- 1. Which of the following sets are enumerable?
 - 1. Set of all finite graphs where V is a subset of \mathbb{N} .
 - 2. Set of all functions from \mathbb{N} to $\{0,1\}$
 - 3. Set of all C programs.
 - 4. Set of all finite walks on strongly connected graph.
 - 5. Set of all infinite walks on a strongly connected graph.
 - 6. Set of all walks on a directed graph without cycles.
 - 7. Set of all real numbers x such that x^2 is rational.
 - 8. Set of all real numbers in [0, 1] with finitely many non zero digits in their decimal representation.
 - 9. Set of all real numbers in [0, 1] with finitely many 1 in their decimal representation.
- 2. Give bijections between the following sets or explain why there can be any.
 - 1. Set of all prime numbers and set of all composite numbers.
 - 2. Set of all irrational numbers and set of all complex number of the form a + ib, $a, b \in \mathbb{Z}$
 - 3. Set of all binary sequences and set of all ternary sequences.
 - 4. Set of all binary sequences and $\mathcal{P}^{(\mathcal{P}^{\mathbb{N}})}$
 - 5. Set of all arithmetic progressions on integers and $\mathbb R$
 - 6. \mathbb{R}^2 and $[0,1] \times [0,1]$
- 3. We write $A \sim B$ if there is a bijection between A and B. Show that \sim is an equivalence relation.
- 4. True or False
 - 1. $A \subseteq B$ and B is countable then A is countable.
 - 2. A real number x is said to be "algebraic" if x is a root of a polynomial with integer coefficients. The set of algebraic numbers is uncountable.
 - 3. Set of all infinite sequences on \mathbb{N} is countable.
 - 4. Let S denote the set of all convergent geometric series whose sum is a rational number. S is countable.