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ABSTRACT12

Multi-Layered Cover Systems (MLCS) of waste containment facilities are generally prone to13

translational instabilities, largely governed by their interfacial shear strength parameters. For the14

reliability assessment of a MLCS, it is necessary to characterize the interfacial shear strength15

parameters probabilistically. Owing to the uncertainties involved with the sample preparation and16

subsequent laboratory experimentations, deterministic linear regression based estimates of shear17

strength parameters becomes an oversimplifying paradigm. Conducting a very large number of18

repeated experimental trials to estimate shear strength parameters is practically infeasible, and thus19

geotechnical engineers often resort to best possible inferences from limited data. This necessitates20

Bayesian regression based approach catering to limited data for layerwise estimates of interfacial21

shear strength parameters of the MLCS. Informative (Normal) and noninformative priors are utilized22

1Arindam Dey3∗ is the corresponding author
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to get the updated probability distributions of shear strength parameters of the interfaces. These23

estimates are subsequently adopted to demonstrate reliability assessment of a MLCS system. A24

novel conceptual paradigm of probabilistic vulnerable interface diagram (PVID) is introduced to25

identify the most probable vulnerable interfaces of the MLCS when subjected to multiple factors26

leading to instabilities.27

INTRODUCTION28

Industrialization and urbanization have led to the growth in radioactive contaminants detrimen-29

tal to nature (EIA 2014). Near-surface waste disposal facilities (NSDF) comprise multi-layered30

cover system (MLCS) and multi-layered liners that are made of different soil-geosynthetic com-31

posite systems, isolating the low and intermediate-level radioactive waste from the surrounding32

environment. The configuration of MLCS depends on the type of waste and site conditions (Ko-33

erner and Daniel 1997). According to (Koerner and Daniel 1997), the Resource Conservation34

and Recovery Act (RCRA) subtitle ‘C’ MLCS configuration is likely to perform better in climatic35

regions with high rainfall and intense temperatures that prevail in tropical India.36

Once the shallow hazardous waste disposal facilities reach their desired storage capacity, MLCSs37

are constructed to serve the purposes of protection, barrier and separation (Koerner and Daniel38

1997). Each interface of a MLCS can be considered a weak shearing-plane susceptible to failure39

(Koerner and Hwu 1991; Choudhury et al. 2017). It has been highlighted by the researchers that40

the translational stability of MLCS is critically governed by the interfacial shear-strength, and41

it is necessary to identify the critical failure interface(s) for affirming the safety of the structure42

(Mitchell et al. 1990; Yamsani et al. 2016). Formulations have been developed for various scenarios43

affecting the translational slope stability by incorporating the effects of seepage, seismic forces and44

characteristic strength of the MLCS components (Koerner and Soong 2005; Xu et al. 2017). Very45

recently, with the aid of Monte-Carlo simulations, (Soujanya and Basha 2023a) reported a reliability-46

based stability analysis of the geogrid-reinforced veneer cover system of MSW landfill against47

sliding failure. Furthermore, (Soujanya and Basha 2023b) also studied the effect of hydrostatic and48

hydrodynamic pressures on the stability of landfill veneer covers with an internal sleeper.49
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Importance of interfacial shear characteristics in interpreting the stability of MLCS (Mitchell50

et al. 1990; Ling and Leschinsky 1997) cannot be overemphasized. Shear strength parameters of the51

comprising geomaterials (cohesion and internal friction) and the strength parameters of soil–soil or52

soil–geosynthetic interfaces (adhesion and frictional characteristics) are essential for analysing the53

stability of a MLCS. Considering the uncertainties associated with these parameters due to various54

sources (i.e. choice of instrument, measurement errors, sample preparation, the initial density of55

the material and other unaccounted factors), probabilistic approach becomes imperative in order to56

obtain the probability distribution of the shear strength parameters. In most of the previous studies,57

the shear strength parameters have been modeled as uncorrelated normal distributions (Nguyen58

1985; Soubra and Mao 2012). Obtaining the experimental parameters of the MLCS system as a59

whole becomes much more involved when emulated for multiple setups. Under such circumstances,60

a Bayesian framework for conducting the probabilistic analysis provides an attractive alternative61

to the conventional frequentist analysis. (Fellin and Oberguggenberger 2012) proposed a Bayesian62

approach when the sample data size was small (<5) that replaced the confidence intervals by high63

probability density regions of the posterior distribution. (Wang and Akeju 2016) characterized64

site-specific joint probability distribution of shear strength parameters and quantified the cross-65

correlation between them from a limited number of data under the Bayesian framework. (El-Ramly66

et al. 2002) demonstrated probabilistic analysis of a slope by considering spatial variability of67

input variables, statistical uncertainty due to limited data, and biases in the adopted empirical68

factors and correlations. (Griffiths and Fenton 2004) carried out elastoplastic random finite-69

element slope stability analysis that highlighted the importance of spatial correlation and local70

averaging on the probability of failure. (Prakash et al. 2021) constructed joint distribution of71

soil-water characteristic curve (SWCC) parameters using the Bayesian approach and demonstrated72

its applicability in reliability based design (RBD) of an unsaturated slope. (Ching and Phoon73

2019; Wang et al. 2015) have successfully demonstrated the applicability of Bayesian approaches74

to construct the site-specific distribution of design parameters when there is insufficient data to75

characterize site-specific variability.76
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In practice, conventional deterministic analyses are mostly augmented with experiments con-77

ducted for a MLCS, obtaining the shear strength parameters of individual geomaterials and the78

interfaces by fitting linear regression curves. Frequently, such regression lines drawn using79

two−to−three data points introduce bias in the parameter estimates that may not be sufficient80

to cater to all the sources of experimental uncertainties, which makes Bayesian regression an attrac-81

tive alternative (cite). The present work involves Bayesian linear regression based on Hamiltonian82

Monte Carlo (HMC) algorithm. The key contributions of this paper are: (1) the development of a83

probabilistic translational stability analysis of MLCS that is barely understood in literature; (2) an84

analysis based on limited experimental data; and (3) the development of a probabilistic vulnerable85

interface diagram (PVID) that provides information about the vehicle movement induced instability86

and critical interfaces of the MLCS under the combined influences of slope length, slope inclination87

and the position of the compacting vehicle.88

BACKGROUND89

The shear strength parameters can be determined using direct shear and modified direct shear90

tests [ASTM D3080/3080M, (ASTM 2011)] . Linear regression on the resulting pairs of peak shear91

stress and the corresponding normal stresses of the sample yields the cohesion and the angle of92

internal friction at yield state. The linearisation on a specific stress range is expressed by employing93

Mohr−Coulomb failure criterion (Coulomb 1776; Labuz and Zang 2012). While fitting a linear94

model, there is an equal probability (5%) for the shear strength parameters to be less than their95

lower limits and/or more than their upper limits. The standard linear regression, however, has two96

obstacles. Firstly, when the mean value of cohesion tends to zero, the 5% limit of cohesion may97

result in negative values, which is a practical impossibility. Secondly, the assumption of Normality98

of the error is not always true, particularly when the number of datapoints is less (Williams et al.99

2013). Furthermore, linear regression on limited data points is prone to noise and overfitting.100

The layout of the MLCS and its predefined failure interfaces (𝑛𝑖 = 1. . . 𝑛) are shown in Fig. 1.101

It is to be noted that all the layers of the MLCS have uniform thickness along their lengths and all102

of them are equally inclined at an angle 𝛽 to the horizontal. The procedure specified by (Koerner103
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and Hwu 1991) was adopted by (Yamsani et al. 2019) to obtain the factor of safety (FoS) at the 𝑛𝑖 𝑡ℎ104

interface as follows:105

𝑘1𝐹𝑜𝑆
2 + 𝑘2𝐹𝑜𝑆 + 𝑘3 = 0 (1)106

107

𝑘1 = (𝑊𝐴 − 𝑁𝐴𝑐𝑜𝑠𝛽)𝑐𝑜𝑠𝛽 (2)108

109

𝑘2 = −[(𝑊𝐴 − 𝑁𝐴𝑐𝑜𝑠𝛽)𝑠𝑖𝑛𝛽𝑡𝑎𝑛𝛿𝑒𝑞 + (𝑁𝐴𝑡𝑎𝑛𝛿 + 𝐶𝑎)𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛽 + (𝐶 +𝑊𝑃𝑡𝑎𝑛𝛿𝑒𝑞)𝑠𝑖𝑛𝛽] (3)110

111

𝑘3 = (𝑁𝐴𝑡𝑎𝑛𝛿 + 𝐶𝑎)𝑠𝑖𝑛2𝛽𝑡𝑎𝑛𝛿𝑒𝑞 (4)112

where, 𝑊𝐴 and 𝑊𝑃 represents the weights of active and passive wedges; 𝑁𝐴 and 𝑁𝑃 illustrates113

the normal forces acting on active and passive wedges; 𝐶 and 𝐶𝑎 are the total cohesive and the114

adhesive forces. As each of the interfaces have different interfacial friction angles (𝛿1, 𝛿2,.., 𝛿𝑛),115

an equivalent interface angle (𝛿𝑒𝑞) up to 𝑛𝑖 𝑡ℎ interface was proposed by (Yamsani et al. 2019). For116

evaluating the FoS of the MLCS under the action of a downward moving mini compaction roller117

(weight 𝑊𝑏 = 72 kN, length 𝑙𝑏 = 1.2 m, and width 𝑤𝑏 = 0.5 m), suitably modified the coefficients118

𝑘1, 𝑘2, 𝑘3.119

METHODOLOGY: HAMILTONIAN MONTE CARLO BASED BAYESIAN LINEAR120

REGRESSION121

(Yamsani et al. 2016) obtained the shear strength parameters of the selected geomaterials and122

their interfaces with geosynthetics as highlighted in Table 1 and Table 2, respectively. As the size123

𝑁 of the original set of measured data used by (Yamsani et al. 2016; Yamsani et al. 2019) was small124

(𝑁 = 3), standard linear regression loses its credibility as it is prone to noise and overfitting. Thus,125

the Bayesian Linear Regression approach (Fellin and Oberguggenberger 2012) has been adopted in126

this study to deal with such a situation.127

Consider a random variable 𝑋 with probability density function 𝑝( 𝑥
𝜃
), where 𝜃 is a vector of128

statistical parameters and 𝑝(𝜃) is the prior distribution. For data = (𝑥1, 𝑥2, . . . , 𝑥𝑁 ) given as an129
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independent sample, one can get the posterior distribution 𝑝( 𝜃
𝑑𝑎𝑡𝑎

) as described in Equation (5).130

𝑝( 𝜃

𝑑𝑎𝑡𝑎
) = 𝑘−1𝑝( 𝑑𝑎𝑡𝑎

𝜃
)𝑝(𝜃) (5)131

132

𝑘 =

∫
𝑝( 𝑑𝑎𝑡𝑎

𝜃
)𝑝(𝜃)𝑑𝜃 (6)133

134

𝑝( 𝑑𝑎𝑡𝑎
𝜃

) =
𝑁∏
𝑖=1

𝑝( 𝑥𝑖
𝜃
) (7)135

where, 𝑘 is the normalizing term in the denominator and 𝑝( 𝑑𝑎𝑡𝑎
𝜃
) is the likelihood function.136

The linear model for Mohr-Coulomb’s shear strength equation can be described as (Fellin and137

Oberguggenberger 2012):138

𝜏 𝑓 = 𝑐 + 𝜎𝑣 + 𝜖 (8)139

where, 𝑣 = 𝑡𝑎𝑛𝛿, 𝑐 and 𝛿 are the shear strength parameters of the interface, and the error term 𝜖140

has zero mean and 𝑠2𝜖 as variance.141

The random variable 𝑋 is the regressor variable which are the stresses 𝜏 𝑓 (shear stress) and142

𝜎 (normal stress). 𝜃 is comprised of regression coefficients 𝑐, 𝑣. As proposed by (Fellin and143

Oberguggenberger 2012), the standard deviation 𝑠𝜖 can be estimated from the data [Equation (9)].144

𝑠𝜖 ≈
𝑞
√
𝑁

√︂
𝑆𝑆𝐸

𝑁 − 2
(9)145

where 𝑞 corresponds to 95%-quantile that can be obtained from Student t-distribution having146

(𝑁 − 2) degrees of freedom and 𝑆𝑆𝐸 is the residual sum of squares given by Equation (10).147

𝑆𝑆𝐸 =

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (10)148

where, 𝑦𝑖 is the observed value and 𝑦𝑖 is predicted value from linear regression.149

In the standard regression model, given 𝜎, the regressor variable 𝜏 𝑓 is assumed to be normally150

distributed with mean 𝑐 + 𝜎𝑣 and variance 𝑠2𝜖 . For a given set of measurement data = (𝜎𝑖,𝜏 𝑓 𝑖),151
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𝑖 = 1, 2, 3, . . . , 𝑁 , the likelihood function can be described as Equation (11).152

𝑝( 𝑑𝑎𝑡𝑎
𝜃

) = ( 1
𝑠𝜖
√

2𝜋
)𝑁𝑒𝑥𝑝(−

𝑁∑︁
𝑖=1

(𝜏 𝑓 𝑖 − 𝑐 − 𝜎𝑖𝑣)2

2𝑠2𝜖
) (11)153

The limited number of data (𝑁 = 3) are updated to get samples from the posterior distribution154

𝑝( 𝑐,𝑣
𝑑𝑎𝑡𝑎

) using both the noninformative and informative priors. Equation (5) has been solved using155

No-U-Turn-Sampler (NUTS), which is a an extension to HMC algorithm. FoS is determined on156

these MCMC samples, and a probabilistic vulnerable interface diagram (PVID) for the MLCS has157

been constructed for both the noninformative and informative cases.158

MCMC is an acceptance-rejection sampling algorithm popularly used in Bayesian inference159

(Gelman et al. 2013). It uses the Markov Chain to reach the target distribution by iteratively160

correcting the samples from a conventional distribution. It can be mathematically represented as161

Equation (12).162

𝑃(𝑋 𝑗+1 = 𝑦 |𝑋 𝑗 = 𝑥 𝑗 , 𝑋 𝑗−1 = 𝑥 𝑗−1, ..., 𝑋0 = 𝑥0) = 𝑃(𝑋 𝑗+1 = 𝑦 |𝑋 𝑗 = 𝑥 𝑗 ) (12)163

Some of the widely used MCMC algorithms are random-walk Metropolis (Metropolis et al. 1953),164

Gibbs sampling (Geman and Geman 1984) and NUTS (Hoffman and Gelman 2014). Less efficient165

random walks have been a drawback for simple methods like the Metropolis algorithm or Gibbs166

sampling, as it takes a longer duration to converge to the target distribution (Neal 1993). HMC167

takes care of the random walk approach by transforming the problem into simulating Hamiltonian168

dynamics (Neal et al. 2011).169

The basic idea of HMC is to generate a proposal from a better proposal distribution and improve170

the acceptance rate by modifying the acceptance part. For the regular MH algorithm, the samples171

are directly drawn from a proposal density 𝑞(𝑦 |𝑥). HMC improves this process by incorporating a172

random momentum vector in the framework of Hamiltonian dynamics. For every position 𝑥 ∈ 𝑅𝑚173

a vector of m elements are required for the momentum. The momentum vector dictates how 𝑥174

moves dynamically in accordance to Hamiltonian Mechanics.175
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Based on classical mechanics, the Hamiltonian (H) can be defined as:176

𝐻 (𝜽 , p) = 𝑈 (𝜽) + 𝐾 (p) (13)177

where 𝑈 (𝜽) refers to potential energy and 𝐾 (p) refers to kinetic energy, respectively, and 𝜽 is178

a random variable with probability density function 𝑓 (𝜽). In the HMC method, an auxiliary179

momentum variable p is defined following a normal distribution: 𝑓 (p) ∼ 𝑁 (0,M), M being180

a covariance matrix. The goal is to obtain samples from the target posterior distribution. The181

posterior distribution represents our updated knowledge about the parameters (𝜃) of interest after182

incorporating observed data. The potential energy function, (𝑈 (𝜃)), is directly related to the183

negative log-likelihood of the data and the prior distribution on the parameters. Specifically, it184

refers to negative log posterior space. On the other hand, the density function 𝑓 (𝜃) describes185

the prior probability distribution of the parameters (𝜃). It represents our initial beliefs about the186

parameters before incorporating the observed data.187

Sampling is done from the target distribution by picking 𝜽 from joint density 𝑓 (𝜽 , p). According188

to Hamiltonian dynamics, Hamilton’s equation describing the movement of samples are provided189

by eqs. (14) and (15).190

𝑑𝜃

𝑑𝑡
=
𝜕𝐻

𝜕𝑝
(14)191

192
𝑑𝑝

𝑑𝑡
=
𝜕𝐻

𝜕𝜃
(15)193

where 𝑡 is the fictitious time.194

Leapfrog method is mostly used to find an approximate solution for Hamiltonian dynamics.195

Considering a small time increment 𝜂, one can express a basic Leap-Frog integrator as follows:196
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For 𝑗 = 1, . . . , 𝐿 :

𝑝𝑡+𝜂/2 = 𝑝𝑡 −
𝜂

2
𝜕𝑈

𝜕𝜃
(𝜃𝑡)

𝜃𝑡+𝜂 = 𝜃𝑡 + 𝜂
𝜕𝐾

𝜕𝑝
(𝑝𝑡+𝜂/2)

𝑝𝑡+𝜂 = 𝑝𝑡+𝜂/2 −
𝜂

2
𝜕𝑈

𝜕𝜃
(𝜃𝑡+𝜂)

𝑡 = 𝑡 + 𝜂

(16)197

However, HMC requires hand-tuning of the two parameters: step size and integration steps in198

leapfrog (𝐿), to run a simulated Hamiltonian system. NUTS is one such MCMC algorithm that199

does not require any hand-tuning at all. It selects an appropriate value for 𝐿 in each iteration200

automatically. The leapfrog steps are run such that 𝜽* approaches 𝜽 . It is accomplished by taking201

the derivative of half the squared distance between the current position 𝜽* and the initial position202

𝜽 [Equation (17)].203

𝜕𝑄

𝜕𝜏
=
𝜕 (𝜽∗ − 𝜽)′(𝜽∗ − 𝜽)

𝜕𝜏2
= (𝜽∗ − 𝜽)′𝑝 < 0 (17)204

One may refer to (Nishio and Arakawa 2019) to know the sampling procedure in NUTS. The205

pseudocode and derivations related to NUTS can be referred to (Hoffman and Gelman 2014). The206

NUTS (No-U-Turn Sampler) algorithm as implemented in the PyMC3 library was employed in207

the present work. PyMC3 is a popular probabilistic programming framework that provides tools208

for Bayesian analysis. The NUTS algorithm, which is part of PyMC3, automatically explores the209

posterior distribution by iteratively sampling from it. The algorithm incorporates the No-U-Turn210

criterion to determine when to stop sampling, ensuring efficient exploration of the posterior. The211

algorithms can be sourced to the following website: https://www.pymc.io/projects/docs/212

en/v5.6.1/learn/core_notebooks/pymc_overview.html213

UNIVARIATE PROBABILITY MODELS214

In the present study, probability plots have been used to determine the probability distribution.215

Plots are constructed based on a linear relationship between theoretical quantiles of the candidate216

probability distribution and the sorted values of the data. In the given study, probability plots217
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for four candidate distributions: Weibull, Normal, Lognormal, and Gumbel are constructed for218

each interface. The most probable distribution is chosen based on the highest (𝑅2) value. Filliben219

(Filliben 1975) provided the estimates to obtain the theoretical quantiles as:220

𝑚𝑖 =



1 − 0.51/𝑛 i = 1

𝑖−0.3175
𝑛+0.365 i = 2, 3,..., n-1

0.51/𝑛 i = n

(18)221

where 𝑚𝑖 is the uniform order statistics median. Quantiles are calculated by evaluating percent222

point function (PPF) at 𝑚𝑖. Here, i is the i𝑡ℎ ordered value and n is the total number of values. In223

PPF, given the probability, the corresponding x for the cumulative distribution function (CDF) is224

computed.225

For the marginal posteriors of interfacial adhesion (c) and v = 𝑡𝑎𝑛𝛿 (𝛿 is the interfacial friction226

angle), the general approach for obtaining the univariate distribution of the posteriors after posterior227

sampling from the MCMC chain is outlined as follows:228

• Sort the values c, v to obtain ordered values.229

• Obtain the theoretical quantiles by evaluating PPF of m𝑖 for the assumed candidate distri-230

butions.231

• For each candidate, plot ordered values versus the theoretical quantiles to get the probability232

plot and get R2 value.233

• Choose the highest R2 candidate in the probability plots as the preferred univariate distri-234

bution.235

NONINFORMATIVE AND INFORMATIVE PRIORS236

Noninformative and informative prior knowledge was used to get the updated probability237

distribution of interface shear properties. The lower limit of c has been kept at 4-6 kPa considering238

practical scenarios.239

Uniformly distributed noninformative priors are chosen on certain intervals as [𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥],240
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[𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥]. The choice of such priors is advantageous for achieving c≥0 and v>0 conditions.241

The choice of 𝑐𝑚𝑎𝑥 and 𝑣𝑚𝑎𝑥 is such that they are less than the shear strength parameters of the242

parent materials. However, the geomembrane material referred here is actually a geocomposite243

comprising layers of geomembrane and geonet sandwiched together, thereby leading to augmented244

interface shear characteristics that is effectively more than the parent material. The parameters for245

uniform distribution are the minimum and the maximum value for the random variable. Uniformly246

distributed priors are expressed as detailed in Equations (19) and (20).247

p(c) = [𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛]−1 (19)248

249

p(v) = [𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛]−1 (20)250

For the choice of informative priors, normally distributed priors have been chosen of certain mean251

and variance. The parameters for normal distribution are the mean and the standard deviation of252

the random variable. The parameters 𝜇𝑐, 𝜇𝑣, 𝜎𝑐 and 𝜎𝑣 of the interfaces are manually adjusted such253

that c ≥ 0 and v > 0 conditions are satisfied and the bounds mentioned in noninformative prior are254

not violated. Normally distributed priors are expressed as detailed in Equations (21) and (22).255

p(c) =
1

𝜎𝑐
√

2𝜋
𝑒𝑥𝑝

− (𝑐−𝜇𝑐 )2

2𝜎2
𝑐 (21)256

257

p(v) =
1

𝜎𝑣
√

2𝜋
𝑒𝑥𝑝

− (𝑣−𝜇𝑣 )2

2𝜎2
𝑣 (22)258

Table 3 summarizes the parameters of the uniform and normal priors. These priors are consid-259

ered based on proper subjective consideration of the interface characteristics.260

The choice of the mean and standard deviation of the normal priors for interfacial shear strength261

properties ( c and v ) is carefully made, considering the lower and upper limits of the properties262

obtained from experiments. The means and standard deviations were selected based on the idea263

that the probabilistically sampled interfacial properties should lie within (𝜇−3.3𝜎, 𝜇+3.3𝜎) range,264

where (𝜇 − 3.3𝜎) corresponds to lower bound and (𝜇 + 3.3𝜎) corresponds to the upper bound of265

11 Choudhury, January 31, 2024



the deterministic experimental values. For example, when analysing the interface between Red266

soil and Geotextile, we considered the specific properties of Red soil, such as its cohesion value267

of 16.96 kPa, and the measured interfacial adhesion of 13.7 kPa between Red soil and Geotextile.268

To choose appropriate prior parameters, we set the mean as 10 kPa and the standard deviation as269

2 kPa. We used the mean ± 3.3 standard deviations which accounts for approximately 99.99% of270

the cumulative probability density. This choice ensures that the inferred distribution of interfacial271

shear strength properties remain well within the bounds of the corresponding interface properties272

obtained experimentally. This conservative approach ensures that the chosen priors encompass273

a wider range of possible values, accounting for the inherent uncertainty and variability in the274

interfacial shear strength properties.275

RESULTS AND DISCUSSIONS276

For the present study, the data are obtained from laboratory experiments conducted on the277

selected geomaterials and their corresponding interfaces with the geosythetics (Table 1 and Table278

2). For more details the readers are referred elsewhere (Yamsani et al. 2016; Yamsani et al. 2019).279

The posterior densities of 𝑐 and 𝑣 are first obtained using uniform and normal priors that are280

subsequently utilized for the analyses of the MLCS system.281

Effect of Priors282

For sampling posteriors from the proposed approach, data points (𝑐,𝑣) with sample size (𝑁 =283

3) are utilized for analyses. Following the NUTS algorithm, MCMC simulations are performed for284

the length of the Markov chain (𝑁𝑠 = 104). The likelihood model being fitted is shown in Equation285

(11). The parameters for the noninformative priors are the ranges of 𝑐 and 𝑣. The informative286

priors are normally distributed with parameters and hyperparameters as per Table 3.287

For the interface 𝑛𝑖 = 1, the obtained MCMC samples of size (𝑁𝑠 = 104) for 𝑐 and 𝑣 are288

presented in Fig. 2. Typical probability plots and the marginal densities of the posteriors for the289

aforementioned interface are also shown in Fig. 2. 𝑅2 values of the probability plots for each of290

the candidate posterior distributions are summarized in Table 4.291
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The 𝑅2 values in Table 4 suggest that Weibull distribution is the best fit distribution for the shear292

properties of the red soil-geotextile (RS−GT) and geomembrane-bentonite (GM−B) interfaces. In293

contrast, Normal distribution is the appropriate posterior probability density function for the GT−G,294

G−S and S−GM interfaces. However, for informative priors, Normal distribution is obtained as the295

best fit posterior for all the interfaces (Table 4), which corroborates with the analytical Bayesian296

inference for Gaussian distribution.297

Practical Application: Reliability Assessment of MLCS298

It is fairly well recognized that experimentally obtained shear strength parameters and interfacial299

shear parameters are susceptible to uncertainties. One way of overcoming the issue is to perform300

a large number of repeatable experiments and properly addressing the sampling uncertainties301

associated with the parameter estimates. However, this approach becomes infeasible due to practical302

considerations and time consumption. In such cases, perhaps a more rational and practical approach303

would be to measure the data following the prescribed codal provisions and then use the proposed304

Bayesian regression framework on limited data. Thus, for the slope stability analysis of the MLCS,305

the interface parameters of the layers are obtained from the samples of 𝑝( 𝑐,𝑣
𝑑𝑎𝑡𝑎

) from the estimated306

posteriors (Equation (5)). The following section illustrates the effect of the noninformative and the307

informative priors on the translational stability of MLCS incorporating the parametric variations308

in slope inclination, length of slope, and the effect of a downward moving mini compaction roller.309

Reliability of MLCS’ stability can be expressed as the probability of failure (𝑃 𝑓 ) that can310

be estimated from the limit state function: 𝑔(X) = FoS −1.5, with the input parameters X =311

(𝑋1, 𝑋2, ..., 𝑋𝑛) = (𝐻, 𝐿, 𝛽, 𝑐, 𝑣, 𝜙, 𝛾). The corresponding probability of failure can be defined as:312

𝑃 𝑓 = 𝑃(𝑔(𝑋1, 𝑋2, ..., 𝑋𝑛) ≤ 0) =
∫

...

∫
𝑔(X)≤0

𝑓𝑋 (𝑥)𝑑𝑥 (23)313

The above can be estimated in the Monte Carlo simulation framework using a standard indicator314
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function as Equation (24).315

𝑃 𝑓 =
1
𝑁

𝑁∑︁
𝑖=1

𝐼 (𝑔(X) ≤ 0) = 1
𝑁

𝑁∑︁
𝑖=1

𝐼 (𝐹𝑜𝑆 − 1.5 ≤ 0) (24)316

where, 𝑁 is the number of observations of FoS, and 𝐼 is an indicator function for counting the317

number of times a particular interface of MLCS fails, i.e., FoS≤1.5.318

For reliability analysis of MLCS, 104 trials of MCS are performed. FoS for an interface of319

MLCS is given by Equation. (1) and the corresponding 𝑃 𝑓 can be evaluated by using Equation320

(24). The application of the proposed approach in developing the probabilistic Vulnerable Interface321

Diagram (PVID) of the MLCS interfaces is introduced next. This essentially brings out an important322

concept pertaining to the probabilistic stability of MLCS in relation to the uncertainties involved323

in the failure of the individual interfaces.324

Effect of Slope Inclination325

For a surface cover system, (NSWEPA 2015) recommends a mild slope inclination of 3%–7%.326

However, under certain circumstances, due to the unavailability of sufficient space for facilitating327

storage of excess waste, slope inclinations as high as 30% have also been reported in the literature328

(Seed et al. 1990). Accordingly, in the present study, the FoS is evaluated for three different slope329

inclinations, 10%, 20%, and 30%, which corresponds to slope angles 5.7◦, 11.3◦, and 16.7◦ with330

the horizontal, respectively. In these analyses, the length of the uppermost surface of the MLCS331

(𝐿) is considered as 30 m.332

For brevity, the probability plots obtained after transcribing posterior samples from MCMC into333

Equation (1) using noninformative (Uniform) and informative (Normal) priors are not presented.334

𝑅2 values for each of the candidate distributions are summarized instead, in Table 5. From335

Table 5, it can be inferred that Normal distribution is the best fit for the FoS samples of all336

the interfaces and slope inclinations, when Normal priors are considered, although Weibull and337

Lognormal distribution appears to be equally good candidates. In contrast, when Uniform priors338

are considered, Weibull distribution appears to be an appropriate PDF for the GM−B interface339
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(𝑛𝑖 = 5) irrespective of the slope inclination. However, for the remaining interfaces (𝑛𝑖 = 1 . . . 4)340

the FoS samples of the remaining interfaces are likely to follow Normal distribution for all slope341

inclinations.342

Fig. 3 shows the posterior PDFs of FoS computed at various slope inclinations. For 10% slope,343

it can be noted that the highest value corresponds approximately to FoS = 6.5, 4.5, 6.1, 5, 8.5344

for 𝑛𝑖 = 1, 2, 3, 4, 5 respectively, regardless of noninformative or informative priors. However, the345

spread of FoS for the latter case decreases, suggesting that the consideration of Normal priors is346

more economical from design consideration, yet less conservative from failure perspective. The347

distribution of FoS is of practical interest as it conforms to one of the most important design checks348

to be considered while assessing the stability of MLCS. At a relatively gentle slope of 10%, it349

can be noted that the fraction of FoS≤1.5 is zero, whereas with the increase in 𝛽, the fraction of350

FoS≤1.5 becomes higher, which is an intuitive result.351

(Yamsani et al. 2019) identified the GT−G interface (𝑛𝑖 = 2) as the critical failure plane, thereby352

inferring it as the weakest interface. However, a small percentile of the FoS (𝑋 (𝜁) ≤ 𝑥; where353

X is a random variable denoting FoS) falls below the minimum required magnitude of 1.5 for the354

S−GM interface (𝑛𝑖 = 4) at 20% slope inclination indicating it to be unsafe. The interfaces 𝑛𝑖 = 2355

and 𝑛𝑖 = 4 do not have adhesion, and thus these interfaces would fail for 𝛿 ≤ 8.05◦ and 𝛿 ≤ 12.75◦356

respectively, when estimated by satisfying the aforementioned criterion. Furthermore, for a 30%357

slope, using the same criterion, R−GT interface (𝑛𝑖 = 1) and G−S interface (𝑛𝑖 = 3) also exhibits358

failure. Hence, each of the interfaces 𝑛𝑖 = 1 − 4 would fail for 𝛿 ≤ 13.5◦, 𝛿 ≤ 13.17◦, 𝛿 ≤ 21.42◦359

and 𝛿 ≤ 21.53◦ after considering either of the priors for 30% slope inclination. However, the360

interfacial adhesion values satisfying the aforementioned criterion depend on the choice of priors.361

In particular, the adhesion (𝑐) for 𝑛𝑖 = 1 corresponds to 𝑐 ≤ 16 kPa and 𝑐 ≤ 15.04 kPa, respectively.362

Table 6 and 7 summarize the variations of 𝑃 𝑓 , mean, 95 percentile, and 99 percentile values363

of FoS with the change in slope inclination and interfaces. It can be noted that 𝑃 𝑓 increases with364

the increase in slope inclination. For 10% slope, the 𝑃 𝑓 is 0 (zero) for all interfaces of the MLCS365

for both the priors, which is expected from a slope having an inclination (≈ 6◦) lesser than the366
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friction angles of all the interfaces of the MLCS (Table 2). On the other hand, the 30% slope is367

expectedly more susceptible to failure, which is reflected by the mean FoS values much lesser than368

1.5 for some interfaces. Given that the angle of slope inclination is (𝛽) ≈ 17◦, 𝑛𝑖 = 2 with 𝛿𝑖 = 9◦369

is highly likely to fail (𝑃 𝑓 = 1). However, the interfaces that have substantial contribution from370

adhesion as well as interfacial friction are least likely to fail (i.e. 𝑛𝑖 = 5), whereas, the ones with371

less 𝛿𝑖 < 𝛽 as well as relatively lesser cohesion still have a higher likelihood of failure (𝑛𝑖 = 1). The372

system performance in terms of reliability index is still Hazardous as per USACE ETL-1110-2-547373

(USACE 1997), which is not surprising for a steeper MLCS.374

Of significant interest is the MLCS with 20% slope (with inclination ≈ 11◦). Deterministic375

analysis shows a FoS of all interfaces to be greater than 1.5, thereby signifying sufficiently stable376

MLCS. However, the proposed Bayesian regression based technique indicates a contrasting result.377

For 𝑛𝑖 = 2 and 𝑛𝑖 = 4, the 𝑃 𝑓 (s) are 0.15 and 0.055 for Uniform prior, and 0.13 and 0.02 for378

Normal prior, respectively. Although the probability of failures are still small, as per USACE ETL-379

1110-2-547 (USACE 1997), the performance level ranges between Poor to Hazardous. This result380

underscores the importance of the probabilistic approach for analyzing the translational stability of381

a MLCS.382

Effect of Length383

The influence of the length of slope L on the 𝐹𝑜𝑆 distribution of different interfaces of MLCS384

is studied for maximum slope inclination (30%).385

For the sake of brevity, probability plots for simulated 𝐹𝑜𝑆 considering uniform and normal386

priors are not presented here. It is found that the Weibull distribution is the best fit distribution for387

the 𝐹𝑜𝑆 samples of interface 𝑛𝑖 = 5 for L= 15 m, 30 m, 50 m when uniform priors are considered.388

The Weibull distribution also appears to be the best fit for the 𝐹𝑜𝑆 samples for interfaces 𝑛𝑖 = 1, 3389

for L = 15 m. The 𝐹𝑜𝑆 samples for the rest of the interfaces and length conditions follow Normal390

distribution. The best-fit probability plots correspond to Normal distribution for all the interfaces391

and length when informative priors are used except for the interfaces 𝑛𝑖 = 4, 5 for L=15 m. In this392

case, the best-fit PDF for sampled 𝐹𝑜𝑆 is the Lognormal distribution.393
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The 𝐹𝑜𝑆 distribution obtained from simulated MCMC posterior samples with change in length394

follows almost similar lines of interpretation as in Fig. 3. At a relatively shorter length of L=15 m,395

it has been observed that the fraction of 𝐹𝑜𝑆 <1.5 is less. With the increase in length, the fraction396

of 𝐹𝑜𝑆 <1.5 becomes higher.397

At L = 50 m, the 𝑃 𝑓 for 𝑛𝑖 = 1 − 4 is greater than equal to 0.5 and, in some cases 𝑃 𝑓 ≈1,398

indicating that these interfaces are prone to instability for specific 𝑐, 𝛿 for both the cases of399

simulations. Although (Yamsani et al. 2019) considered the interface 𝑛𝑖 = 1 to be safe (𝐹𝑜𝑆 ≥1.5)400

for 30 m length of the slope; however, simulation results considering normal priors show that 𝑃 𝑓 for401

these two interfaces is as high as 0.5-0.7. Thus, due consideration also has to be given to interface402

𝑛𝑖 = 1 for stability assessment in addition to the interfaces 𝑛𝑖 = 2, 4 which has 𝑃 𝑓 ≈1. In fact, the403

mean 𝐹𝑜𝑆 for the interfaces 𝑛𝑖 = 1, 3 is also on the lower side than the 𝐹𝑜𝑆 reported by (Yamsani404

et al. 2019). When the best fit PDF of 𝐹𝑜𝑆 is Weibull, or, lognormal, for a specific interface, mean405

𝐹𝑜𝑆 will not be an appropriate choice of 𝐹𝑜𝑆 for the design. In such cases, more conservative406

values (higher % ile values) will be a better choice for FOS.407

Table 8 summarizes the variations of 𝑃 𝑓 , mean, 95 percentile, and 99 percentile values of FoS408

with the change in slope length. It can be noted that 𝑃 𝑓 increases with the increase in the length409

of slope. For 15 m slope-length, the 𝑃 𝑓 is 0 (zero) for all interfaces of the MLCS with normal410

prior, except for S−GM interface which has still hazardous as per as per USACE ETL-1110-2-547411

(USACE 1997), which is expected due to the low magnitude of interface friction between sand and412

geomembrane. For L = 30 and 50 m, the performance level of all the interfaces are Hazardous413

except for the 𝑛𝑖 = 5 (i.e. GM-B) which exhibits a poor performance level for the highest slope414

length considered.415

The influence of length on the evaluated 𝐹𝑜𝑆 is found to be more pronounced for shorter lengths416

as compared to the longer ones. For the shorter length sections, the driving force responsible for417

generating the translation movements along each of the interfaces is lower. With increasing lengths,418

as the driving force gets accumulated, more numbers of interfaces tend to fail. For lesser lengths,419

component (i.e. interface) failure is more pronounced as opposed to system (i.e. MLCS) failure420

17 Choudhury, January 31, 2024



for higher lengths. Such a trend was reported by (Yamsani et al. 2019) based on the deterministic421

translational stability analysis of a MLCS. The deterministic 𝐹𝑜𝑆 reported by (Yamsani et al. 2019)422

and the mean 𝐹𝑜𝑆 (in current study) obtained after sampling 𝑐, 𝑣 as posteriors from the MCMC423

chain (𝑁𝑠 = 104), with Normal priors are presented in Fig. 4(b) in which all the interfaces show a424

similar trend.425

Effect of Downward Movement of Compacting Vehicle426

In this section, the effect of the downward movement of compacting vehicle with constant427

velocity on the stability of MLCS (30 m length of slope with 30% inclination) has been analyzed428

in the prescribed probabilistic framework.429

It has been found that the Weibull distribution fits best for the 𝐹𝑜𝑆 samples pertaining to the430

interface 𝑛𝑖 = 5 for V = 0 m and the transition point (V represents the height of vehicle above431

the toe of MLCS) when uniform priors are considered in the simulation. The 𝐹𝑜𝑆 samples for432

the rest of the interfaces and vehicle positions in the vertical direction follow Normal distribution.433

Concurrently, the best-fit probability plots follow Normal distribution for all the interfaces and434

vehicle positions when informative priors are used. Similarly, for interfaces 𝑛𝑖 = 2 − 5, lognormal435

and Normal distribution appears to be the best-fit (𝑅2-0.999); however, Normal distribution is the436

preferred distribution for consistency.437

As the vehicle traverses from the passive zone to the transition points (from passive to active438

zones) of each interface, it can be observed from Fig.5 that there is an improvement of 𝐹𝑜𝑆.439

However, the 𝐹𝑜𝑆 distribution for interface 𝑛𝑖 = 2 and a portion of 𝐹𝑜𝑆 distribution for the440

interfaces 𝑛𝑖 = 1 and 4 still does not satisfy the 𝐹𝑜𝑆 >1.5 criterion. The corresponding interfacial441

shear parameters are 𝑐 <16 kPa and 𝛿 <12.6◦, for 𝑛𝑖 = 1 for uniform priors. When the priors442

are normal, 𝑐 <16 kPa and 𝛿 <14.81◦ is likely to cause the failure of interface 𝑛𝑖 = 1. The443

failure of interface 𝑛𝑖 = 4 takes place for 𝛿 <14.33◦ irrespective of the priors considered during the444

simulation. When the vehicle is located on the active zone (V = 6 m, 12 m), all the interfaces fail to445

satisfy 𝐹𝑜𝑆 >1.5 except for 𝑛𝑖 = 5. There is no change in the 𝐹𝑜𝑆 distribution for V=6 m and 12446

m. (Yamsani et al. 2019) also provided a similar observation. This is attributed to the fact that once447
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the vehicle moves sufficiently away from the transition zone, it ceases to influence the layer wise448

passive resistance, effectively leading to the same 𝐹𝑜𝑆 distribution. Further, the interface 𝑛𝑖 = 3449

would remain safe irrespective of the vehicle location on the active zone when 𝛿 >23.26◦.450

Further from Fig. 5, one can infer that 𝑃 𝑓 decreases as the vehicle moves from entirely451

passive zone (V = 0 m) to the transition point (passive to active zone), beyond which it increases452

approximately to 1 as the vehicle traverses completely into the active zone. The GM-B interface453

(𝑛𝑖 = 5) remains safe for all vehicle positions, irrespective of its location on active or passive zones.454

For normal prior, it can be observed that 𝑃 𝑓 =0.717 for 𝑛𝑖 = 1 when compared to the uniform prior455

case, where 𝑃 𝑓 = 0.506 for V = 0 m. Although (Yamsani et al. 2019) considered interface 𝑛𝑖 = 1 to456

be safe (𝐹𝑜𝑆 ≥1.5) for V = 0 m; however, under the current probabilistic framework considering457

normal priors, the 𝑛𝑖 = 1 interface shows a mean 𝐹𝑜𝑆 <1.5 and 𝑃 𝑓 = 0.717, which pertains a458

hazardous performance level as per as per USACE ETL-1110-2-547 (USACE 1997).459

Fig. 6 presents deterministic 𝐹𝑜𝑆 reported by (Yamsani et al. 2019) and the Mean 𝐹𝑜𝑆 with460

change in vehicle position after sampling 𝑐, 𝑣 as posteriors from the MCMC chain (𝑁𝑠=104) when461

the priors are normal. It suggests that the 𝑛𝑖 = 2 interface is the most critical interface, exhibiting462

minimal 𝐹𝑜𝑆, followed by the interfaces 𝑛𝑖 = 1 and 𝑛𝑖 = 4. Further, it is clear that whereas the463

deterministic study is only able to capture independent interfacial failures (failure of one interface464

doesn’t influence the failure another), the present framework allows identifying more realistic465

possibilities of correlated failures (failure of one interface influences the failure of another) as the466

vehicle traverses from active to passive regions across the transition point. This necessitates the467

development of probabilistic vulnerable interface diagram (PVID) to be illustrated next.468

Probabilistic Vulnerable Interface Diagram (PVID)469

Probabilistic vulnerable interface diagram (PVID) is developed in this study by combining the470

𝐹𝑜𝑆 distribution of all the interfaces corresponding to different destabilization factors for Normal471

priors. The diagram helps in identifying the weakest interfaces of a given MLCS configuration,472

considering all the factors causing instability. As an example, for a MLCS having a slope inclination473

of 30% and length of 30 m, with the compacting vehicle located near the crown of the slope (i.e.,474
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V=12 m above the toe), then the corresponding PVID for the MLCS is depicted in Fig. 7. The475

left one does not consider any vehicle present on the MLCS. The main objective of this figure is to476

highlight the two extreme cases involving the presence or absence of vehicle on the MLCS.477

For an identical MLCS, (Yamsani et al. 2019) considered both 𝑛𝑖 = 3 and 5 to be safe according478

to the deterministic VID, but the PVID (Fig. 7) suggests that a fraction of 𝐹𝑜𝑆 distribution for479

𝑛𝑖 = 3 also do not satisfy the stability criterion. Accordingly, from the figure, it can be ascertained480

that only interface 𝑛𝑖 = 5 qualifies the required 𝐹𝑜𝑆 subjected to all the factors governing the481

stability. It can be inferred that the interfaces 𝑛𝑖 = 2 and 𝑛𝑖 = 4 are the most vulnerable ones482

requiring substantial strength improvement.483

Comparison with Monte Carlo Simulation484

The effect of slope inclination, slope length and the downward movement of the compacting485

vehicle on the stability of MLCS have also been analyzed using Monte Carlo Simulation (MCS).486

The statistical parameters mentioned in Table 3 are used to obtain the distributions for 𝑐, 𝑣. The487

best-fit probability plots are for the Normal distribution for the sampled 𝐹𝑜𝑆 irrespective of the488

slope, length, or vehicle position. The 𝑅2 values of these plots are in the range of 0.9997 to 0.9999.489

For the sake of brevity, the probability plots are not shown here.490

Fig. 8 shows the 𝐹𝑜𝑆 distribution for the extreme scenarios corresponding to different destabi-491

lizing factors considered in this study. It shows that the best-fit distributions are Normal irrespective492

of interfaces, or, destabilizing factors. However, the general trend for the distributions is more or493

less similar when compared with simulated 𝐹𝑜𝑆 from the MCMC cases. The MCMC posteriors494

are narrower and have sharper peaks, and it is likely that the posteriors obtained from the MCMC495

simulations considering normal priors are more reliable.496

CONCLUSIONS497

This study explores the probabilistic estimates of the interfacial shear strength parameters from498

limited data using Bayesian linear regression. Further, reliability assessment of a MLCS has been499

carried out by adopting Bayesian linear regression estimates. The following conclusions can be500

drawn from this study:501
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• Weibull distribution is appropriate for modeling the interfaces that have both interfacial502

friction and adhesion, when uniform priors are used. Whereas, Normal distribution is503

found appropriate for the interfaces devoid of adhesion.504

• The Normal distribution is the best fit distribution irrespective of interfacial shear strength505

parameters when normal priors are used.506

• 𝐹𝑜𝑆 distribution for each interface has been obtained corresponding to various destabi-507

lization factors such as slope inclination, length, and the effect of a downward moving508

compacting vehicle. The fraction of 𝐹𝑜𝑆 distribution that fails to satisfy the 𝐹𝑜𝑆 > 1.5509

criteria is identified from which the corresponding interfacial shear strength parameters are510

evaluated. This leads to a reliability assessment of the specific MLCS considered in this511

work.512

• Deterministic analysis for 20% slope with 30 m length shows a constant FoS for all interfaces513

to be greater than 1.5, thereby signifying sufficiently stable MLCS (Yamsani et al. 2019).514

However, the proposed probabilistic approach shows that for 𝑛𝑖 = 2 and 𝑛𝑖 = 4, the 𝑃 𝑓 (s)515

are 0.15 and 0.055 for Uniform prior, and 0.13 and 0.02 for Normal prior, respectively. As516

per USACE ETL-1110-2-547 (USACE 1997), this performance level corresponds to Poor517

to Hazardous, which clearly emphasizes the efficacy of the probabilistic approach towards518

a more realistic reliability assessment of the considered MLCS.519

• Deterministic analysis for 30% slope points out the interface 𝑛𝑖 = 1 to be safe (𝐹𝑜𝑆 ≥1.5)520

for 30 m length of the slope (Yamsani et al. 2019); however, simulation results considering521

normal priors show that 𝑃 𝑓 for these two interfaces is as high as 0.5-0.7.522

• For the movement of a downward compacting vehicle, deterministic study concludes the523

interface 𝑛𝑖 = 1 to be safe (𝐹𝑜𝑆 ≥1.5) for V=0 m (Yamsani et al. 2019). In contrast, the524

current probabilistic framework considering normal priors shows that the 𝑛𝑖 = 1 interface525

has a mean 𝐹𝑜𝑆 <1.5 and 𝑃 𝑓 = 0.717, which pertains to a hazardous performance level of526

the considered MLCS as per as per USACE ETL-1110-2-547 (USACE 1997).527

• Considering all the destabilizing conditions, a probabilistic vulnerable interface diagram528
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(PVID) is developed for an anticipated worst-case scenario for the considered MLCS. The529

deterministic VID (Yamsani et al. 2019) considers both 𝑛𝑖 = 3 and 5 to be safe, but the530

currently developed probabilistic vulnerability interface diagram (PVID) suggests that a531

fraction of 𝐹𝑜𝑆 for 𝑛𝑖 = 3 also do not satisfy the stability criterion. PVID suggests that532

interfaces 𝑛𝑖 = 1, 2 and 𝑛𝑖 = 4 are the most vulnerable ones. In a nutshell, except for the533

bottom-most interface, all the other interfaces of the considered MLCS are susceptible to534

critical failure and would require necessary strength improvement.535
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TABLE 1. Shear strength parameters of considered geomaterials

Material types Cohesion Angle of internal friction
𝜙 (◦)

Red soil (R) 16.96 14.2
Bentonite (B) 14.34 6.2

Gravel (G) 0 29.5
Sand (S) 0 26.9

28 Choudhury, January 31, 2024



TABLE 2. Details of different interfaces in MLCS

Interface 𝑛𝑖
Upper

component
Unit weight,
𝛾 (kN/m3)

Lower
component

Interface friction angle,
𝛿 (◦)

Interfacial adhesion,
c (kPa)

1 Red soil 16.68 Geotextile 11.7 13.7
2 Geotextile 6.5 Gravel 9.1 0
3 Gravel 13.16 Sand 22.1 0
4 Sand 14.58 Geomembrane 16.7 0
5 Geomembrane 2.20 Bentonite 19.6 29.4
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TABLE 3. Parameters of the uniform and normal priors

Interface Uniform priors Normal priors
c v 𝜇𝑐 𝜎𝑐 𝜇𝑣 𝜎𝑣

Red soil-Geotextile (R-GT) [4, 16] [0.17, 0.24] 10 2 0.207 0.011
Geotextile-Gravel (GT-G) - [0.03, 0.3] - - 0.163 0.045

Gravel-Sand (G-S) - [0.32, 0.49] - - 0.409 0.029
Sand-Geomembrane (S-GM) - [0.14, 0.48] - - 0.308 0.058

Geomembrane-Bentonite (GM-B) [6, 28.5] [0.21, 0.51] 17.25 3.75 0.363 0.05
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TABLE 4. 𝑅2 obtained from probability plots

Interface Candidate
Distribution

Noninformative priors Informative priors
c(R2) v(R2) c(R2) v(R2)

Redsoil-Geotextile

Weibull 0.982 0.959 0.988 0.964
Normal 0.958 0.957 0.999 0.999

Lognormal 0.866 0.939 0.985 0.998
Gumbel 0.815 0.836 0.938 0.936

Geotextile-Gravel

Weibull - 0.979 - 0.977
Normal - 0.999 - 0.999

Lognormal - 0.993 - 0.995
Gumbel - 0.941 - 0.941

Gravel-Sand

Weibull - 0.944 - 0.965
Normal - 0.974 - 0.999

Lognormal - 0.969 - 0.998
Gumbel - 0.906 - 0.942

Sand-Geomembrane

Weibull - 0.986 - 0.973
Normal - 0.999 - 0.999

Lognormal - 0.988 - 0.996
Gumbel - 0.942 - 0.942

Geomembrane-Bentonite

Weibull 0.972 0.989 0.989 0.973
Normal 0.954 0.975 0.999 0.999

Lognormal 0.829 0.941 0.985 0.996
Gumbel 0.813 0.851 0.943 0.942

31 Choudhury, January 31, 2024



TABLE 5. 𝑅2 obtained from probability plots of FoS

Interface Candidate
Distribution

FoS (𝑅2) (Posteriors from
noninformative priors)

FoS (𝑅2) (Posteriors from
informative priors)

𝛽 = 5.7◦ 𝛽 = 11.3◦ 𝛽 = 16.7◦ 𝛽 = 5.7◦ 𝛽 = 11.3◦ 𝛽 = 16.7◦

Redsoil-Geotextile

Weibull 0.997 0.989 0.988 0.999 0.999 0.999
Normal 0.998 0.998 0.998 0.999 0.999 0.999

Lognormal 0.992 0.993 0.993 0.998 0.997 0.997
Gumbel 0.913 0.924 0.924 0.934 0.933 0.933

Geotextile-Gravel

Weibull 0.989 0.983 0.981 0.999 0.998 0.998
Normal 0.999 0.999 0.999 0.999 0.999 0.999

Lognormal 0.998 0.997 0.997 0.999 0.998 0.998
Gumbel 0.941 0.941 0.942 0.942 0.943 0.944

Gravel-Sand

Weibull 0.963 0.953 0.952 0.998 0.998 0.998
Normal 0.974 0.974 0.974 0.999 0.999 0.999

Lognormal 0.973 0.972 0.972 0.999 0.998 0.998
Gumbel 0.906 0.906 0.906 0.942 0.942 0.942

Sand-Geomembrane

Weibull 0.989 0.983 0.981 0.998 0.998 0.998
Normal 0.999 0.999 0.999 0.999 0.999 0.999

Lognormal 0.998 0.997 0.997 0.999 0.999 0.999
Gumbel 0.942 0.943 0.944 0.946 0.946 0.947

Geomembrane-Bentonite

Weibull 0.999 0.998 0.998 0.998 0.998 0.998
Normal 0.989 0.982 0.981 0.999 0.999 0.999

Lognormal 0.980 0.968 0.966 0.999 0.999 0.999
Gumbel 0.882 0.864 0.862 0.945 0.944 0.944
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TABLE 6. 𝑃 𝑓 , Mean 𝐹𝑜𝑆, 95𝑡ℎ, and 99𝑡ℎ percentile 𝐹𝑜𝑆 (noninformative priors) for varying
inclination of MLCS (30 m length of slope)

Inclination of MLCS Interface Yamsani et al 2019 Bayesian Linear Regression
𝐹𝑂𝑆 Mean 𝐹𝑂𝑆 95% quantile 99% quantile 𝑃 𝑓

𝑡𝑎𝑛𝛽 = 10%

R-GT 6.74 6.62 7.01 7.14 0
GT-G 4.66 4.67 4.98 5.10 0
G-S 6.22 6.19 6.93 7.03 0

S-GM 5.07 5.05 5.79 6.12 0
GM-B 8.27 8.49 9.16 9.17 0

𝑡𝑎𝑛𝛽 = 20%

R-GT 2.43 2.39 2.55 2.61 0
GT-G 1.62 1.59 1.75 1.81 0.15
G-S 2.45 2.39 2.76 2.82 0

S-GM 1.901 1.86 2.22 2.39 0.055
GM-B 3.15 3.28 3.61 3.70 0

𝑡𝑎𝑛𝛽 = 30%

R-GT 1.52 1.49 1.603 1.64 0.5055
GT-G 1.008 1.01 1.11 1.15 1
G-S 1.55 1.54 1.78 1.82 0.4201

S-GM 1.19 1.19 1.425 1.54 0.9811
GM-B 1.99 2.11 2.33 2.39 0

33 Choudhury, January 31, 2024



TABLE 7. 𝑃 𝑓 , Mean 𝐹𝑜𝑆, 95𝑡ℎ, and 99𝑡ℎ percentile 𝐹𝑜𝑆 (informative priors) for varying inclination
of MLCS (30 m length of slope)

Inclination of MLCS Interface Yamsani et al 2019 Bayesian Linear Regression
𝐹𝑂𝑆 Mean 𝐹𝑂𝑆 95% quantile 99% quantile 𝑃 𝑓

𝑡𝑎𝑛𝛽 = 10%

R-GT 6.74 6.51 6.8 6.94 0
GT-G 4.66 4.67 4.95 5.07 0
G-S 6.22 6.24 6.68 6.84 0

S-GM 5.07 5.08 5.68 5.94 0
GM-B 8.27 8.27 8.85 9.11 0

𝑡𝑎𝑛𝛽 = 20%

R-GT 2.43 2.35 2.46 2.52 0
GT-G 1.62 1.59 1.74 1.8 0.1305
G-S 2.45 2.42 2.64 2.72 0

S-GM 1.901 1.87 2.17 2.3 0.0188
GM-B 3.15 3.17 3.46 3.59 0

𝑡𝑎𝑛𝛽 = 30%

R-GT 1.52 1.47 1.55 1.58 0.7174
GT-G 1.008 1.01 1.103 1.14 1
G-S 1.55 1.55 1.69 1.75 0.2818

S-GM 1.19 1.19 1.39 1.48 0.9939
GM-B 1.99 2.04 2.23 2.31 0
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TABLE 8. 𝑃 𝑓 , Mean 𝐹𝑜𝑆, 95𝑡ℎ, and 99𝑡ℎ percentile 𝐹𝑜𝑆 (informative priors) for varying lengths
of MLCS (30% slope)

Length of MLCS Interface Yamsani et al 2019 Bayesian Linear Regression
𝐹𝑂𝑆 Mean 𝐹𝑂𝑆 95% quantile 99% quantile 𝑃 𝑓

L = 15 m

R-GT 2.72 2.59 2.73 2.79 0
GT-G 1.67 1.68 1.77 1.81 0
G-S 1.82 1.83 1.97 2.03 0

S-GM 1.46 1.46 1.66 1.75 0.629
GM-B 3.15 3.05 3.25 3.34 0

L = 30 m

R-GT 1.52 1.47 1.55 1.57 0.717
GT-G 1.0 1.01 1.1 1.14 1
G-S 1.55 1.55 1.69 1.76 0.281

S-GM 1.19 1.19 1.39 1.48 0.993
GM-B 2.0 2.04 2.23 2.31 0

L = 50 m

R-GT 1.16 1.14 1.19 1.22 1
GT-G 0.8 0.81 0.89 0.93 1
G-S 1.5 1.47 1.61 1.67 0.642

S-GM 1.11 1.11 1.31 1.4 0.999
GM-B 1.64 1.73 1.93 2.01 0.027
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Fig. 1. Schematic of MLCS.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Trace plots of red soil-geotextile interface (n = 1) characteristics (a) 𝑐, (b) 𝑣 along the length
of MCMC chain along with best-fit probability plots of posteriors for (c) 𝑐, (d) 𝑣, and marginal
density plots of posteriors for (e) 𝑐, (f) 𝑣 considering uniform priors.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. FoS distribution for interfaces (n = 1 to 5) after sampling posteriors obtained from MCMC:
when priors are uniform considering (a) 10% (c) 20% (e) 30% slope inclination; when priors are
normal considering (b) 10% (d) 20% (f) 30% slope inclination for L = 30 m.
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(a) (b)

Fig. 4. Mean FoS of MLCS with change in (a) slope after sampling posteriors from MCMC when
priors are uniform (b) length after sampling posteriors from MCMC when priors are normal.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. FoS distribution for interfaces (n = 1 to 5) after sampling posteriors obtained from MCMC:
when priors are uniform considering V (a) 0 m (c) Transition point (e) 6 m (g) 12 m.; when priors
are normal considering V (b) 0 m (d) Transition point (f) 6 m (h) 12 m.
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Fig. 6. Mean FoS of MLCS with change in vertical position of vehicle descending the slope after
sampling posteriors from MCMC when priors are normal.
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Fig. 7. Probabilistic vulnerable interface diagram for MLCS considering Normal priors.
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(a) (b)

(c)

Fig. 8. FoS distribution for interfaces (n = 1 to 5) after sampling 𝑐, 𝑣 directly from the normal
distribution considering (a) 30% slope (b) 50 m length of slope and (c) V = 12m.
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