
FPGALink User Manual
(VHDL Edition)

c©2012 Chris McClelland/MakeStuff.eu

FPGA (Xilinx or Altera)
CommFPGA Module

chanAddr_out[6:0]

f2hData_in[7:0]

f2hReady_out
f2hValid_in

h2fData_out[7:0]
h2fValid_out
h2fReady_in

FPGA < Host
Pipe

FPGA > Host
Pipe

USB

HOST COMPUTER (Linux, Windows or MacOSX)
FPGALink DLL

flReadChannel(
 uint8 channel,
 uint32 count,
 uint8 *buffer)

Host
Application

Logic

flWriteChannel(
 uint8 channel,
 uint32 count,
 const uint8 *buffer)

flPlayXSVF(
 const char *svfFile)

FPGA
Application

Logic
CommFPGA

Cypress FX2LP
or Atmel AVR

NeroJTAG

JTAG (TCK, TMS, TDI, TDO)

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License

1

http://creativecommons.org/licenses/by-sa/3.0/

Contents

1 Introduction 3

1.1 Justification . 3

1.2 Overview . 3

1.3 Document Conventions . 4

1.4 How to Get Help . 4

1.5 Licences & Disclaimers . 5

2 Getting Started 6

2.1 Installation . 6

2.2 Supported Boards . 7

2.2.1 Cypress FX2LP-Based Boards 7

2.2.2 Atmel AVR-Based Boards . 9

2.3 The flcli Utility . 9

2.4 Programming the FPGA . 12

2.5 Interacting with the FPGA (Part 1) . 14

2.6 Interacting with the FPGA (Part 2) . 16

2.7 Summary . 18

3 Host Application Development 19

3.1 Language Bindings . 19

3.1.1 C . 19

3.1.2 Python . 20

3.1.3 Excel/VBA . 20

3.2 API Overview . 20

3.2.1 Firmware Operations [FX2LP-Specific] 21

3.2.2 Connection Lifecycle Operations 21

2

3.2.3 Device Capabilities and Status Operations 22

3.2.4 NeroJTAG Operations . 22

3.2.5 CommFPGA Operations . 22

3.2.6 Miscellaneous Operations . 23

4 FPGA Application Development 24

4.1 Internal Port . 24

4.2 FX2 External Port . 25

4.3 EPP External Port . 26

4.4 Build Infrastructure . 27

4.4.1 MacOSX . 27

4.4.2 Windows . 27

4.4.3 Linux . 28

4.4.4 Specifying the JTAG Chain . 28

4.4.5 Location Constraints . 28

4.4.6 The xsvf2csvf Utility . 28

A Custom Boards 30

A.1 Minimus/EP2C5 . 30

A.2 Minimus/Nexys2 . 31

3

1 Introduction

1.1 Justification

Development kits for Field Programmable Gate Arrays (FPGAs) are ubiquitous, with
offerings from a plethora of manufacturers, with prices ranging from the tens of dollars
to well into the thousands, and featured FPGAs ranging from a few thousand logic
cells to a few million. Whereas the high-end boards tend to be PCIx plug-in cards, the
cheaper boards tend either to be designed around a USB interface chip (e.g Cypress
FX2LP, Atmel AVR, Microchip PIC or FTDI chip), or lack direct host interfacing
altogether, requiring a standalone JTAG cable for programming.

Unfortunately, even for those boards designed around a USB interface, there is a
general lack of good integrated solutions for exchanging arbitrary data between the
host computer and the FPGA, once it has been programmed.

1.2 Overview

FPGALink is an end-to-end, open-source, cross-platform solution designed to do a
couple of simple jobs, and do them well:

• Program an FPGA with JTAG, either from an onboard configuration source or
over USB.

• Allow the host and/or microcontroller to exchange arbitrary binary data with
the FPGA.

It provides a host-side API, firmware for several USB interface microcontrollers, and
128 addressable eight-bit read/write FIFOs on the FPGA side.

• On the host side there is a dynamic-link library with a straightforward API.
Library and example application binaries are provided for MacOSX (x86 64 &
i386), Windows (i686) and Linux (x86 64, i686, ARM & PowerPC). Bindings
are provided for C/C++, Python and Excel/VBA, but binding other languages
is straightforward.

• For the USB interface there are firmwares for the Cypress FX2LP (used on most
Digilent, KNJN, ZTEX and Opal Kelly boards) and Atmel AVR (used by some
AVNet and Digilent boards). Support for the FTDI chips is planned.

• The Cypress FX2LP firmware supports a synchronous FIFO interface with a
sustained bandwidth of around 26MiB/s. The Atmel AVR firmware supports

4

an asynchronous interface1 with a sustained bandwidth of around 1.2MiB/s.
Other microcontroller-to-FPGA protocols such as SPI would be straightforward
to implement.

• For the FPGA there is a simple interface module which when instantiated in
your design gives the host a FIFO-style read/write interface, supporting up to
128 separate logical “channels” into your design. A couple of fully-functional
example designs are provided to get you started.

Everything is licensed under the GNU Lesser General Public Licence2; you are there-
fore free to distribute unmodified copies of FPGALink with your products. The
library has no commercial or hardware platform usage restrictions, so you can proto-
type your design with an inexpensive devkit, and then use the same software tools on
your custom-built PCBs. In this way you can easily distribute updated FPGA designs
to your customers just as you would with regular firmware updates, with no special
programming cables required, making your FPGA truly “field-programmable”.

1.3 Document Conventions

Whilst describing interactive console sessions, I will use monospace bold for charac-
ters entered by a human and monospace regular for the computer’s responses.

Remember:

• 1MB = 1 megabyte = 106 bytes.

• 1MiB = 1 mebibyte = 220 bytes.

• 1Mb = 1 megabit = 106 bits.

• 1Mib = 1 mebibit = 220 bits.

1.4 How to Get Help

The only place you’re guaranteed to get a response to FPGALink-related queries is the
FPGALink Users Group at http://groups.google.com/group/fpgalink-users.

1Actually IEEE 1284 in Enhanced Parallel Port mode.
2http://www.gnu.org/copyleft/lesser.html

5

http://groups.google.com/group/fpgalink-users
http://www.gnu.org/copyleft/lesser.html

1.5 Licences & Disclaimers

The FPGALink library, firmware & VHDL code is licensed under the LGPLv33:

Copyright c©2009-2012 Chris McClelland

FPGALink is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

FPGALink is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Lesser General Public License for more details.

The FLCLI utility is licensed under the GPLv34:

Copyright c©2009-2012 Chris McClelland

FLCLI is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.

FLCLI is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANT-
ABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

3http://www.gnu.org/copyleft/lesser.html
4http://www.gnu.org/copyleft/gpl.html

6

http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/gpl.html

2 Getting Started

2.1 Installation

First, download the FPGALink binary distribution. This manual assumes you’re
using libfpgalink-20121106.tar.gz.

Linux:
Just download the binary distribution and unpack it into your home directory.
Things will work out-of-the-box on most modern distributions.

Separate sets of binaries for x86 64, i686, ARM and PowerPC architectures are
provided in the linux.* directories.

To grant regular users permission to access the USB devices you’ll be using,
you will need to add udev rules. First check which groups you’re in by running
“groups”, choose a group (I chose “users”) and then for each USB device, add
a line to /etc/udev/rules.d/10-local.rules:

wotan$ sudo tee -a /etc/udev/rules.d/10-local.rules > /dev/null <<EOF

> ACTION=="add", SUBSYSTEM=="usb", \

> ATTR{idVendor}=="1443", ATTR{idProduct}=="0005", \

> GROUP="users", MODE="0660"

> EOF

wotan$

You may need to restart the udev service with sudo service udev restart,
but you will definitely need to unplug and reconnect the device(s) before the
new permissions will be in effect.

Windows:
You will need to install the VC++ 2010 redistributable package and a USB
driver for your board:

• Be sure to uninstall any existing driver for your board before you start.

• Download LibUSB-Win32 and run bin/inf-wizard.exe.

• Click “Next”, select your FPGA board, make a note of the vendor and
product IDs and click “Next” twice.

• Choose a location for the driver and click “Save”.

• Click “Install Now”.

Also, although it’s not strictly required, all the command-line examples in this
manual assume you’re using the MakeStuff Build Infrastructure. It’s also the

7

http://www.swaton.ukfsn.org/bin/libfpgalink-20121106.tar.gz
http://www.microsoft.com/downloads/info.aspx?na=41&SrcFamilyId=A7B7A05E-6DE6-4D3A-A423-37BF0912DB84&SrcDisplayLang=en&u=http%3a%2f%2fdownload.microsoft.com%2fdownload%2f5%2fB%2fC%2f5BC5DBB3-652D-4DCE-B14A-475AB85EEF6E%2fvcredist_x86.exe
http://sourceforge.net/projects/libusb-win32/files/libusb-win32-releases/1.2.6.0/libusb-win32-bin-1.2.6.0.zip/download
http://www.makestuff.eu/wordpress/?page_id=1489

only supported build platform on Windows, so whilst you’re free to use something
else, you’re on your own if you do.

One set of binaries for the i386 architecture is supplied in the win32 directory.

MacOSX:
You just need to install LibUSB5 and you’re good to go.

One set of universal binaries for x86 64 and i386 architectures is provided in the
darwin directory.

2.2 Supported Boards

By providing multiple “board support packages” (BSPs), FPGALink is able to support
several different FPGA development kits, based on Xilinx or Altera FPGAs and Atmel
AVR or Cypress FX2LP USB microcontrollers6.

A pair of fully-functional examples is provided, with ready-to-go programming files
for each of the supported FPGA boards. The first example is ex cksum, which we
will play with in the next section, and the second is ex fifo. Both use various bits
of board I/O to provide some interaction and visual feedback:

• Eight slider-switches, providing eight bits of input data.

• Eight LEDs, providing visual feedback of an eight-bit binary value.

• Four seven-segment displays, wired with common cathodes and an anode for
each digit, providing visual feedback of a sixteen-bit hexadecimal value (and an
additional four-bit binary value via the four decimal point LEDs).

Obviously, not all of the supported FPGA boards include all of these I/O features,
and may have other special requirements before the supplied examples will work.

2.2.1 Cypress FX2LP-Based Boards

The Cypress FX2LP is a Hi-Speed (480Mb/s) USB interface. It is capable of transfer-
ring data between an FPGA and the host at 26MiB/s, using an eight-bit synchronous
FIFO interface. Although fast and fairly cheap, it has a rather eccentric internal
architecture, so custom firmware development is not recommended.

5See http://www.makestuff.eu/wordpress/?p=1760
6Porting to other boards based on these components is usually fairly trivial; if you have such a

board, ask on the mailing list.

8

http://www.makestuff.eu/wordpress/?p=1760
http://groups.google.com/group/fpgalink-users

Digilent Nexys3:
There are no special considerations for the Nexys3.

Digilent Nexys2 (500K & 1200K versions):
Separate BSPs are provided for the 500K and 1200K gate versions. Also, when
the Nexys2 “power select” jumper is set to “USB”, the FPGA is supplied with
power via a little FET on the board which is under software control. Therefore
before programming the FPGA it’s necessary to turn this FET on.

Digilent Atlys:
The Atlys has the requisite LEDs and switches, but does not have a display
of any kind, so on Atlys the provided examples map the seven-segment display
signals to the first twelve pins on the board’s VHDCI connector. Unless you
know exactly what you’re doing, please ensure you have nothing connected to
the VHDCI port before you begin.

KNJN Xylo-L:
Since the Xylo-L has no onboard peripherals, the provided examples map the
switches, LEDs and seven-segment displays to the board’s expansion connector
marked H4. Unless you know exactly what you’re doing, please ensure you have
nothing connected to the H4 port before you begin.

Digilent S3BOARD:
There is only partial support for the S3BOARD, because it does not include
a USB interface of any kind; instead, it is supplied with a parallel-port JTAG
cable. To use the S3BOARD with FPGALink, you will need an external FX2LP
board with the appropriate connections7.

Hypothetical LX9 Board:
I have provided the LX9 BSP for a custom board based on the Spartan-6 LX9
FPGA. Since I don’t even have a schematic for it, it’s purely hypothetical, but
may be of use to someone.

7FX2FPGA serves as a reference design, but suitable commercial boards are also available.

9

http://www.digilentinc.com/Products/Detail.cfm?Prod=Nexys3
http://www.digilentinc.com/Products/Detail.cfm?Prod=NEXYS2
http://www.digilentinc.com/Products/Detail.cfm?Prod=ATLYS
http://www.knjn.com/shop.html?pg=pic&src=images/Board_Xylo-L_details.jpg&title=The%20Xylo-L%20board
http://www.digilentinc.com/Products/Detail.cfm?Prod=S3BOARD
http://www.makestuff.eu/wordpress/?page_id=446

2.2.2 Atmel AVR-Based Boards

The USB-capable Atmel AVR8 microcontrollers (AT90USB* & ATmega*U*) are very
cheap, and they incorporate a Full-Speed (12Mb/s) USB interface. They are capable
of transferring data between an FPGA and the host at between 330KiB/s and about
1.2MiB/s, using an eight-bit asynchronous EPP-style interface. Although slower than
the FX2LP, they are much more popular as general-purpose microcontrollers, and
much easier to program, making custom firmware development fairly straightforward.

Minimus/EP2C5 Board:
You can buy8 a Minimus AT90USB162 board for £4, and an EP2C5 Mini Board
for £17. With suitable interconnects, the pair make up by far the cheapest
FPGALink-capable hardware solution.

Minimus/Nexys2 Board:
There is also a BSP for a Minimus board attached to a Nexys2-1200. It is
unlikely to be of interest because the Nexys2-1200 already has a superior FX2LP-
based USB interface.

Both of these boards require custom wiring, which is described in Appendix A.

2.3 The flcli Utility

Since FPGALink is a library, you would normally just embed it into your application,
but in order to get you started, the FPGALink binary distribution includes flcli9,
a small command-line utility which provides access to some of the library’s features.

wotan$ linux.x86_64/rel/flcli --help

FPGALink Command-Line Interface Copyright (C) 2012 Chris McClelland

Usage: flcli [-psch] [-i <VID:PID>] -v <VID:PID> [-j <portSpec>] [-x <fileName>]

[-a <actionString>]

Interact with an FPGALink device.

-i, --ivp=<VID:PID> vendor ID and product ID (e.g 04B4:8613)

-v, --vp=<VID:PID> vendor ID and product ID (e.g 04B4:8613)

-j, --jtag=<portSpec> JTAG port config (e.g D0234)

-x, --xsvf=<fileName> SVF, XSVF or CSVF file to load

-p, --power FPGA is powered from USB (Nexys2 only!)

-s, --scan scan the JTAG chain

8e.g from ModTraders and eBay, respectively
9Unlike the rest of FPGALink, the flcli utility is licensed under the terms of the GNU General

Public License. See http://www.gnu.org/copyleft/gpl.html

10

http://www.modtraders.co.uk/minimus-avr-usb-development-board.html
http://www.ebay.co.uk/itm/New-Altera-CycloneII-EP2C5T144-FPGA-Mini-Development-Board-/230767965142
http://www.gnu.org/copyleft/gpl.html

-a, --action=<actionString> a series of CommFPGA actions

-c, --cli start up an interactive CommFPGA session

-h, --help print this help and exit

--ivp=<VID:PID> [FX2LP-specific]

The FX2LP microcontroller has no onchip nonvolatile storage, so it loads its
firmware from an external EEPROM and/or has its firmware loaded over USB.
The flcli utility first tries to connect to the device specified by --vp; if it fails,
it tries to load firmware into the device specified by --ivp.

--jtag=<portSpec> [FX2LP-specific]

By default the FX2LP firmware’s JTAG interface is compatible with the wiring
on Digilent boards (TDO, TDI, TMS & TCK connected to port D bits 0, 2, 3 & 4
respectively.) If your board has different connections, you will need to specify
which port lines to use along with --ivp. The port specification is the port
(“C” or “D”) followed by four digits for the port bits to use for TDO, TDI, TMS
& TCK. For example, the Xylo-L board uses a JTAG port of “D1240”.

--vp=<VID:PID>

The FPGALink device to connect.

--power [Nexys2-specific]

If your Nexys2’s power jumper is set to “USB”, it’s necessary to switch on the
FPGA’s power manually using this option.

--scan

Print an IDCODE for each device in the JTAG chain.

--xsvf

Play the specified .svf, .xsvf or .csvf file into the JTAG chain. This is
typically (but not necessarily) used for FPGA programming.

--action=<actionString>

Execute the semicolon-separated list of CommFPGA commands, for reading
and writing FPGA channels.

--cli

Start a command-line interface for executing CommFPGA commands.

11

The --cli and --action=<actionString> options support three commands, “r”
(read), “w” (write) and “q” (quit). The syntax of the read command is as follows:

r<channel> [<count> [<fileName>]]

channel:

The FPGA channel, 0-7f.

count:

How many bytes to read from the FPGA channel, default 1.

fileName:

A binary file (in “quotes”) to write the FPGA’s data to.

If you don’t specify a fileName, the FPGA’s data is printed to stdout as a hex dump.

The syntax of the write command is as follows:

w<channel> <byteSeq | fileName>

channel:

The FPGA channel, 0-7f.

byteSeq:

A sequence of bytes to be written to the FPGA channel,
e.g 0123456789abcdef.

fileName:

An existing binary file (in “quotes”) to dump into the FPGA.

All numbers are in hexadecimal. Since a byte is two hex digits, the byteSeqmust have
an even number of digits. Filenames must be quoted using double-quotes ("). You
may put several read and/or write commands on one line, separated by semicolons
(;).

12

2.4 Programming the FPGA

Using the flcli utility, we can now program the FPGA for the first time. Program-
ming is done by playing a scripted set of JTAG operations into the FPGA’s JTAG
port.

USB
Interface

TDO

TDI

FPGA
Host

Computer
USB

TMS

TCK

You can program the FPGA like this:

wotan$./<PLATFORM>/rel/flcli -v <VID:PID> -i <VID:PID> \

-s -x gen_csvf/ex_cksum_<BOARD>_<PROTOCOL>_vhdl.csvf

Attempting to open connection to FPGALink device 04B4:8613...

Loading firmware into 04B4:8613...

Awaiting renumeration......

Attempting to open connection to FPGLink device 04B4:8613 again...

The FPGALink device at 04B4:8613 scanned its JTAG chain, yielding:

0x01414093

0x05045093

Playing "gen_csvf/ex_cksum_s3board_fx2_vhdl.csvf" into the JTAG chain on FPGA-

Link device 04B4:8613...

wotan$

You will need to replace <PLATFORM>, <VID:PID>, <BOARD> and <PROTOCOL> in the
above command-line with values appropriate for your specific host platform and
FPGA board:

<PLATFORM>

Your host platform. This will be one of win32, darwin, linux.x86 64,
linux.i686, linux.armel or linux.ppc.

<VID:PID>

The correct vendor and product IDs for your board. This will be:

• 1443:0005 for Nexys2

• 1443:0007 for Nexys3 & Atlys

• 04B4:8613 for Xylo-L

<BOARD>

The name of your board, which will be one of nexys2-500, nexys2-1200,

13

nexys3, atlys, xylo-l, s3board, ep2c5 or lx9.

<PROTOCOL>

The protocol to use to talk to the FPGA, which will be one of fx2 or epp.

There are some caveats:

Nexys2 Users:
If your board’s “power select” jumper is set to “USB”, it will be necessary
to switch on the FPGA’s power by supplying an additional -p command-line
option.

Xylo-L Users:
The FX2LP port lines used for JTAG differ from the default, so you will need
to pass an additional -j D1240 command-line option.

AVR-Based Boards:
The -i <VID:PID> option is only needed for FX2LP-based boards. It is not
needed for AVR-based boards.

If successful, you should see the “Done” light on your board switch on, and “0000”
appear on your board’s seven-segment display. If your board does not have either of
these, don’t worry; as long as the flcli command completed without error, you can
proceed to the next section.

So what just happened? Well, flcli loads new firmware if necessary (FX2LP-based
boards only), then powers up the FPGA (Nexys2 only), then scans the board’s JTAG
chain for attached devices, and finally loads a pre-built design file for the ex cksum
example into the FPGA.

In this case we used a .csvf file10 to program the FPGA, but FPGALink directly
supports the .svf files generated by the Xilinx and Altera tools, as well as the Xilinx-
specific .xsvf format.

10The CSVF format is similar to Xilinx’s XSVF, but it’s better suited for playback by small

microcontrollers, and is much more space-efficient.

14

2.5 Interacting with the FPGA (Part 1)

A couple of interface modules are supplied, “comm fpga fx2”11 and “comm fpga epp”12

for you to instantiate in your application’s VHDL code. The former has an external
interface compatible with the Cypress FX2LP’s slave FIFO signals and the latter has
an external interface compatible with the EPP signals provided by the Atmel AVR
firmware. However, both have identical internal interfaces, each providing a read
pipe, a write pipe and a seven-bit address specifying which of 128 logical channels is
to be read or written.

FPGA
CommFPGA Module

chanAddr_out[6:0]

f2hData_in[7:0]

f2hReady_out
f2hValid_in

h2fData_out[7:0]
h2fValid_out
h2fReady_in

FPGA < Host
Pipe

FPGA > Host
Pipe

FPGA
Application

Logic
USB

Interface

Each channel is eight bits wide. Each channel may be read from or written to by the
host. Each read or write operation can deal with single bytes or many hundreds of
megabytes. Applications are free to choose how these channels are implemented in
their VHDL code. Two such implementations are given in the ex cksum and ex fifo
examples.

In the previous section, we loaded the ex cksum example into the FPGA. The ex cksum
example implements the FPGA channels using ordinary registers, meaning that writes
to channel N update regN, and reads from channel N typically return the current value
of regN.

You can see this by using flcli’s command-line mode (triggered by the -c option):

wotan$./<PLATFORM>/rel/flcli -v <VID:PID> -c

Attempting to open connection to FPGALink device 04B4:8613...

Entering CommFPGA command-line mode:

> w1 12;w2 34;w3 abcdef56;r1;r2;r3 04

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 12 34 56 56 56 56 .4VVVV

> w0 01

> w0 02

> w0 04

> w0 08

11hdl/fx2/vhdl/comm fpga/comm fpga fx2.vhdl.
12hdl/epp/vhdl/comm fpga/comm fpga epp.vhdl.

15

> r0 10

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 5555555555555555

> q

wotan$

The instructions accepted by the command-line are terse, but simple. The “w1 12;w2
34;w3 abcdef56;r1;r2;r3 04” command line performs six operations sequentially:

• Write single byte 0x12 to channel 1.

• Write single byte 0x34 to channel 2.

• Write four bytes 0xAB, 0xCD, 0xEF, 0x56 to channel 3.

• Read one byte from channel 1.

• Read one byte from channel 2.

• Read four bytes from channel 3.

The output shows “12 34 56 56 56 56” because in the ex cksum example, the data
channels inside the FPGA are implemented with simple registers, so although four
distinct bytes are written to channel 3, the four bytes that are later read back from
channel 3 are just four copies of the last value written.

You can see how this is implemented in the FPGA by taking a look at the VHDL13:

1 -- Infer registers

2 process(fx2Clk_in)

3 begin

4 if (rising_edge(fx2Clk_in)) then

5 checksum <= checksum_next;

6 reg0 <= reg0_next;

7 reg1 <= reg1_next;

8 reg2 <= reg2_next;

9 reg3 <= reg3_next;

10 end if;

11 end process;

12

13 -- Drive register inputs for each channel when the host is writing

14 checksum_next <=

15 std_logic_vector(unsigned(checksum) + unsigned(h2fData))

16 when chanAddr = "0000000" and h2fValid = ’1’

17 else x"0000"

18 when chanAddr = "0000001" and h2fValid = ’1’ and h2fData(0) = ’1’

19 else checksum;

20 reg0_next <= h2fData when chanAddr = "0000000" and h2fValid = ’1’ else reg0;

13See hdl/{fx2,epp}/vhdl/ex cksum/top level.vhdl for the complete VHDL module.

16

21 reg1_next <= h2fData when chanAddr = "0000001" and h2fValid = ’1’ else reg1;

22 reg2_next <= h2fData when chanAddr = "0000010" and h2fValid = ’1’ else reg2;

23 reg3_next <= h2fData when chanAddr = "0000011" and h2fValid = ’1’ else reg3;

24

25 -- Select values to return for each channel when the host is reading

26 with chanAddr select f2hData <=

27 sw_in when "0000000",

28 reg1 when "0000001",

29 reg2 when "0000010",

30 reg3 when "0000011",

31 x"00" when others;

32

33 -- Assert that there’s always data for reading, and always room for writing

34 f2hValid <= ’1’;

35 h2fReady <= ’1’;

So when you enter “w1 12”, a single byte is written to channel 1, which sets chanAddr=
0x01 and h2fData=0x12, and drives h2fValid high for one clock cycle, updating
register reg1 with the value 0x12.

Similarly when you enter “r1”, it initiates a single byte read of channel 1, which sets
chanAddr=0x01 and drives f2hReady14 high for one clock cycle, which samples the
current value of register reg1 and returns it to the host.

Register reg0 is a little more interesting. Any value written to it (e.g “w0 aa”) is
displayed on the eight board LEDs, and is added to a running sixteen-bit checksum
which is displayed on the seven-segment display. Reads from register reg0 return the
current state of the eight switches. You can clear the reg0 checksum by writing a ‘1’
to reg1.

Notice that reads and writes never block: there is always data available in the read
pipe and there is always room available in the write pipe.

2.6 Interacting with the FPGA (Part 2)

In the previous section, we used the flcli utility to read and write simple registers
implemented in the FPGA by the ex cksum example. The ex fifo example is more
interesting. You can load it like this:

wotan$./<PLATFORM>/rel/flcli -v <VID:PID> -i <VID:PID> -s \

-x gen_csvf/ex_fifo_<BOARD>_<PROTOCOL>_vhdl.csvf

Attempting to open connection to FPGALink device 04B4:8614...

Loading firmware into 04B4:8614...

Awaiting renumeration.......

14The value stored in a simple register like this is unaffected by a read operation, so it’s not

necessary for this code to consider f2hReady - it need only select the correct register value with

which to drive f2hData, and do so continuously.

17

Attempting to open connection to FPGLink device 04B4:8614 again...

Connecting USB power to FPGA...

The FPGALink device at 04B4:8614 scanned its JTAG chain, yielding:

0x01414093

0x05045093

Playing "gen_csvf/ex_fifo_s3board_fx2_vhdl.csvf" into the JTAG chain on FPGA-

Link device 04B4:8614...

wotan$./<PLATFORM>/rel/flcli -v 04B4:8614 -c

Attempting to open connection to FPGALink device 04B4:8614...

Entering CommFPGA command-line mode:

> r0 10;w0 01020408102040804020100804020100

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

> q

wotan$

Now, channel 0 is connected to a pair of FIFOs inside the FPGA, a read FIFO and
a write FIFO. Separate producer and consumer processes periodically insert upcount
data into the read FIFO and drain data from the write FIFO, respectively. The speed
at which these processes work is selectable by setting different values on the eight
switches: sw[7:4] control the speed of the consumer and sw[3:0] control the speed
of the producer.

Here’s the code15:

1 -- Infer registers

2 process(fx2Clk_in)

3 begin

4 if (rising_edge(fx2Clk_in)) then

5 count <= count_next;

6 end if;

7 end process;

8

9 -- Wire up write FIFO to channel 0 writes:

10 -- flags(2) driven by writeFifoOutputValid

11 -- writeFifoOutputReady driven by consumer_timer

12 -- LEDs driven by writeFifoOutputData

13 writeFifoInputData <= h2fData;

14 writeFifoInputValid <=

15 ’1’ when h2fValid = ’1’ and chanAddr = "0000000"

16 else ’0’;

17 h2fReady <=

18 ’0’ when writeFifoInputReady = ’0’ and chanAddr = "0000000"

19 else ’1’;

20

21 -- Wire up read FIFO to channel 0 reads:

22 -- readFifoInputValid driven by producer_timer

23 -- flags(0) driven by readFifoInputReady

24 count_next <=

15See hdl/{fx2,epp}/vhdl/ex fifo/top level.vhdl for the complete VHDL module.

18

25 std_logic_vector(unsigned(count) + 1) when readFifoInputValid = ’1’

26 else count;

27 readFifoInputData <= count;

28 f2hValid <=

29 ’0’ when readFifoOutputValid = ’0’ and chanAddr = "0000000"

30 else ’1’;

31 readFifoOutputReady <=

32 ’1’ when f2hReady = ’1’ and chanAddr = "0000000"

33 else ’0’;

34

35 -- Select values to return for each channel when the host is reading

36 with chanAddr select f2hData <=

37 readFifoOutputData when "0000000", -- get data from read FIFO

38 fifoCount(15 downto 8) when "0000001", -- read the depth of the write FIFO

39 fifoCount(7 downto 0) when "0000010", -- read the depth of the read FIFO

40 x"00" when others;

When the host writes to channel 0, each byte is clocked into the write FIFO. When
the write FIFO fills up, h2fReady is deasserted which tells the host to stop sending
until the consumer process has freed up some room for more data.

When the host reads from channel 0, each byte is clocked out of the read FIFO. When
the read FIFO empties, f2hValid is deasserted to stop sending data to the host until
the producer process has inserted some more data into the FIFO.

When the example is first loaded, you will see the leftmost pair of digits on the seven-
segment display incrementing, telling you how many bytes there are in the read FIFO.
When you issue the command r0 10, the host reads sixteen bytes from the read FIFO,
causing the count to decrement by sixteen. If there are as yet insufficient bytes in the
read FIFO to fulfill the request, the host blocks until bytes become available.

Similarly, the rightmost pair of digits on the seven-segment display tells you how many
bytes there are in the write FIFO.When you issue the command w0 010204081020408
04020100804020100, sixteen bytes are written to the write FIFO. The consumer pro-
cess then begins to drain the data, displaying each byte in turn on the eight LEDs.
If there is as yet insufficient room in the write FIFO to fulfill the request, the host
blocks until enough room is available. This is not always noticeable because the
microcontrollers have additional bytes of FIFO space.

If your board does not have a seven-segment display, you can read the current depth
of the write FIFO by reading from channel 1, and you can read the current depth of
the read FIFO by reading from channel 2.

2.7 Summary

In this chapter we used the flcli utility to program an FPGA with a couple of
pre-built examples, and to communicate with the data channels in the FPGA.

19

3 Host Application Development

The flcli utility is a great way to get started with FPGALink, and for simple testing
of the behaviour of your VHDL code, but sooner or later you will want to dive in and
write your own host-side applications. There is out-of-the-box support for C/C++,
Python and Excel/VBA, but the core library itself is just a C DLL, so calling into it
from other languages is straightforward16.

In order to enable an application to communicate with potentially many FPGALink
devices, the library uses the concept of a “handle” to refer to an FPGALink device.
An opaque handle is returned when a connection is first established to a device, and
that handle is supplied for all subsequent operations on that device.

3.1 Language Bindings

There is obviously a significant cross-language semantic overlap in the API; the only
differences are those imposed by the languages themselves.

3.1.1 C

Because C has no concept of exceptions, wherever a function can fail, its return
value is just a status code; the actual result (if any) is provided in an “out” parameter
instead. An optional error message is also provided in an “out” parameter. Conversely,
wherever a function cannot fail, its return value (if any) is actually the result.

Each function that can fail will return FL SUCCESS on success, or something else on
failure. Each will also accept a pointer to a const char* which will be set to a
more or less meaningful message if an error occurs. The memory for this message is
dynamically allocated and must subsequently be deallocated by application code with
flFreeError(). If you do not wish to receive error messages you can just set this
parameter to NULL.

It’s useful to define a macro to handle this:

1 #define CHECK(x) \

2 if (status != FL_SUCCESS) { \

3 returnCode = x; \

4 fprintf(stderr, "%s\n", error); \

5 flFreeError(error); \

6 goto cleanup; \

7 }

8 :

9 status = flWriteChannel(handle, 1000, 0x01, 1, &byte, &error);

10 CHECK(21);

16Or at least it ought to be straightforward!

20

To get you started, there is an example in C for you to study in the examples/c
subdirectory. See examples/c/README for details of how to compile the code on your
platform.

3.1.2 Python

Python has exceptions, so the API in Python is written such that each function’s
return value (if any) is actually its result, with an exception thrown when an error
occurs.

Separate bindings are provided for Python2.x and Python3.x. These reside in the
examples/python subdirectory. The bindings are themselves executable, and offer
similar functionality to the C example. The Python binding may be imported into
your own code, or used from an interactive Python session. For more details, see
examples/python/README.

3.1.3 Excel/VBA

VBA has exceptions, so the API in VBA is written such that each function’s return
value (if any) is actually its result, with an exception thrown when an error occurs.

The examples/excel/fpgalink.xls spreadsheet incorporates the VBA binding, and
exposes a simple graphical user interface. Before opening it, please ensure you have
unpacked the FPGALink distribution to a local drive, not a network drive, otherwise
Excel will consider the FPGALink DLL to be untrusted and will refuse to load it.

3.2 API Overview

See http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html for more de-
tailed API documentation.

The library consists of five classes of functions:

• Firmware operations (FX2LP-specific)

• Connection lifecycle operations

• NeroJTAG operations (programming the FPGA)

• CommFPGA operations (interacting with the FPGA)

• Miscellaneous operations

Each will now be covered in turn; please refer also to the detailed API docs.

21

http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html

3.2.1 Firmware Operations [FX2LP-Specific]

The Cypress FX2LP USB interface has no internal nonvolatile storage for firmware.
On startup it typically loads firmware from an external serial EEPROM, which is
probably how your board works. You can easily load new firmware over USB, or
write your new firmware to the external EEPROM using these operations.

flLoadStandardFirmware():

Load standard FPGALink firmware into the FX2’s RAM.

flFlashStandardFirmware():

Flash standard FPGALink firmware into the FX2’s EEPROM, optionally ap-
pending an SVF, XSVF or CSVF initialisation stream and an FPGA initialisa-
tion stream.

flLoadCustomFirmware():

Load custom firmware from a .hex file into the FX2’s RAM.

flFlashCustomFirmware():

Flash a custom firmware from a .hex or .iic file into the FX2’s EEPROM.

flSaveFirmware():

Save existing EEPROM data to an .iic file.

3.2.2 Connection Lifecycle Operations

These two operations enable you to actually establish a connection to an FPGALink
device over USB.

flOpen():

Open a connection to the FPGALink device at the specified VID & PID.

flClose():

Close the connection to the FPGALink device.

22

http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#a45c33041d9f6331e378ca6092646b399
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#a2b134bdad721202aade02cf3e6ac675b
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#ae14ca5ab58b526815c80ca09793e5e34
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#a3f39c11daf31e2c1d82b35e88ad9c804
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#addfaedd80f0f40c9a1f134766235b23b
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#a241ac59f7ba96caba2e1262ffd0d4424
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#aec8a71aea72766e3c57fa857c5f5f742

3.2.3 Device Capabilities and Status Operations

These operations enable you to query the FPGALink device to find out what fea-
tures it supports. Currently there are only two features: NeroJTAG for JTAG-
programming, and CommFPGA, for communicating with an already-programmed
FPGA.

flIsDeviceAvailable():

Check if a given device is actually connected to the system.

flIsNeroCapable():

Check to see if the device supports NeroJTAG.

flIsCommCapable():

Check to see if the device supports CommFPGA.

3.2.4 NeroJTAG Operations

The NeroJTAG operations enable you to examine the JTAG chain and program de-
vices in the chain.

flScanChain():

Scan the JTAG chain and return an array of IDCODEs.

flPlayXSVF():

Play an SVF, XSVF or CSVF file into the JTAG chain.

3.2.5 CommFPGA Operations

The CommFPGA operations enable you to read from and write to up to 128 logical
“channels” implemented in the FPGA.

flIsFPGARunning():

Check to see whether or not the FPGA has been programmed.

flReadChannel():

Read bytes from the specified channel into the supplied buffer.

flWriteChannel():

Write bytes from the the supplied read-only buffer to the specified channel.

23

http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#a223dc9f94043ac92e744b5b3390a3f0c
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#a7af1b24a52d15edd73ad19a5e392abd2
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#ae9c77acac33d48758fb0bfdee0c7a8d8
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#a32d14b999b8e9d0befde895d4272e4ef
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#ab51ec323f4cc1d81dbf2ce32c53b3b37
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#ae9a64e022ac9607d71d9b7de80508b12
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#a0478f3526c4cdaadb844288b7e60e949
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#ac2b8dfb0a19a357a28af9986e6a50966

flAppendWriteChannelCommand():

Append a write command to the end of the write buffer.

flPlayWriteBuffer():

Play the write buffer into the FPGALink device immediately.

flCleanWriteBuffer():

Clean the write buffer (if any).

3.2.6 Miscellaneous Operations

Some operations are useful or just necessary, but don’t fit into the other four cate-
gories:

flInitialise():

Initialise the library. You must call this before any of the other functions.

flFreeError():

Free an error allocated when one of the other functions fails.

flSleep():

Sleep for the specified number of milliseconds.

flLoadFile():

Return a newly-allocated buffer with the specified binary file loaded into it.

flFreeFile():

Free a buffer previously returned by flLoadFile().

flPortAccess():

Access port lines on the USB interface microcontroller.

24

http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#a92ca0a05d4c363a3e9444e1b9dc9b8fa
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#a0cbf4cd4df8c8cee73a70022b3467499
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#a36644c7d3ec966f4983dd8d17a9b2dc4
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#ac6b856aea9f2ed734835a33f8f5c6ea6
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#a313f24c559a56d12518cb1e7eacdf01b
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#a58a48f47195b55d4921659a74d9eed5d
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#ad2fd61ccae8632d5fa180d0c468257fb
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#a17909597ec81d8610c791a1ebf5f1400
http://www.swaton.ukfsn.org/apidocs/libfpgalink_8h.html#a8bc413bef20060220fa864d0d77c25ea

4 FPGA Application Development

FPGALink supports several different CommFPGA protocols for data transfer between
the USB microcontroller and the FPGA, with varying throughputs, FPGA pin util-
isations and component costs. Note that even though their internal implementation
differs, the various CommFPGA implementations present exactly the same host-side
API and exactly the same FPGA-side FIFO interfaces.

Whilst it is of course possible to implement one or more of the CommFPGA protocols
yourself, there would be little point in doing so, because included in the FPGALink
distribution are a couple (with more to follow) of ready-made infrastructure modules
for this purpose, comm fpga fx2 and comm fpga epp, which you can instantiate in
your designs. The modules each have two “ports”, an external port which is typically
wired directly to external pins on the FPGA, and an internal port which is connected
to application logic. The external port signals of the fx2 and epp flavours differ, but
the internal ports are identical.

4.1 Internal Port

The internal port is common to both fx2 and epp implementations. All signals are
synchronous to the comm fpga * module’s clock.

comm_fpga_* modules

chanAddr_out[6:0]

f2hData_in[7:0]

f2hReady_out
f2hValid_in

h2fData_out[7:0]
h2fValid_out
h2fReady_in

Host > FPGA
Pipe

Host < FPGA
Pipe

The comm fpga * modules provide:

• A host-to-FPGA data pipe (h2fData out, h2fValid out & h2fReady in)

• An FPGA-to-host data pipe (f2hData in, f2hValid in & f2hReady out)

• A 7-bit channel address (chanAddr out)

Each data pipe has a standard FIFO interface17 where the sender drives some data
lines xxxData[7:0] and a xxxValid line, and the receiver asserts xxxReady (where

17See http://inst.eecs.berkeley.edu/˜cs150/Documents/Interfaces.pdf

25

http://inst.eecs.berkeley.edu/~cs150/Documents/Interfaces.pdf

xxx is either h2f for host-to-FPGA transfers or f2h for FPGA-to-host transfers). If
and only if both the xxxValid and xxxReady signals are asserted when a clock rising
edge arrives, the data is registered by the receiver and the next data byte is made
available by the sender.

4.2 FX2 External Port

The comm fpga fx2 module’s external port clocks data synchronously on every rising
edge of fx2Clk in, which is driven at 48MHz by the FX2LP. The internal port is
synchronous to the same clock. The interface comprises most of the signals in the
FX2LP Slave FIFO Interface18 with the following changes:

• The data bus is only eight bits wide.

• Only one FIFOADR line is supplied, called fx2FifoSel out.

• The other FIFOADR line is connected (internally or externally) to Vcc.

• Only FLAGB and FLAGC are used.

• One signal is supplied for driving both /SLOE and /SLRD.

The result is nine signals for control and eight signals for data; most FX2LP-based
FPGA devkits just connect all 17 directly to the FPGA:

FX2LP

IFCLK
FIFOADR[0]

FD[7:0]
/SLRD
/SLOE
FLAGC
/SLWR
FLAGB
PKTEND

FPGA

fx2Clk_in
fx2FifoSel_out

fx2Data_io

fx2Read_out
fx2GotData_in
fx2Write_out

fx2PktEnd_out

FIFOADR[1] '1'

fx2GotRoom_in

comm_fpga_fx2

Notice that the FPGA continuously drives FIFOADR[1] high, and that the fx2Read out
signal drives two external pins, /SLOE and /SLRD. This is the wiring used by the
ex cksum and ex fifo examples.

18See EZ-USB TRM Chapter 9.

26

http://www.cypress.com/?docID=27095

If you’re designing your own PCB, you can save two FPGA I/O pins by doing the
same thing on the PCB rather than in the FPGA:

FX2LP

IFCLK
FIFOADR[0]

FD[7:0]
/SLRD
/SLOE
FLAGC
/SLWR
FLAGB
PKTEND

FPGA

fx2Clk_in
fx2FifoSel_out

fx2Data_io

fx2Read_out
fx2GotData_in
fx2Write_out

fx2PktEnd_out

FIFOADR[1] Vcc

fx2GotRoom_in

comm_fpga_fx2

In this case we use eight pins for data as before, but only seven pins for control. Notice
that the result is logically the same: fx2Read out signal drives /SLOE and /SLRD, and
fx2FifoSel out drives FIFOADR[0], with FIFOADR[1] tied high.

Since the FX2 Slave FIFO interface clocks data synchronously at the end of every
48MHz clock cycle, the theoretical maximum throughput is 48MB/s (45.8MiB/s). In
real-world tests with FPGALink, the actual observed throughput is typically about
26MiB/s. The achievable throughput is limited by the speed of the host-side USB
code.

4.3 EPP External Port

The Atmel AVR firmware implements the IEEE 1284 Enhanced Parallel Port proto-
col19.

AT90USB162

PD[7:0]
PC4
PC5
PC6
PC7

FPGA

eppClk_in
eppData_io
eppAddrStb_in

50MHz comm_fpga_epp

eppDataStb_in
eppWrite_in
eppWait_out

The EPP protocol is asynchronous (i.e the control signals are not synchronised to
any particular clock). Since FPGAs tend to be synchronous, the EPP signals are
internally synchronised to the comm fpga epp module’s eppClk in. The internal port
is synchronous to the same clock. The frequency of eppClk in is not important,

19See http://www.fapo.com/eppmode.htm

27

http://www.fapo.com/eppmode.htm

and neither is its source; the ex cksum and ex fifo examples just use the devkits’
onboard 50MHz cystal oscillators.

The EPP protocol is not as efficient as the synchronous FIFO interface of the FX2LP,
but in any case the overall throughput of a system based on an Atmel AVR is limited
by the USB throughput (unlike the 480Mb/s Hi-Speed FX2LP, the AVRs are Full-
Speed 12Mb/s devices) and not the EPP interface. Observed throughput is about
330KiB/s for the AVR firmware running single-buffered on an AT90USB162, AT-
mega16U2, ATmega32U2 or similar, and about 1.2MiB/s for the firmware running
double-buffered on an AT90USB647, ATmega32U4 or similar.

4.4 Build Infrastructure

In the hdl directory is a build infrastructure capable of synthesising VHDL code into
SVF files suitable for loading into an FPGA with FPGALink. Xilinx and Altera
FPGA toolchains are supported. The build infrastructure uses command-line tools
rather than the vendors’ Integrated Development Environments, but if you prefer to
work in an IDE, setting up a project is straightforward.

For Xilinx FPGAs, it’s necessary to install ISE WebPACK20. For Altera FPGAs, it’s
necessary to install Quartus II Web Edition21.

4.4.1 MacOSX

Unfortunately, neither Altera’s Quartus nor Xilinx’s ISE run on MacOSX, so you
will need to run either Windows or Linux in a virtual machine under VirtualBox or
Parallels.

4.4.2 Windows

The FPGA build infrastructure relies on some UNIX tools like make. Whilst it may

be possible to get builds working with 3rd-party UNIX tools for Windows, the only
officially supported set of tools are those available on the MakeStuff website22.

For Xilinx FPGAs, you will need to create a “XILINX” environment variable, and set
it to the location of the ISE installation (e.g “C:/Xilinx/13.2/ISE DS/ISE”). No
further installation tasks are needed for Altera FPGAs.

20From http://www.xilinx.com/support/download/index.htm
21From https://www.altera.com/download/software/software/quartus-ii-we
22See http://www.makestuff.eu/wordpress/?page_id=1489

28

http://www.xilinx.com/support/download/index.htm
https://www.altera.com/download/software/software/quartus-ii-we
http://www.makestuff.eu/wordpress/?page_id=1489

Then from within a Console2 window, you can build the ex cksum example for the
Digilent Atlys like this:

chris@win7 echo $XILINX

C:/Xilinx/13.2/ISE_DS/ISE

chris@win7$ cd hdl/fx2/vhdl/ex_cksum

chris@win7$ ls ../../platforms

atlys lx9 nexys2-1200 nexys2-500 nexys3 s3board xylo-l

chris@win7$ make PLATFORM=atlys

4.4.3 Linux

For Xilinx FPGAs, you will need to create a “XILINX” environment variable, and set
it to the location of the ISE installation (e.g “/opt/Xilinx/13.2/ISE DS/ISE”). No
further installation tasks are needed for Altera FPGAs.

Then from within a terminal window, you can build the ex cksum example for the
Digilent Atlys like this:

chris@wotan echo $XILINX

/opt/Xilinx/13.2/ISE_DS/ISE

chris@wotan$ cd hdl/fx2/vhdl/ex_cksum

chris@wotan$ ls ../../platforms

atlys lx9 nexys2-1200 nexys2-500 nexys3 s3board xylo-l

chris@wotan$ make PLATFORM=atlys

4.4.4 Specifying the JTAG Chain

The Altera tools will only generate SVF files for a single-device JTAG chain, but
the Xilinx tools support JTAG chains with multiple devices. The JTAG chain and
the actual device to program is specified in the platforms/*/platform.batch files.
All devices except the one being programmed need BSDL descriptions so that the
programming algorithm can bypass them.

A future release of FPGALink will simplify this, and provide support for multi-device
chains with Altera FPGAs.

4.4.5 Location Constraints

For boards based on Xilinx FPGAs, the location constraints are specified in the
platforms/*/platform.ucf files. For boards based on Altera FPGAs, the location
constraints are specified in the platforms/*/platform.qsf files.

4.4.6 The xsvf2csvf Utility

The CSVF format is very similar to Xilinx’s XSVF, except that it has a few sim-
plifications and the JTAG bitmaps have been been reversed, making it better suited

29

for playback on small microcontrollers. It also has a simple run-length compression
scheme making the programming files smaller. You can generate a CSVF file from an
XSVF or SVF file using the xsvf2csvf utility.

30

A Custom Boards

Most of the FPGA boards supported by FPGALink are ready-made, but in some
cases it’s useful to be able to wire an existing microcontroller board to an existing
FPGA board, or even design a composite board from scratch.

A.1 Minimus/EP2C5

By far the cheapest hardware solution for FPGALink-based applications, this is an
EP2C5 Mini Board attached to a Minimus AVR USB board:

To make one you will need an EP2C5 Mini Board and a Minimus AVR USB board.
The only modification necessary is to the Minimus board to allow it to draw power
from the EP2C5 board. To do this you must sever the USB +5V line, which is the
fourth one down on the USB connector in the picture above. Since the Minimus’s
connector is a Type A plug, the result is physically quite awkward if you don’t have a
Type A extension cable. Another option is to remove the plug altogether and replace
it with a cable with a Type A plug on one end and the other end soldered to the
Minimus. Thus, it becomes straightforward to connect the USB +5V power to the
P8 connector in the bottom left of the EP2C5 board, to make the whole thing draw
its power from USB, eliminating the need for an external +5V supply.

31

A.2 Minimus/Nexys2

Although the Digilent Nexys2 has a built-in FX2LP USB interface, in some circum-
stances it might be necessary to have two channels into the FPGA, either both to the
same PC, or to different PCs. Here’s how to wire a Minimus AVR USB board to a
couple of the expansion ports of a Nexys2:

The JTAG connections are TMS to PB0, TCK to PB1, TDI to PB2 and TDO to PB3.
The CommFPGA connections should be fairly clear from the photo: the eight data
lines go from the Minimus’s Port D to the top and bottom rows of the Nexys2’s JC1
connector, and the four control lines go to the top row of JD1. As before, the Minimus
needs to draw power from the Nexys2, so you will need to sever the USB +5V line,
which is the fourth one down on the USB connector in the picture above.

32

	Introduction
	Justification
	Overview
	Document Conventions
	How to Get Help
	Licences & Disclaimers

	Getting Started
	Installation
	Supported Boards
	Cypress FX2LP-Based Boards
	Atmel AVR-Based Boards

	The flcli Utility
	Programming the FPGA
	Interacting with the FPGA (Part 1)
	Interacting with the FPGA (Part 2)
	Summary

	Host Application Development
	Language Bindings
	C
	Python
	Excel/VBA

	API Overview
	Firmware Operations [FX2LP-Specific]
	Connection Lifecycle Operations
	Device Capabilities and Status Operations
	NeroJTAG Operations
	CommFPGA Operations
	Miscellaneous Operations

	FPGA Application Development
	Internal Port
	FX2 External Port
	EPP External Port
	Build Infrastructure
	MacOSX
	Windows
	Linux
	Specifying the JTAG Chain
	Location Constraints
	The xsvf2csvf Utility

	Custom Boards
	Minimus/EP2C5
	Minimus/Nexys2

