 

that the concrete strength is less than or equal 

to 34 MPa?  

Reliability problem using Weibull 

distribution 
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Reliability problem using Weibull 
distribution 
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Alternate approach: Solve for 𝛼 and 𝛽 using 

nonlinear equation solution techniques 

Main equation to be solved 

Use bisection method to solve for 𝛼 

1  + 𝑠2/𝑥 2 = 
Γ 1+

2

𝛼

Γ2 1+
1

𝛼

 

Task: Solve the above problem in MATLAB and 

verify using Excel goal-seek solver 

Submit the assignment solution  by Monday aug-14 
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Using MATLAB command: 

 

p = wblcdf (34, 41.95, 10.59) = 0.1024 
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Inverse Weibull distribution 
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Inverse Weibull distribution 
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• The Gamma distribution is another flexible probability 

distribution that may offer a good model to some sets of failure 

data 

 

• The Gamma distribution arises theoretically as the time to first 

fail distribution for a system with standby Exponentially 

distributed backups 

 

• The Gamma distribution is commonly used in Bayesian 

reliability applications e.g. using prior information to update the 

constant (Exponential) repair rate for a system following a 

homogeneous Poisson process (HPP) model 
 

 

Gamma distribution 
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Similar to the Weibull distribution, there are many different 

variations of writing the Gamma distribution 

 

• The probability density function (PDF)is 

 

 

 

 α is the shape parameter 

 β is the scale parameter 

 

• When α = 1 the Gamma distribution reduces to the Exponential 

distribution with 1/β= λ 

 

                  CDF: 
 

Gamma distribution 
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Gamma distribution 
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Gamma distribution 

Task: Find out the mean and the variance for the gamma 

          distributed random variable, using the form of  𝑓(𝑥)  
           given underneath 
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• Consider 2 RVs X and Y 

 

•  If the RVs are discrete, then the joint probability 

distribution is described by the joint probability 

mass function(PMF) 

 

• 𝑝 𝑋,𝑌 𝑥, 𝑦 = 𝑃 (𝑋 = 𝑥 )⋂(𝑌 = 𝑦)  

 

•  CDF: 
𝐹 𝑋,𝑌 𝑥, 𝑦 =   𝑝 𝑋,𝑌𝑦𝑖<𝑦 = 𝑃[(𝑋 ≤ 𝑥) ∩ (𝑌 ≤ 𝑦)]𝑥𝑖< 𝑥  

 

Multiple RVs 
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• Consider 2  continuous RVs X and Y 

 
 

 

Continuous RVs 
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Continuous RV 

CDF 

Marginal PDF 

𝑓𝑋 𝑥 =  𝑓𝑋𝑌 𝑥, 𝑦 𝑑𝑦

∞

−∞

 

 

𝑓𝑌 𝑦 =  𝑓𝑋𝑌 𝑥, 𝑦 𝑑𝑥

∞

−∞
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Moments of continuous RV 

𝐸 𝑋𝑌 =  𝑥𝑦 𝒑 𝑥, 𝑦 𝑑𝑥𝑑𝑦

∞

−∞

 

𝜌𝑥𝑦 =
𝐶𝑜𝑣(𝑋,𝑌)

𝜎𝑥𝜎𝑦
=
𝐸[ 𝑋−𝜇 𝑥  𝑌−𝜇 𝑦 ]

𝜎𝑥𝜎𝑦
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Properties of moments 

• 𝐸 𝑎𝑋 + 𝑏 = 𝑎 𝐸 𝑋 + 𝑏 

•  𝑉𝑎𝑟 𝑋 = 𝐸 𝑋2 − (𝐸 𝑋 ) 
2
 

•  𝑉𝑎𝑟 𝑎𝑋 + 𝑏 = 𝑎2𝑉𝑎𝑟(𝑋) 

•  Cov(X,Y)= 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌  

•  Var(X+Y)=Var(X)+Var (Y) + 2Cov(X,Y) 

 



21-08-2017 

93 

Independence 
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Bi-variate Gaussian distribution 
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Bivariate Gaussian distribution 

Alternate Form 
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Example-1 
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Solution 

How will you find k ? 
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Solution 

How will you find marginal pdfs 

Is                            ? 
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Conditional densities 

Solution 
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Example-2 new 
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Example-3 new  
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Example-3 new  
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Check Uncorrelated-ness 
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Function of random variables 
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Function of random variables 
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Example 

What is pdf of y ? 

Solution: 
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Example 
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Exercise  

Solve the following problem ? 
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Moments of functions of RVs 

Y= a1X1+ a2X2 

Var Y  = a1
2 Var X1 + a2

2 Var X2 +2a1a2 ρx1x2
 σx1
 σx2
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In many cases derived probability distributions may be very difficult 

to evaluate for general nonlinear functions. 

 

Either use Monte Carlo simulation to find the derived density 

 

 

Or, 

 

Estimate mean and variance using an approximate analysis which in 

Most of the practical applications is sufficient, although the 

Pdf may still be undermined.  

Moments of functions of RVs 
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Moments of general function of  
a single RV 

To find the approximate expressions of mean and variance, 

we use Taylor’s series to expand a function about its mean 𝜇𝑋 
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Moments of general function of  

a single RV 

Second order approx. 
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Example 
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Example 
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Moments of general function of  
a multiple RVs 

To find the approximate expressions of mean and variance, 

we use Taylor’s series to expand a function about its mean 𝜇𝑋𝑖 

 



21-08-2017 

118 

Moments of general function of  

a multiple RVs 

Second order approx of mean 

First order approx. 

What happens if 𝑋𝑖 ’s are independent 
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Example-1 
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Example-1 
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Example-1 
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Example-2 
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Example-2 
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Example-2 
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Parameter Estimation 
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𝑖/(𝑁 + 1)  

PP plot 
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PP plot 
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5.96 

6.83 

6.84 

8.17 

8.68 

8.74 

9.41 

10.36 

15.9 

22.5 

22.7 

23 

23.509 

23.6 

23.7 

24.7 

25.3 

25.407 

28 

28.2 

28.5 

30 

30 

30 

30.88 

31.38 

34.28 

34.5 

37.407 

40.03 

40.48 

43.53 

45 

46.31 

46.397 

48.74 

50.888 

63.319 

PP plot-for practice 
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Maximum Likelihood Estimation 
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Joint density function of the sample 

𝑓(𝑥1, 𝑥2, ………… , 𝑥𝑛; 𝜃) 

This is in general difficult to work with 

• Simplify it by making independence assumption 

• Each sample is sampled independently of the others 

• Each sample belongs to the same parent distribution 

Joint density simplifies to 

Maximum Likelihood Estimation 
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A better and somewhat well behaved function: Likelihood  

• Likelihood function L is a function of a single variable 𝜃  

• Method of maximum likelihood: Comprises of choosing, as 

an estimate of  𝜃, the particular value of that maximizes L  

Maximum Likelihood Estimation 
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Maximum Likelihood Estimation 
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Gaussian with known sigma 
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Gaussian with unknown mean & 
sigma 

=0 

Question: Work out the case where sigma is known and varies 

at each point  


