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/ Schedule of Lectures \

Last class before puja break Sept-24 (Sunday): extra class
Puja break: Sept-25 (Mon) to Oct-1 (Sun)

4 extra classes on weekends: 5 marks bonus for full

attendance
Grading scheme: Midterm 30 %
End term: 50%

Surprise Quizzes : 20 %

v
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/ INTROCUTION \

* Principle aim of design: SAFETY

 Often this objective is non-trivial

* On occasions, structures fail to perform their
iIntended function

* RISK Is inherent

* Absolute safety can never be guaranteed for

any engineering system; a probabilistic notiy
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El = 10000000 Nm?
L =2m

/ A motivating example\

v
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/ Uncertainties

« Can we be always certain about EI ?

* For RCC, fixing a point or a single value of E

Is fraught with risks

« Are we always sure about | ? Or the dimensional

properties ? Can be risky again

for certain ?

* In lot of practical applications, even F cannot be known

~

v
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/Let’s consider the cantilever beam example
again, now with some uncertainties

F=1+0.1*randn(100,1) ; % F is normally distributed
EI=10"7+1000*randn(100,1); % El is normally distributed
L=2;

for i=1:100

delta(i)= F(i)*L"3/(3*EI(i)):
end

v
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The displacement becomes uncertain too

20 r r I

15F

Frequency of no of occurences

8.26 0262 0264 0266 | 0268 027 0272 0274 0.276
Deflection in mm

Mean value = 0.2674 mm
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ﬁractical example: Reliability based desigN

o Consider a pipe section with diameter D, thickness W, that is
subjected to internal pressure P

o The hoop stress S in the pipe section is given as

S=£
2W

o The yield strength of the material is denoted by R

o Failure:
Stress (S) > Yield strength (R )

v
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/ Reliability example \

Demand Capacity

trength

S >
X

— likelihood that demand will
exceed capacity (higher)

v
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/ Probability \

o Random variables are defined through the concept of
probability

o Probability quantifies the variability in the outcome of an event,
whose exact outcome cannot be predicted with certainty

Probability: The likelihood of occurrence of an event relative
to a set of alternative events.

o Need to identify
o A set (or range) of all possibilities (outcomes or sample space)

e [ he event of interest




Classical definition

Need to determine the likelihood associated with the
occurrence of each event (= probability)

Definition
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For a game that has n equally likely outcomes, of which s
outcomes correspond to “success” or winning, the probability
of winning is given by s/n.

All events have an equal likelihood of occurring
e i.e. all outcomes are equally likely

The classical probability concept is applicable to games of
chance (i.e. gambling)




Sample space

o Consider a coin toss or rolling a die

Sample Space = 2 Events Sample Space = 6 Events

Sample Space = 4 Events

{1,2,3,4,5,6}

21-08-2017
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/ Example-1 \
e e s B T

Solution:
(a) There are two such outcomes (1,2) and (2,1).

Thus, the probability is equal to 2/36 = 1/18 05
(b) There are two such outcomes (1,1) and (6,6).

Thus, the probability is equal to 2/36 = 1/18

(c) There are six such outcomes (1,6), (2,9), (3,4), (6,1), (5,2)
and (4,3). Thus, the probability is equal to 6/36 = 1/6

17
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ﬂssues with classical definiti@

* What is “equally likely”?
« What If not equally likely?

e.g.: what is the probability that sun would rise
tomorrow ?

« No room for experimentation.

v
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Frequency def

Frequency definition

If a random experiment has been performed n number of times
and If m outcomes are favorable to event A, then the probability of

event A is given by

P(A] = 1i1:[1E

F—00 I'rﬂ-"]'

Issues

What is meant by limit here?
One cannot talk about probability without conducting an experiment
What is the probability that someone meets with an accident




21-08-2017

/ Axioms of probability \

Notions lacking definition

“ Experiments
s Trials
+» Outcomes

* An experiment is a physical phenomenon that is
repeatable. A single performance of an experiment is
called a trial. Observation made on a trial is called outcome.

» AXioms are statements commensurate with our experience.
No formal proofs exist. All truths are relative to the

Lok .
T accepted axioms. /
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Sample space
Sample space ()

Set of all possible outcomes of a random experiment.

Examples

(1) Coin tossing: Q=(h t): Cardinality=2: finite sample space.

(2) Die tossing: Q=(1 2 3 4 5 6): Cardinality=6; finite sample space.

(3) Die tossing till head appears for the first time:

Q=(h th tth ttth tttth ---); Cardinality=c0; countably infinite sample space.
(4) Maximum rainfall in a year: Q=(0 < X<»):

Cardinality=o0; uncountably infinite sample space.
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/ Axioms of probability \

. The probability of an event is a real non-negative number

0< P(E)<1

2. The probability of a certain (or inevitable) event S'is 1.0
(contains all the sample points Iin the sample space; i.e. is the

sample space itself)

P(S) = 1.0
(conversely, the probabillity of an impossible event ¢ is zero)
3. Law of Addition Rigorously speaking the

the knowledge of measure
theory & sigma algebra o

axioms of probability requires /
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/ Problems that we will study\

 Random Processes: Wind, earthquake & wave loads on

engineering structures. Hydro-climatological processes like
temperature & rainfall data
e Stochastic Calculus: If F(x) = x% dF # 2xdx ; where F(X)

IS a stochastic function of a random process x

- Stochastic Differential Equations: % = f(x,t) + L(x, t)w(t)|;

w(t) Is a realization of white noise

onte Carlo Simulation /
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/ Reference material

1.

4.
S.

& Ffstg,?.}

Probability, reliability and statistical methods in engineering design
by A. Halder & S. Mahadevan
Probability Concepts in Engineering: Emphasis on Applications to Civil and
Environmental Engineering by Alfredo H-S. Ang & Wilson H. Tang
Probability, Statistics, and Reliability for Engineers and Scientists by Bilal M.
Ayyub & Richard H. McCuen
Probability, Random Variables, and Stochastic Processes: Papoulis and Pillali
From Elementary Probability to Stochastic Differential Equations with

MAPLE® by Sasha Cyganowski, Peter Kloeden and Jerzy Ombach
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/ Definitions & representations

pgd

Sample space

Event A

area of A

(4)= sample space

Complementary event A

P(A) =1— P(A)

v
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/ Intersection and Union\

Either A or B or both occurs

Both A or B occur

What are mutually exclusive and

mutually independent events ’)/
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/ Conditional events \

 Event B occurs first

« A occurs given that B has
already occurred

P (A/B) = ?
= P (AB) / P(B)




/ Example-2 \

Find the probability of
a [P(a) =0.05] failure of the truss ?

C [Pic)[|=0.03]

Assume: The failures of
each of the members are
mutually independent

] l; [P(b) =0.04]

K

Hint: Define the failure event first /




Example-3

Prob of settlement of each footing = 0.1

Prob of settlement of each footing given the other one has settled = 0.8

Find the prob of differential settlement

Hint: Define the failure event (i.e. differen

first

tial settlement)

21-08-2017
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/ Theorem of total probabilitﬁ

« Sometimes probability of an event A cannot be assigned directly but can
be assigned conditionally for a number of other events B;

« B, must be mutually exclusive and collectively exhaustive

P(A)= P(A|B,)- P(B))+ P(A| B,)- P(B,)+ ...+ P(A| B,): P(B,)
=ZP{A|B.—)-P{BJ /
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Example-4

There is a possibility of rain or snow tomorrow but not both. The
probability of rain is 40 % while the probability of snow is 60%. If
it rains then the probability that I'll be late for my work is 20%. If it

shows, however, the probability of being late for my work
increases to 60%.

What is the probability that | will be Iate for work tomorrow?

Solution:
e Let R =event that it will rain tomorrow
S = event that it will shnow tomorrow

L = event that | will be late for my work
o We are given

PR)=0.40 and P(S)=0.60 /

P(L|R)=020 and PL|S)=0.60
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Gﬁg the rule of total probability \

P(L) = P(L | R)- P(R) + P(L| S)- P(S)
— (0.20)(0.40) + (0.60)(0.60) = 0.4

Therefore, there is a 44 % chance that | will be late for work
tomorrow...

v
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/ Random variable \

Random Variable (RV): A finite single valued function that
maps the set of all experimental outcomes in sample space S into
the set of real numbers R, is said to be a RV

S={$11321$3?”.} /

A random variable does not return a probability
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/ Discrete Random Variabla

* Discrete random variables are generally used
to describe events that are counted, for
example: No of cars crossing the intersection

* Discrete random variables are expressed using
Integers

* The probability content of a discrete random
variable is described using the probability

‘q ass function(PMF) and is denoted by pxy
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/ Discrete Random Variabla

* The cumulative distribution function(CDF) is defined
as a function of x, whose value is:

The probability that X is less than or equal to x

* Because the events are mutually exclusive(i.e. X can
only assume one value at a time) the CDF is obtained
simply by adding the discrete probabilities as

F.(z) = p,(0) + p, (1) +--- + p,.(2)

v
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/ Example: PMF \

Consider the problem of three nuclear
reactors.

Assume that a reactor will be active and
operating 90% of the time. What is the
probabllity that at-least two reactors are
operating at a given time?

v
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/ Example: PMF

Let
X = no of reactors in operational at any given time
A = event that a reactor Is active
O = event that a reactor is offline for service

Also let
O = event that all reactors are offline
1 = event that 1 reactor is active and 2 are offline
2 = event that 2 reactors are active and 1 is offline
3 = event that all 3 reactors are active

™~

v
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/ Example: PMF \

We are given: P(A) = 0.9, P(O) =0.1

Assuming the operation of the reactors is statistically
Independent, we can construct the PMF for the
random variable X as

Py (0) = P(X = 0) = (0.1)(0.1)(0.1) = 0.001
P (1) = P(X = 1) = 3[(0.9)(0.1)(0.1)] = 0.027
Py (2) = P(X = 2) = 3[(0.9)(0.9)(0.1)] = 0.243
Py (3) = P(X = 3) = (0.9)(0.9)(0.9) = 0.729

v
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0.8
0.729

0.6 -
5
-3 0.4
=T

0.243
0.2
0.001 0.027
ﬂ | -
0 1 2 3

X

Example: PMF

™~

1.0

1.0

0.8 -
0.6+
2,
=
L 04 -

0.271
0.2 -
0.001 0.028
0.0 -
0 1 2 3

X

Therefore, the probability that at least two reactors are
operating is given by X = 2which is computed as

P(X 22)=1-P(X <2)=1-[py(0)+ py(D)]

=1-[(0.001)+(0.027)] = 0.972

L
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/ Properties of RV \

* \Variance of X =

& %?‘@79

A discrete random variable X can take m possible values X =
{X4; X,, ..., X, } IS the sample space

Rolling adie, X={1, 2, 3,4, 5, 6}

« P(x,) = Probability of taking a k™ value (= x,) ( from PMF)

 Expected Value or Mean =g = ZP(xk )x,
k=1

02 = P(x,)(x, — 1)’
=1

v
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/ Bernoulli trials \

® Bernoulli random variable:

» Takes only two values, X = {0, 1}

® Occurrence of an event (l.e., X = 1) with
probability = p

® No occurrence of event (i.e., X = 0) with
probability = (1-p)

v
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Bernoull trials

Probabllity

—h

=
)

=
o

=
e

=
X

|

(1-p)

0

.1

Sample Space of X

™~




21-08-2017

Bernoulli trials example

® Suppose a system has 4 standby or backup units
The probability of failure of each unitis p per year
® What is the probability that 1 unit will fail in the next
year ?
Unit No. 1 2 3 4 Probability
Sequence
1 F S S S p(1-p)3
2 S F S S (1-p)p(1-p)*
3 S S F S (1-p)*p(1-p)
4 S S S F (1-p)°p

Total: 4 p(1-p)°
F = Falil; S = Safe
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/ Binomial Distribution \

® Suppose, the distribution of the number of failures X in a
group of 4 machines is a RV

®* The RV follows binomial distribution

PX=k) = 4c,p*(1—p)*™0

P(X =0)="C,(=1)(1-p)’
P(X =1)="C,(=4)p(d-p)
P(X =2)="C,(=6)p*(1-p)’

P(X =3)=" C,(-9)p’(L-p)
P(X =4)="C,(-)p°
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/ Binomial Distribution \

The number of trials (occurrence of transients or
accidents = m)

® The number of failures in mtrials = X, a RV (X <m)
®* Probabillity of failure per transient/accident = p

® Binomial distribution (Prob of exactly k occurrences
In m trials)

P(X=k) = kapk(l - p)(m—k) ; k=1,2,3,..m

Distribution parameters are = m and p /




21-08-2017

/ Binomial Distribution \

? Parameters: m = 4 machines and probability of failure p = 0.1

? The distribution of number of failures

05
0.41 0.41
04 PNE
2 PMF
o 0.3
m
S 02 815
o
0.1
003 g0
D I I I I'_l |
0 1 2 3 4
Number of Failures
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/ Binomial Distribution \
®* What is the probability that there will be 2 or less failures?

(Cumulative probability up to 2 )

v  Answer = P(X=0) + P(X=1) + P(X=2) = 0.97

Cumulative Probability Distribution

_ +4-00—4400
0.8 /M

0.6
0.4 A

D ] ] ]
0 1 2 3 4
Number of Failures

=T

Cumulative Probability
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/ Poisson Distribution \

* Binomial distribution converges to the Poisson distribution

» When probability of failure p —0 (very small)

» And the population of component m — o (very large)

» Such that mp — u , constant called mean number of
failures

® Poisson distribution gives the distribution of the number of
failures (N)

per (k=0,1,...0)

: v

Bylk|=
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/ Example: Poisson distributiom

® Probability of failure of a component

P = 0.0025 per year

® The number of components in service
m = 1000

® Mean number of failures
u=m p = 2.5 failures per year

v
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Probability

0.3

=
P

=
-

23.7%

205% I 21.4%
13.4%
2.8%
1“%u3%n1%nn%
0 1 3

NMumber of Failures




21-08-2017/CE 608

/CE 513: STATISTICAL I\/IETHODS\

IN CIVIL ENGINEERING

Lecture- 4: Continuous RV

Dr. Budhaditya Hazra

Room: N-307
Department of Civil Engineering

v




21-08-2017

Continuous RVs

* A continuous random variable can assume any value
within a given range e.g. Concrete crushing strength

® The probability content of a continuous random variable is
described by the probability density function(PDF)

(.09 4
0.05 4
.07 4
(.06 4
(L05S 4
0.04 4
0.03 4
(.02 4
(.01 4

U- « ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ < ®¥ F
24 26 28 30 32 34 36 38 4D 42 44 46 48 S0 52 54 56

Probability Density, f{x)

Concrete Crushing Strength (MPa)
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Continuous RVs

* The probability associated with the random variable In
a given range is represented by the area under the PDF

)
0.03 -
0.02 -
0.07 <
0.06 <
0.05 <
0.04 -
0.03 -
0.02 -
0.01 <

0 - T T T T T T T T T T T

24 26 28 30 32 34 36 38 40 42 44 45 48 30 32 4 56

P(40 < X < 44)

P(X < 34)

Probability Density, f{x)

Concrete Crushing Strength (MPa)

Total area =1.0
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/ CDF \

The cumulative distribution function (CDF)

Fi()= P(X <a)= [ f(u)du

« The CDF is equal to cumulative probability (ranges
between O and 1)

 Itis apparent from above that the PDF
IS the first derivative of the CDF
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/ Properties of fx(x) \

1. fx)=0

2. [ fx(dx=1
3. fy(x) is piecewise continuous.

4. P(a<X5’b)=f:fx(x)dr

If X 1s a continuous r.v., then

Pa<X=b)=Pla=sX=b=Pla=sX<b)=Pla<X<b)

= [ fx(x) dx = Fy(6) = Fy(a)
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/ CDF & Quantile function \

® In some cases, we may be interested in finding out what
IS the value of the random variable for a given probability

® Probabillistic bounds that are important for design
purposes

* The result is called the percentile or quantile value

* For example, the value of the random variable
associated with 95 % (cumulative) probabillity is the

95t percentile value /
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/ CDF & Quantile function \

To estimate the percentile values, we must invert the CDF
as :
E!f (:H) =P Fo) |
— -1 £
:BP - Fx (p)
0
X

Y
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.

Uniform distribution

2 (b'a)z

™~

0.2 - .f.
I
|
| ifb-a)
5 |
|
|
|
0 L — s
a fMean B RY X
= [a+h)f2
a+b :
Mean: u= ( ) Variance: ¢° =
2

 Itis the simplest distribution

i » Itis the most uncertain distribution between a

12

N




Normal distribution
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Normal distribution

1.1
oposd Mean =40 MPa +1lo= 55-? °-:
STDEV = 4 56 MPa +25 =955 %
208 +35=99.7 %

Probability Density

Concrete Crushing Strength (MPa)
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/ Standard normal distributiom

The Standard Normal variate Is used to transform the
original random variable x into standard format as

_ B
(¥

]

« The Standard Normal distribution is denoted as
N(0,1)and has a mean of zero and standard
deviation equal to one

 Because of its wide use, the CDF of the Standard

v
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Example: A reliability problem

A concrete column is expected to support a stress of

34 MPa.

« Assuming the Normal distribution for concrete
strength, what is the probabillity of failure?

 The sample mean and standard deviation computed
from tests are equal to 40 Mpa and 4.56 MPa

Soln: Probability of failure is the area under the Normal PDF

o0a4 Mean=40MPa
STDEV =456 MPa

Probability Density

24 26 2B 30 32 34 36 38 40 42 42 46 48 50 52 M4 56

Concrete Crushing Strength (MPa)
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-/The probabllity that the concrete strength is less \

than or equal to the applied stress (34 MPa) Is
obtained using the Standard Normal CDF as

34 — 40
4.56

P(X < 34) = @[ ] — §(—1.316) = 0.094

 Therefore, given an estimated average value of
40 Mpa from the 35 laboratory tests with a standard

deviation of 4.56 MPa, the probability of failure is

9.4 %
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/ Log-Normal distribution \

« The logarithmic or Log-Normal distribution is used when the
random variable cannot take on a negative value

« Arandom variable follows the Log-Normal distribution if the
logarithm of the random variable is Normally distributed

* In (X) follows the Normal distribution; =>X follows the
Lognormal distribution

1 (lnz—A)°
flz) = e ¥ £20;¢>0

v
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Log-Normal distribution

2.5 =
fix) - -

ol ©72° (02 {'Is the scale parameter
ﬁ /A is the shape parameter
||’I n=10

1.5 = I| L 05 .

/I /_\;—ﬂ.ﬁ
1.0 = Y - / \
:_1.'!]
0.5 — /
| | | — | /
o 1 2 a 4
X
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/ Log-Normal distribution \
 The Log-Normal distribution is related to the Normal

distribution, and can be evaluated using the Standard
Normal distribution as

F (@)= [ f(x)dz = @[1" :Eg_ }‘]

« The distribution parameters are related to the Normal
distribution parameters as

A In(p) - %C"‘
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/ Log-Normal distribution \

A= ]n(:f)—%(’-

2
¢ = ln[l-i-_s_—,

i W

The distribution parameters are :

« Shape parameter A= Mean of In(x)
« Scale parameter (= STDEV of In(x)

v
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/ Log-Normal distribution \

Assuming the concrete strength is described by
the Log-Normal distribution, what is the
probability that the concrete strength is less than
or equal to 34 MPa?

Soln: The lognormal distribution parameters are :

€=\/111I1+;i Jlu[HHEﬁF] 0.114

(40.0)2

A = In(z) — %qﬂ — 1n(40.0) — %(0.114]1 — 3.682 /
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Log-Normal PDF for the concrete strength

Probability Density

0.1

0.09 <

0.05 4

0.07

0.06

0.05 4

0.04 <

0.03 4

0.02 -

0.01 +

Log-Momal PDF
= Normal PDF

M 36 3B 40 42 44 45 48 a0 a2 -4

Concrete Crushing Strength (MPa)
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/The probability that the concrete strength is less tham

equal to 34 Mpa is obtained using the Standard Normal
CDF as

P(X < 34) — (D[ln(&?—)\] = q)[ln(34)—3.682]=0.085

0.114

« Assuming the concrete strength follows the Log-Normal
distribution (i.e., the LOG of the concrete strength follows
the Normal distribution), there is a 8.5 %chance that the

concrete strength is less than or equal to 34 MPa
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/ Exponential distribution \

Flac}

35 =

2.0 —

25 —

2.0 -

1.6 -

1.0 =

0.5 —

0.0

| f(x) = Ae ..

A is the scale parameter
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/ Exponential distribution \

The cumulative distribution function (CDF) of the
Exponential distribution is given by:

Flz)=1—¢e

« The distribution parameters can be estimated using

the sample data (i.e. sample statistics)

« The scale parameter A is equal to or simply the
reciprocal of the sample average




21-08-2017

/ Exponential distribution

Assuming the concrete strength is described by
the exponential distribution, what is the

probability that the concrete strength is less than
or equal to 34 MPa?

1 1
== 45 = 0.025
<

34) = F(34) = 1 — e = 0,573

v
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/ Weibull distribution \

« The Welibull probability distribution is a very

flexible distribution
* Due to the shape parameter

« Itis used extensively in modeling the time to
failure distribution analysis

« The Welbull distribution is derived theoretically as
a form of an Extreme Value Distribution

* |tis also used to model extreme events like
strong winds, hurricanes, typhoons etc

v




Welbull distribution

The probability density function (PDF) of the Weibull

distribution is

3.5 = o ; _(E]ﬂ
T) = -zl \P
(60 f( ) ﬁa
495 w80
[\i=%s
s / '\ ¢ is the shape parameter
p=10 f \ fis the scale parameter
2.0 |
ie |
1.5 = =220
/ =14
1.0 = Il{l \
=230
0.5 - iE0
0.0 T T \ | I [ L |
¥} 0.5 1 1.5 2 25 3 35 4
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/ Weibull distribution \

o The cumulative distribution function (CDF) of the Weibull
distribution is

-Tﬂ:

F(z)=1— eh(ﬁ

o The distribution parameters can be estimated from the sample
statistics using the Method of Moments as

1
e Sample Average = T = 5F[1+E]

2 1Y
e Sample STDEV = s= ﬁJF[l +E] —-F[l +E]

v
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/ Reliability problem using Weibull \

distribution

Assuming the concrete strength is described by
the Weibull distribution, what is the probability
that the concrete strength is less than or equal
to 34 MPa?

v
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Reliability problem using Welbull
distribution

Solution:

e From before, the sample mean and standard deviation were
equal to 40 MPa and 4.56 MPa, respectively

e The Weibull distribution parameters are obtained from

ﬁI‘[1+$]=4n and 5JF[1+E]—F[1+EI]224.56

e Solving 2 equations and 2 unknowns (using the SOLVER function

in Excel) results in o =10.59 and p =41.95
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Alternate approach: Solve for a and £ using
nonlinear equation solution techniques

1 +s2/g2 = ive) =) [\ 21N eqUation to be solved

Use bisection method to solve for

Task: Solve the above problem in MATLAB and
verify using Excel goal-seek solver

>oubmit the assignment solution by Monday aug-y
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.. R

he probability that the concrete strength is less than or equal to
34 MPa is therefore

a4 1054
PX<34)=F3B4)=1—¢ e R 0.103

Using MATLAB command:

p = wblcdf (34, 41.95, 10.59) = 0.1024
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Inverse Weibull distribution \

The Fréchet distribution, also known as inverse Weibull
distribution, is a special case of the generalized extreme
value distribution. It has the cumulative distribution function

Pr(X <z)=e% ifz>0.

where a = 0 is a shape parameter. It can be generalised to
include a location parameter m (the minimum) and a scale
parameter s > 0 with the cumulative distribution function

B

£L =TIk

Pr(X <z)= e (57) T ifz > m.




Inverse Welbull distribution

Probability density function

1.4}

0.4}

e=1; a=1; m=(

=2 §=1; m=0
=3 a=1;
a=1; 3=2; m=l
== gt

ar=dd; s =12;

=i

m =il

m =() ]

0.5
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/ Gamma distribution \

« The Gamma distribution is another flexible probability
distribution that may offer a good model to some sets of failure
data

« The Gamma distribution arises theoretically as the time to first
fail distribution for a system with standby Exponentially
distributed backups

« The Gamma distribution is commonly used in Bayesian
reliability applications e.g. using prior information to update the
constant (Exponential) repair rate for a system following a

homogeneous Poisson process (HPP) model
> /
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Gamma distribution

Similar to the Weibull distribution, there are many different
variations of writing the Gamma distribution

* The probability density function (PDF)is

(alternative format)

.'!-' or
g 0STS00 | gy o Lo

ﬂﬂrl’ﬂ';‘ o, 3>0 [(e)

o 1S the shape parameter
B is the scale parameter

(=) =

 When o =1 the Gamma distribution reduces to the Exponential

‘ Qistribution with 1/p= A
. L,() /
: CDF:  p(y) = 2o =7
; @)= arG)
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Gamma distribution

1.4 =




21-08-2017

/ Gamma distribution

Task: Find out the mean and the variance for the gamma
distributed random variable, using the form of f(x)
given underneath

= <5<
1 = 0<z<

1) = 5@ B> 0

™~
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/ Multiple RVs \

® Consider2 RVs XandY

* If the RVs are discrete, then the joint probability
distribution is described by the joint probability
mass function(PMF)

* pxy(x,y) =P[(X =x)NY =y)]

* CDF:

,Y(x;ﬁ)’) = in<x2yi<pr,Y =P[X=<=x)n (Y < Y)]/
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/ Continuous RVsS \

® Consider 2 continuous RVs Xand Y

fxv(z,y)dedy ~Prz < X <z +dr,y<Y <y+dy),

d b
Pr(acngb,c(Yid)://fxy(m,y)dmdy.

Y x
Fxy(z,y) = f_ /; fxy(u,v)dudv.

2p
fxv(z,y) = 9 ;;;j,y). /
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Af

Continuous RV \

surface = f,,(x,))

CDF

Fix, y)= [ /p{u, vidvdu

—i — D

Marginal PDF

fx(x) = ijY(x»Y)dy

fry) = jfxy(x;Y)dx/
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/I\/Ioments of continuous R\N

E[XY] = ﬁ xy p(x, y)dxdy

Cov(X, ¥) = oy = EI(X — sa)(¥ — ;)] = f f (x — )y — j23)p(x, y)dxdy

— 00—

~ cov(x,y)_El(X-u x)( Y—p y)]
pxy T _

OxOy Ox0y

v
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/ Properties of moments \

e ElaX+ bl =aE[X]+ D

+ Var[X] = E[X*] - (E[X]) °

* Var[aX + b] = a*Var(X)

. Cov(X,Y)= E[XY] — E[X]E[Y]

« Var(X+Y)=Var(X)+Var (Y) + 2Cov(X,Y)

v
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/ Independence \
Recall
P(4|B)= (;34(;)3 ). .P(B)%0.
A1 B= P(4~B)= P(4)P(B)

Define 4 = {X < 1} and B =
X1Y=>PX<xnY<y)=
=P, (x_, y) =P, (x)PI, (}:‘)

= Pi(x.0)=px(x)pr ()

{

Y<1}
P(X <x)P(Y <)

v
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/ Bi-variate Gaussian distributi(m

1 1
27 |S|1/2

1
p(x: }’) = €xXp I:_E(V = “v)TS_l(‘V = uv)]

- - - -
g a. X

S=| * x: , V= and p, = Hx
Oxy ay Y Hy

= | | =9

v
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/ Bivariate Gaussian distribution
Alternate Form

X and Y are said to be jointly Gaussian 1f
1

™~

Pﬂ(x:y) =

Ox Gy Oy0Oy

2n0,0, (I—FJ%F) EKP{Z(IF,%}’)

—0D < X <00, —0 < Y < oD

Notes : [XJ ~ N {?}x } E‘zr et Ef o
Y Ny FyyO xOy Oy

] is known as the covariance matrix.

! {x@]i[wfZrﬂ(wx)(w)H

v
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/ Example-1 \

The joint pdf of a bivanate r.v. (X, Y) is given by

kxy 0<x<l,0<y<1
fﬂ'}’ (I:r.}r)= 0

otherwise

where k is a constant.

(a) Find the value of k.

(b) Are X and Y independent?
(¢) FiIndP(X+ Y <1).

v
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.

Solution

How will you find k ?

=k I}’cf_

© o L2
I7 [ foGoyydxdy=k [ [ xydxdy=k [ }’[%—L]dy

=k
4

™~

v
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/ Solution

How will you find marginal pdfs

1
dxydy=2x 0<x<1

f.‘n’{x} — .I'D
otherwise

2y 0<y<l
= 0 otherwise

IS Frp(x,3) = £ Df, ) ?

™~




4xy
fxr(rrs}'}= {U‘

fx(I}= 2x
fr(y)=12y

fﬂx(}' I}_z_ - 2:'"

Solution

0<x<l, 0<y<l]
otherwise
D<x<1
D<y<1

Conditional densities

D<y<1l,0<x<1

0<x<L0<y<I

21-08-2017
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Example-2 new

Suppose we select one point at random from within the circle with radius R. If we let the center of the
circle denote the origin and define X and Y to be the coordinates of the point chosen (Fig ), then
(X, Y) is a uniform bivariate r.v. with joint pdf given by

k .1:1+}:25}if1

x,y)=
fI}’{ 0 .Iz+_'_t;1}R1




b)
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S0 feydrdy=k [] dvdy=k(aR® =1

-1'1+_}'15R1
Thus, k = 1/nR?.
the marginal pdf of X is
S
fx(-ﬂ— J. H dy = R — = R?
2 R* =2 lx|= R

Hence, fylx)= TR

0 |_1'|“.:=r K
By symmetry, the marginal pdf of ¥ is

fyr(¥)= AR’
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Example-3 new

Let (X, ¥) be a bivariate r.v. with the joint pdf

X4y e

—oo <l x<lon, —o <yl
4x

fry(x )=

Show that X and ¥ are not independent but are uncorrelated.
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Example-3 new

1 o 2, 2
fe=— [+ yhe T ay

—lﬂ.ll
B T Al L ,z—fﬂd,]
el e o A S

Noting that the integrand of the first integral in the above expression is the pdf of N(0; 1) and the second integral in
the above expression is the variance of A(0; 1), we have

fx{xl=2,‘_{x3+1)e‘fﬂ o< x <
W b

Since f, (x, ) is symmetric in x and y, we have

2z
P+De??  —w<y<w

1
ff{.})_ EE

Now f,(x,¥) # f,(x) F,(3),and hence X and ¥ are not independent.
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/ Check Uncorrelated-ness

EX)= [ xfy(x)dx=0
EW)=[" ¥y(dy=0
since for each integral the integrand is an odd function.
E(XY) =f:fll}fxr (x, ¥)dedy=10

The integral vanishes because the contributions of the second and the fourth quadrants cancel those of the first and
the third. Thus, E(X ¥) = E(X)E(Y), and so X and Y are uncorrelated.
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/Function of random variableﬁ

fy (y) -

_ORhOE

£

Given fy (z) and g(X), where Y = g(X), there is an interest in finding

y=g(x)

g(X) is simple enough to allow

calculation of the inverse

X=g"()
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/Function of random variableﬁ

ly<Y <y+dy} ={z1 < X <z +do1} + {z2 + dzs < X < 23}
+{z3 < X < 23+ dz3},

Priy <Y <y+dy) =Pr(z; < X <z +dzy) + Pr{zs + des < X < a0)
+ Pr{zs < X < 23 + dz3),

dg dy
dX ~ dX’

g(X)=

g () dX|x =z, = dy,

fo(’ﬂa /




Example

X normally distributed, fx () =

1
TN 2w

oxp {_(mwx)ﬁ

3
205

V=aX2 a>0

What is pdf of y ?

Solution:

Since only the real roots are needed, and there

}? —0C < I < 00,

are no real solutions if ¥ < 0, then fy (y) = 0 for this domain

If ¥ > 0, there are two solutions,

.’.L']_:"f“

Y
L)
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Example

The functional relation is ¢(X) = aX?, with its derivative

¢ (X) =2aX = 2a./Y/a = 24/ay

- E B () s (D) e

1exp{( y/g—sz)g : y >0,

21-08-2017
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Exercise

Solve the following problem ?
The strain energy in a linearly elastic bar subjected to an axial force S is given by the equation

L
U=——8
2AE"

where:
L = length of the bar
A = cross-sectional area of the bar
E = modulus of elasticity of the material

Using ¢ = L/2AE, we can rewrite

Now, if S is a lognormal variate with parameters A and ¢, What is the pdf of U 2
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/Moments of functions of RVA

Y= a1X1+ 32X2

_ .2 2
Var (Y) =a] Var (X1)+ a5 Var (X2)+2a1a2 pX1X2 Ox; Ox

Y = ianj
i=l

E(Y)= D‘*‘E(X“) =) aux,

i=1

Var(Y) = EQZVM(X)-F Z Za a;Cov(X;, X;)

i,j=1 i#j

= 3 odted, + 3 S aasmonar
i, j=1 i#j
in which p; is the correlation coefficient between X; and X;
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/Moments of functions of RVA

In many cases derived probability distributions may be very difficult
to evaluate for general nonlinear functions.

Either use Monte Carlo simulation to find the derived density

Or,

Estimate mean and variance using an approximate analysis which in
Most of the practical applications is sufficient, although the
Pdf may still be undermined.
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Moments of general function of
a single RV

For a general function of a single random variable X,

Y = g(X)

E(Y) = f g(X) fx(x)dx

Var(t) = [ 1606) — P fux) d
To find the approximate expressions of mean and variance,
we use Taylor’s series to expand a function about its mean uy

d’g

— dg 1 )
8(X) = g(ux) + (X — px) o + 5(X — px) TR
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a single RV

First order approximation

d
2(X) = glux) + (X — ﬂx)é

E(Y) =~ g(ux)

2
Var{Y}:Var(X—#x](g) = Var (X}(

28

&)

Moments of general function of

Second order approx.

1 d*g
(55) - 3e3(55
E—E(I 1x }"(‘fzg)

dx*

dg
dx

2
Var(¥) > o3 ) +E(X — pxP—

3dg dzg
dX gx?
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Example

The maximum impact pressure (in psf) of ocean waves on coastal structures may be determined by

pKU?
D

Do 22327

where U is the random horizontal velocity of the advancing wave, with a mean of 4.5 fps and a c.0.v.
of 20%. The other parameters are all constants as follows:

p = 1.96 slugs/cu ft, the density of sea water
K = length of hypothetical piston
D = thickness of air cushion

Assume a ratio of K/D =35
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Example

The first-order mean and standard deviation of p,,, are

E(p,) = 2.7(1.96)(35)(4.5)%= 3750.7 psf = 26.05 psi; and

2
Var(py) = Var(U)(zﬂp-g) Quy)? = (0.20 x 4.5%(2.7 x 1.96 x 35)* (2 x 4.5)

Therefore, the standard deviation of p,, is
Op, =2 (0.20 x 4.5)(2.7 x 1.96 x 35)(2 x 4.5) = 1500.3 psf = 10.42 psi

For an improved mean value, we evaluate the second-order mean with Eq. 4.48 as follows:

E(Y) ~ 3750.7 + %(0.20 x 4.5)2(2.7,0%)(2)

= 3750.7 + %(0.20 X 4.5)% (2.7 x 1.96 x 35 x 2)

= 3750.7 + 150.0 = 3900.7 psf = 27.09 psi

T'his shows that for this case the first-order mean is about 4% less than the
| =second-ordermean




Moments of general function of
a multiple RVs

If ¥ 1s a function of several random variables,

Y =g(X1, X2,...,X,)

To find the approximate expressions of mean and variance,
we use Taylor’s series to expand a function about its mean py,

Expand the function g(Xi, X,,... ,X,) in a Taylor series about the mean values
(ELx,» mxys - -« 5 Ix,), yielding

n d
Y = 3(1“»}(1: -I[‘I’Xii “auy ,u:an) + Z (XI = PLX.-)_g
H M a
+§ZZ“’“ — ux )X — )
i=l j=I1

axX;0X ;

+...

where the derivatives are all evaluated at wy,, ix,, ..., i X,-
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Moments of general function of

a multiple RVs

First order approx.

)
Var(?) = 3 o2 (-_) +3° 3 myonon 5 &
i=l ij=1 i#j X
Second order approx of mean
31

E(F}Eg(”xnﬂx:}-”:ﬂx:'h{* ZZﬁgﬁx'ﬂIJ(

What happens if X;’'s are independent

E(F}Eg{ﬂ}:t.#fz !!!! .”JJE]‘I‘EZ x:(a:{'ﬂ)

=l

3X,0X ;

)
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Example-1

According to the Manning equation, the velocity of uniform flow, in fps, in an open channel is

1.4
V= -—9R2'BSV2
n

where:
S = slope of the energy line, in %
R = the hydraulic radius, in ft
n = the roughness coefficient of the channel

For a rectangular open channel with concrete surface, assume the following mean values and

corresponding €.0.v.s:

Variable Mean Value C.0.V.
S 1% 0.10
R 2 ft 0.05
n 0.013 0.30

21-08-2017
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Example-1

Assuming that the above random variables are statistically independent, the first-order mean and
variance of the velocity V are, respectively,

1.49

0.013

14975 e 2 x 1.49 2
0320§(2u uf(’us’”) +an( TR uaw) + 02 (— 1494 uiu?)

py ~ ——(2)%(1)V2 = 182 fps; and

1.49
2 x 0.013

2 2
(2)”3(1)-'”) +(0.05x2)’( x1.4) (22 )

Al 2
= (010 x 1) ( 3% 0.013

+(0.30 x 0.013)*(—1.492%*(1)¥2(0.013) )" = 82.79 + 36.80 + 0.21 = 119.80
yielding the standard deviation
oy = 10.94 fps




Example-1

The corresponding second-order mean velocity would be, according to Eq.

1[ 1.49 = 2x149 ,, 2 x 1.49 2
e = 182+ 5od( =220 + od (“E Bl o ()|

[ L4 2 % 1.49
—O. | 53 @ W ) - 2( 22 77 ) ()12(2)43
i (4 <0013 ) (0.00112) (9 5 0'013) (')
2 X 1.49(2)2/3(1)1/2)

2
: 013)?
+(0.30 x 0.013) ((0'013)3
=182 + %(—0.46 —0.10 +32.76) = 198.10 fps

The first-order approximate mean velocity is about 8% lower than the comresponding second-order
mean velocity. <
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Example-2

The applied stress, S, in a beam is calculated as
M P
S=—+4—
Z 0 A

where:
M = applied bending moment
P = applied axial force
A = cross-sectional area of the beam
Z = section modulus of the beam

M, Z, and P are random variables with respective means and c.o0.v.s as follows:

My = 45,000 in-Ib; 8y =0.10
pz = 100in’; 8z = 0.20
wp = 5000 Ib; 8p =0.10

A = 50in®
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Example-2

Assume that M and P are correlated with a correlation coefficient of py p = 0.75, whereas Z is
statistically independent of M and P. We determine the mean and standard deviation of the applied
stress S in the beam by first-order approximation as follows:

Um  Hp 45000 5000

lue: > —t — = == 1
Mean value: g u2+ 2 100 + 50 550 psi

and variance:

1%\2 i3 2 1)\? 1 1
s =ok() +oi(T5) +er(3) +2omrmnor()()
y /

1%)? ~45,000\*  _ /1Y L \/(1

= 10,900.00
from which we obtain the standard deviation of S, o5 = 104.40 psi.
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Example-2

Based on test data, the strength capacity of the beam, S, was estimated to have a mean strength
of 800 psi and a standard deviation of 110 psi. Assuming that S and S, are lognormal variates with
the respective means and standard deviations determined above, we evaluate the parameters of the
respective lognormal distributions as follows:

3 104.40%\ _ < (m A 3
;s_m(1+ ) =004 f=(gn) =019

and
As = In 550 — %(0.0354) = 6.29; As. = In 800 — -;-(0.14)2 = 6.67

The safety factor of the beam is defined as 8 = S./S. As S. and § are both lognormal variates, the
safety factor @ is also lognormal with the parameters

Ag =As. —As =6.67 —6.29 = 0.38
and

g0 = \Jt2 + ¢ = /(0.147 +0.0354 = 0.23

The beam will be overstressed when € < 1.0; therefore, the probability of this event is

0~ —0.38
P® < 1.0)=¢(M)=¢(0 2 )=l—<l>(l.65)=l—0.950=0.050
€ 0.23

That is, there is a 5% chance that the beam will be overstressed under the applied load.
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Parameter Estimation

Probability papers
Let X be a random variable with PDF P, (x).

Let {x " beasample of X.

Pmbﬁbili’ry paper 1s a special plotting device in which
y-axis 1s scaled in such a way that the PDF function

appears as a straight line.

Example

Py (x)=1-exp(-Ax)a— XL20
1-P; (x) =Gy (x)=exp(—Ax)

log G, (x)=—Ax

The complement of the cumulative PDF

appears as a straight line.
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Data
(in increasing
order) Rank Pi

5.96 1
6.83 2
6.84 3
8.17 4
.68 b
8.74 6
9.11 7
10.36 8
15.9 9
225 10
227 "
23 12
23.509 13
236 14
237 15
247 16
253 17
25407 18
28 19
282 20
28.5 21
30 22
30 23
30 24

e

1
1

PP plot

i/(N+1)

0.03
0.05
0.08
0.10
0.1

0.15
0.18
0.21
0.23
0.26
0.28
0.31
0.33
0.36
0.38
0.41
0.44
0.46
0.49
0.51
0.54
0.56
0.59
0.62
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Si

0.0260
0.0526
0.0800
0.1082
0.1372
0.1671
0.1978
0.2296
0.2624
0.2963
0.3314
0.3677
0.4055
0.4447
0.4855
0.5281
0.5725
0.6190
0.6678
0.7191
0.7732
0.8303
0.8910
0.9555

PP plot

mu= 46954
lambda= 54398

80

70

60

= 15.353x + 13.332
/, R? = 0.8915

S0
40

+ Data

Xi
‘d

30

——Linear (Exp Prob

20

Plot)

10—?

0

0.0000  1.0000

2.0000
Si

3.0000

4.0000
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PP plot-for practice

5.96 28
6‘83 28.2
6.94 28.5
8.17 30
8.68 30
8.74 30
541 30.88
159 34.28
22.5 34.5
99 7 37.407
93 40.03
23.509 40.48
93 @ 43.53
23.7 45
24.7 46.31
95 9 46.397
25.407 48.74
50.888

63.319




Maximum Likelihood Estimation

General Mathematical Statement of Estimation Problem:

For... Measured Data x = [ x[0] x[1] ... x[N-1]]
Unknown Parameter 6=1[6, 6, ... &, ]

0 1s Not Random
x 1s an N-dimensional random data vector

Q: What captures all the statistical information needed for an
estimation problem ?

A: Need the N-dimensional PDF of the data, parameterized by 6

p(x;0)

We’ll use p(x;0) to find 0= 2(x)
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Maximum Likelihood Estimation

Let f(x;#) be the density function of population X

@ is the only parameter to be estimated

from a set of sample values x,x»,..., X,

Joint density function of the sample
[ (X1, X0, con ei v, X3 0)

This is in general difficult to work with
« Simplify it by making independence assumption

« Each sample is sampled independently of the others

» Each sample belongs to the same parent distribution

Joint density simplifiesto  f(x1:0)/(x2;0) - - - (x5 6)
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ﬂ\/laximum Likelihood Estimation

A better and somewhat well behaved function: Likelihood

We define the likelihood function L of a set of n sample values from the
population by

L(xth; ey X 9) =f(x1:~9)f(x2:6) o 'tf(xﬁ';g)'

In the case when X 1s discrete, we write

L(J—’l;xz; ooy X 9) — P(Il : g)p(xh 6) o 'p(xﬁ'; 9)

 Likelihood function L is a function of a single variable 6

« Method of maximum likelihood: Comprises of choosing, as

an estimate of 8, the particular value of that maximizes L
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ﬂ\/laximum Likelihood Estimation

The maximum of L(0) occurs at the value of 6 where dL(#)/df is zero.

Hence, in a large number of cases, the maximum likelihood estimate

(MLE) 0 of 0 based on sample values x,x2,..., and x, can be determined

from

dL(x1,x2,...,Xn; é) —0
dé |
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/ Gaussian with known sigma \

@ the log-likelihood is:

> inp(x16) =3~ — )T — 1) — 5l (2m)YI5]

@ The gradient wrt to the mean is:

Vp ) Inpx|6) =) T (x; — p)
=1

j=1

@ Setting the gradient to zero gives:




Gaussian with unknown mean &
sigma

@ the log-likelihood is:

i = Z (X —miF = %11’1 27w0°

@ The gradient is:

Z} 1 E(X .IH)

Xj—[t =0
21155—'_1)

V02l =

Zx o le( i —p*)?
P

Question: Work out the case where sigma is known and varies
5| at each point
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