- 1. Prove that the rings $2\mathbb{Z}$ and $3\mathbb{Z}$ are not isomorphic.
- 2. Prove that the rings \mathbb{Z} and \mathbb{Q} are not isomorphic.
- 3. Prove that the rings $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$ are not isomorphic.
- 4. Describe all the ideals of \mathbb{Z} and describe all the homomorphic images of \mathbb{Z} .
- 5. Consider the ring $\mathbb{K}[x_1, x_2, \dots, x_n]$ of multivariate polynomials over a field \mathbb{K} (i.e. coefficients of the polynomial come from \mathbb{K}). For any $T \subseteq \mathbb{K}^n$, let $I(T) = \{f : f(t) = 0 \text{ for all } t \in T\}$. Is I(T) an ideal?
- 6. Prove or disprove. The union of ideals is an ideal.
- 7. Prove or disprove. The intersection of ideals is an ideal.
- 8. What are the ideals of a field?
- 9. Prove Binomial Theorem in a commutative ring with identity. Interpret the various terms appropriately.
- 10. Give an example for an infinite increasing chain of ideals.
- 11. Prove or disprove. The union of an increasing chain of ideals is an ideal.
- 12. Consider a convex polygon on n vertices. Choose k points in its interior. Triangulate the polygon using the n vertices and the n points. What is the number of triangles in any triangulation?
- 13. Let n be a natural number. Split n into natural numbers a and b. Let p_1 be ab. Choose one of a and b to split again. Let p_2 be their product. Repeat this process till every part is 1, i.e at stage i choose a number k greater than 1 from the previously generated numbers, split it arbitrarily into a_i and b_i . What is the maximum and minimum value of $\sum_i p_i$? Let P_i be defined as the product of all the parts at stage i. What is maximum and minimum values of P_i ?

14. Prove that
$$\sum_{j=0}^{k} \binom{n}{k} = \sum_{j=0}^{k} \binom{n-1-j}{k-j} 2^{j}.$$

- 15. Calculate the average the number of cycles for permutations of length n. For example, the permutation (1,5)(2,4,3) is a permutation of length 5 with 2 cycles.
- 16. Find S(n, 3).
- 17. Show that B(n) < n!
- 18. Prove or disprove. For a fixed integer k, S(n, n-k) is a polynomial.
- 19. Prove or disprove. For a fixed integer k, S(n, k) is a polynomial.
- 20. Solve the recurrence $a_0 = 0, a_{k+1} = a_k + 2^k$

- 21. Solve the recurrence $a_0 = 2, a_1 = 0, a_2 = -2, a_{k+3} = 6a_{k+2} 11a_{k+1} + 6a_n$
- 22. Compute the coefficient of x^n in the following generating functions

•
$$\frac{1}{1-z^3}$$

• $(1+z)^n + (1-z)^n$
• $\frac{(1-z)^2}{(1-z)^4}$
• $\frac{1}{(1-z)(1-z^2)(1-z^3)}$

- 23. Count the number of Hamiltonian cycles in K_n and $K_{n,n}$
- 24. Can a tree have a perfect matching?
- 25. König Egervary theorem A "vertex cover" in a graph G is a subset of vertices which contains at least one vertex of every edge. Show that in a bipartite graph the maximum matching and minimum vertex cover are of same size.