Experimental Investigation of Dynamic Properties of Cohesionless Soil through Cyclic Triaxial Tests

Dr. Arindam Dey
Associate Professor
Department of Civil Engineering
IIT Guwahati, India

Outline of the Presentation

- Introduction
- Equipment and Instrumentations
- Cyclic Triaxial Shear Tests: Dynamic Properties
- Cyclic Triaxial Shear Tests: Liquefaction Evaluation
- Seismic Ground Response Analysis (GRA)
- Conclusions
Introduction

- Damages during earthquakes
 - Ground deformation
 - Foundation failure of building, dam, bridges
 - Ground failure due to liquefaction
 - Occurrence of landslides (in hilly area)
 » For most of damages, dynamic response of soils is the governing factor

Dynamic Properties of Soil

- Soil is a three-phase material
 - Interaction of phases under applied static/cyclic load
 - Low strain and deformations/displacements
 » Wave propagation through soils (Geophysics)
 - Large strain and deformations/displacements
 » Loss of strength and stability of soil mass (Liquefaction, Landslides)
Dynamic Properties of Soil

- **Shear modulus**
 - Modulus of rigidity
 - *Shear stiffness of material*

- **Damping ratio**
 - Rate of decay of oscillation of seismic wave
 - *Dissipation of energy*

- **Liquefaction parameters**
 - Cyclic Stress Ratio (CSR) and Pore Pressure Ratio
 - *Liquefaction phenomenon*
 - Reduction in shear strength of soil under undrained shearing
 - Increase in pore pressure and a consequent reduction in effective stress

Phenomenon at Low and High Strain Levels

- **Low strain level**
 - Higher soil stiffness
 - Low damping ratio
 - Linear stress-strain behaviour of soil

- **High strain level**
 - Non-linear stress-strain behaviour of soil
 - High damping ratio
 - Significant volume change
Evaluation of Dynamic Properties of Soil

Field Tests

Low strain (< 0.01%)
- Seismic reflection
- Seismic refraction
- Steady-state vibration
- Spectral and Multichannel analysis of surface waves (SASW and MASW)
- Seismic borehole survey (cross-hole, down-hole and up-hole)
- Seismic cone tests

High strain (> 0.01%)
- Standard penetration test
- Cone penetration test
- Dilatometer test
- Pressuremeter test

Laboratory Tests

Low strain (< 0.01%)
- Resonant column test
- Ultrasonic pulse test
- Piezoelectric bender element test

High strain (> 0.01%)
- Cyclic triaxial test
- Cyclic direct shear test
- Cyclic torsional shear test

Model (Physical) Tests
- Shake table test
- Centrifuge test

Kramer (1996)
Cyclic Triaxial Equipment and Instrumentation

- Triaxial frame
 - Capacity – 100 kN
 - Pneumatic dynamic actuator
 - Different types of dynamic loading
 » Harmonic, Triangular, Haversine
 » Any user-defined random seismic motions
 - Different deformation rates
 » 10^{-5} - 10 mm/min
 - Base pedestal
 » 38 mm × 76 mm
 » 50 mm × 100 mm
 » 70 mm × 140 mm
Cyclic Triaxial Equipment and Instrumentation

- Triaxial cell
 - Confining pressure capacity – 2000 kPa
 - Air bleed valve at the top to apply vacuum or suction
 - *Maintain proper connection between submersible load cell and top cap*
 - Load-cell ram moves up and down during cyclic loading
 - *Connects the load-cell ram with the top plate*

- Dynamic actuator
 - Displacement capacity: 30 mm
 - Operational frequency range: 0.01-10 Hz
- Submersible load cell connected with ram-locking collar
 - Capacity: 25 kN
Cyclic Triaxial Equipment and Instrumentation

- **Air-water cylinder (AWC) units**
 - Pneumatic pressure converted to hydraulic pressure
 - One each for cell pressure and back pressure application
 - Capacity: 1000 kPa

- **Automatic volume change (AVC) unit**
 - Measurement of volume change via volume of water flowing out of the soil specimen
 - Solenoid valves for automatic control of flow direction

- **Pressure transducers**
 - Pore pressure
 - Cell pressure
 - Back pressure
 - **Capacity: 1000 kPa**

- **Dry air receiver unit**
 - Interface between air coming from a compressor and transmitted to servo-valves

- **Compact dynamic controller (CDC) unit**
 - Operational hub
 - Interface between the hardware and DYNATRIAX software
Cyclic Triaxial Equipment and Instrumentation

- On-sample transducers (LVDTs)
 - Measurement of local strains
 - Central region free from boundary effects
 - Water submersible transducers: Least count = 0.001 mm
 - Measuring capacity of both axial and radial deformations: 0-10 mm
 - Working pressure range: 0-3.4 MPa
 - Working temperature range: -20°C to +125°C

Methodology: Sample Preparation

- Sample preparation by dry pluviation technique
 - Height = 140 mm and diameter = 70 mm test specimens
- Saturation stage
 - Flushed CO₂ and de-aired water from bottom of the specimens
 - Alternatively increase CP and BP, maintain a constant difference of 10 kPa
 » Saturation stage terminated when B (Skempton’s parameter) ≥ 0.98
- Consolidation stage
 - Isotropic consolidation to achieve desired effective confining stress (σ'c) to be applied on the specimen
- Shearing stage
 - Cyclic shear (strain-controlled and stress-controlled)
Methodology: Shearing

- Shearing stages
 - Cyclic shear
 - Regular excitations
 - Strain-controlled cyclic tests on DBS and SBS
 - Stress-controlled cyclic tests on SBS
 - Irregular excitations
 - Stress-controlled cyclic tests on SBS
 - Bhuj, Tezpur and Kobe earthquake motions

*SBS – Saturated Brahmaputra Sand
*DBS – Dry Brahmaputra Sand

Waveform of Cyclic Shearing: Regular Loading

- Regular seismic excitations
 - Strain-controlled approach
 - Peak shear strain (γ) ranging from 0.015%-7% was chosen for cyclic strain approach
 - Stress-controlled approach
 - Cyclic stress ratio (CSR=σd/2σ'c) ranging from 0.05-0.4 was chosen for cyclic stress approach
Waveform of Cyclic Shearing: Irregular Loading

- Irregular seismic excitations
 - Stress-controlled approach
 \[\tau = \frac{\text{acc}(g)}{g} \times \sigma \times r_d \] (Seed and Idriss, 1971)
 \[r_d = 1.0 - 0.00765z; \text{ for } z \leq 9.15 \text{ m}; \text{ (Youd et al., 2001)} \]
 \[r_d = 1.174 - 0.0267z; \text{ for } 9.15 \leq z \leq 23 \text{ m}; \text{ (Youd et al., 2001)} \]
 \[\sigma_d = 2 \times \tau = 2 \times \frac{\text{acc}(g)}{g} \times \sigma \times r_d \]

Brahmaputra Sand

- Cohesionless soil (BS)
 - \(G = 2.7 \)
 - \(C_u = 1.47 \)
 - \(C_c = 1.09 \)
 - \(\gamma_d,_{\text{max}} = 16.84 \text{ kN/m}^3 \)
 - \(\gamma_d,_{\text{min}} = 13.85 \text{ kN/m}^3 \)
 - SP (Poorly graded sand)
 - Potentially liquefiable
Scope of the Experimental Investigation

- Evaluation of dynamic response of Brahmaputra sand
 - Dynamic properties
 - Liquefaction parameters
- Experimental investigations
 - Different testing conditions
 - Relative density (D_r)
 - Effective confining stress (σ'_c)
 - Shear strain amplitudes (γ) including high cyclic strains
 - Cyclic stress amplitudes (Cyclic stress ratio, CSR)
 - Strain-controlled and stress-controlled loading
 - Regular and irregular excitations
- Application of evaluated properties for 1-D Equivalent linear GRA analysis of Guwahati city

<table>
<thead>
<tr>
<th>Soil</th>
<th>D_r (%)</th>
<th>σ'_c (kPa)</th>
<th>f (Hz)</th>
<th>γ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBS</td>
<td>50</td>
<td>0.015, 0.045, 0.075, 0.15, 0.30, 0.45, 0.60, 0.75, 1.0, 1.5, 3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.045, 0.075, 0.15, 0.30, 0.45, 0.60, 0.75, 1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>0.045, 0.075, 0.15, 0.30, 0.45, 0.60, 0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>0.045, 0.075, 0.15, 0.30, 0.45, 0.60, 0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.15, 0.60, 1.0, 1.5, 3.0, 4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>0.15, 0.60, 1.0, 1.5, 3.0, 4.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Cyclic shear test: Strain-controlled tests

- Cyclic shear test: stress-controlled tests

<table>
<thead>
<tr>
<th>Soil</th>
<th>D_r (%)</th>
<th>σ'_c (kPa)</th>
<th>f (Hz)</th>
<th>CSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBS</td>
<td>30, 60, 90</td>
<td>50, 100, 200</td>
<td>1</td>
<td>0.05, 0.1, 0.2, 0.3</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>100</td>
<td>0.1, 0.5, 1, 2, 4</td>
<td>0.1, 0.2, 0.3, 0.4</td>
</tr>
</tbody>
</table>
Test Parameters

- Cyclic shear test: irregular excitations

<table>
<thead>
<tr>
<th>Soil</th>
<th>Irregular excitation</th>
<th>PGA (g)</th>
<th>Relative density, D_r (%)</th>
<th>Confining depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bhuj</td>
<td>0.103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tezpur</td>
<td>0.360</td>
<td>30</td>
<td></td>
<td>5, 10, 15</td>
</tr>
<tr>
<td>Kobe</td>
<td>0.834</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bhuj</td>
<td>0.103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tezpur</td>
<td>0.360</td>
<td>30, 60, 90</td>
<td></td>
<td>10, 15</td>
</tr>
<tr>
<td>Kobe</td>
<td>0.834</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bhuj</td>
<td>0.103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tezpur</td>
<td>0.360</td>
<td>60</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Kobe</td>
<td>0.360</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input and Output for Cyclic Loading

- Strain- and Stress-controlled regular loading
 - Strain is constant whereas, deviator stress and excess PWP changes
 - Stress is constant whereas, both strain and excess PWP changes
 - Stress, strain and excess PWP changes during entire period of shaking
Hysteresis during Cyclic Loading

- Typical hysteresis loops during regular and irregular cyclic loading

- Hysteresis loops during strain-controlled tests at different shear strains

- With the increase of shear strain the loops becomes gradually asymmetric
 - $\gamma \geq 0.15\%$
- Hysteresis loop is used to evaluate the dynamic properties of soils

Shear Modulus

- Hysteresis loop and Backbone curve
 - Effect of cyclic shear strain amplitude on shear modulus
 - **Backbone/Skeleton curve**: Line joining the peak shear stress at each cycle of shear strain corresponding to the cyclic strain amplitude of each cycle
 - **Secant shear modulus**: Line joining the origin and various points of the backbone curve
Shear Modulus Degradation Curve

- Secant shear modulus and Backbone curve
 - Varies with cyclic shear strain amplitude
 - Low strain amplitude
 - G_{sec} is high
 - G_{sec} reduces with the increase in the strain amplitude
 - Slope at the origin of backbone curve
 - Largest value of G_{sec}
 - Referred as Maximum Shear Modulus (G_{max})
 - Modulus ratio ($G_{\text{sec}}/G_{\text{max}}$)
 - $G_{\text{sec}}/G_{\text{max}} = 1$ at $\gamma_c = 0$
 - Modulus ratio decreases at higher cyclic shear strain amplitudes

- Modulus reduction curve
 - Describes the degradation of shear modulus with the increase in the cyclic shear strain amplitude

Damping Ratio

- Symmetrical Hysteresis Loop (SHL) is conventionally used to evaluate the dynamic properties
 - Damping ratio is evaluated from the stored energy in 1st quadrant
- For Asymmetrical Hysteresis Loop (ASHL), since the stored energy is not equal in all quadrants, damping ratio based on SHL methodology will be inaccurate
 - ASHL methodology is used for proper estimation of dynamic properties
Shear Modulus of SBS: Strain Controlled Regular Cyclic Loading

- Shear modulus i.e. G and G_a based on the SHL and ASHL, respectively, are nearly same for $N = 1$
- Shear modulus (G) increases with the increase of confining pressure σ'_c

Modulus Reduction and Damping Ratio of SBS

- Chung et al. (1984) correlation was used to evaluate G_{max}
 \[
 G_{\text{max}} \text{(kPa)} = 523 \left(\frac{\text{OCR}}{0.3 + 0.7\sigma'} \right) P_a^{0.32} \left(\frac{\sigma'_c}{\sigma'} \right)^{0.8}
 \]
- Average values of D^b (based on ASHL) exceeds D (based on SHL) by 40-70%
 - Modified method (ASHL methodology) is proposed to estimate the dynamic properties
Modulus Reduction and Damping Ratio of DBS & SBS

- Slope of hysteresis loops for SBS decreases with the increase of number of loading cycles
 - *Due to the generation of pore water pressure*
- Slope of hysteresis loops for DBS increases with the increase of number of loading cycles
 - *Due to densification of soil specimen*

Shear modulus of SBS & DBS is not affected by saturation for $N = 1$

- Damping ratio of SBS & DBS (based on ASHL) affected significantly by saturation for $N = 1$ for shear strain > 0.5
 - For DBS, D^s (based on ASHL) exceeds D (based on SHL) by 5-70% within the shear strain range 0.045-7%
Modulus Reduction and Damping Ratio of DBS & SBS

- Influence of loading frequency

- 40 loading cycles were applied
 - At CSR = 0.1, the D and D# are same, possibility of symmetrical hysteresis
 - At CSR = 0.2, D and D# are same up to γ = 0.3%, and then D marginally increased from D#
 - Degradation in damping ratio γ > 1.0%, similar to the strain-controlled loading
Cyclic Triaxial Equipment and Instrumentation

- On-sample transducers (LVDTs)
 - Measurement of local strains
 - Central region free from boundary effects
 - Water submersible transducers: Least count = 0.001 mm
 - Measuring capacity of both axial and radial deformations: 0-10 mm
 - Working pressure range: 0-3.4 MPa
 - Working temperature range: -20°C to +125°C

Shear Modulus based on Local Strains

<table>
<thead>
<tr>
<th>Shear modulus (G, MPa)</th>
<th>Present study</th>
<th>From literatures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G (based on External LVDT, γ = 0.045%)</td>
<td>Chung et al. (1984)</td>
</tr>
<tr>
<td>σ' (kPa)</td>
<td>50 90 100 150</td>
<td>50 67 69 94 84 114</td>
</tr>
<tr>
<td>D_r (%)</td>
<td>30 90 30 90 30 90</td>
<td>-</td>
</tr>
</tbody>
</table>

- Shear modulus obtained from the on-sample LVDT at high cyclic strains (>0.04%) are in close agreement to that obtained from external LVDT
- On-sample transducers measure the strains from lower to higher (3×10^{-3}% to 5%)
Factors Influencing Dynamic Characteristics

- From the investigations, it is observed that the dynamic properties of cohesionless soils significantly influenced by
 - Cyclic strain amplitude
 - Relative density
 - Frequency of loading cycle
 - Effective confining pressure
 - Number of loading cycles

Liquefaction

- Liquefaction
 - Phenomenon at which shear strength decreases
 - Effective stress (σ') = total stress (σ) – pore pressure (u)

- Types of Liquefaction
 - Based on soil nature and shear stress condition
 - Flow liquefaction or flow failure
 - Phenomenon mostly observed in coarse-grained silty soils
 - Cyclic mobility or strain softening
 - Phenomenon mostly observed in fine-grained soils
Initiation of Liquefaction

• Initial liquefaction (Seed and Lee, 1966)
 - Phenomena at which the increase in pore pressure is equal to the initial effective confining pressure ($u/\sigma_3 = 1$)
 - Liquefaction can be expected at depths where the loading exceeds the resistance.

• Evaluation of liquefaction potential
 - Cyclic stress approach
 - Cyclic strain approach

Evaluation of Liquefaction Potential

• Cyclic Stress Approach (Seed and Idriss, 1971)
 - Earthquake-induced loading expressed in terms of cyclic shear stresses
 - Compared with the liquefaction resistance of the soil

 - Cyclic shear stress: $\tau_{cy} = 0.65 \tau_{max}$
 - $\tau_{max} = \frac{a_{max}}{\gamma} \sigma_v r_d$
 - a_{max} = peak acceleration of seismic wave (in g)
 - σ_v = total vertical stress
 - r_d = stress reduction factor
Evaluation of Liquefaction Potential

- Cyclic Strain Approach (Dobry et al. 1982)
 - Earthquake-induced loading is expressed in terms of cyclic strain
 - Cyclic strain \(\gamma_{cyc} = 0.65 \frac{\sigma_{max}}{g} \frac{\sigma_{v'd}}{g\gamma_{v'v}} \)

- Cyclic strength (i.e. resistance to liquefaction) is expressed in term of cyclic stress ratio (CSR)
 - CSR_{field} = \frac{\sigma_{v'}}{\sigma_{v}}
 - CSR_{triaxial} = \frac{\sigma_{a}}{2\sigma_{v'}}
 - CSR_{field} = 0.9 (CSR_{triaxial})

Cyclic Shear Tests: Liquefaction Potential Evaluation

- Strain-controlled tests on SBS subjected to regular excitations
- Stress-controlled tests on SBS subjected to regular excitations
- Stress-controlled tests on SBS subjected to irregular excitation using Bhuj, Tezpur and Kobe earthquake motions
Regular Excitations (Strain-Controlled): SBS

- Variation of \(r_u \) at different \(\gamma, \sigma_c' \) and \(D_r \)

- \(r_u \) significantly affected by \(N, \gamma \) and \(\sigma_c' \) whereas, negligibly by \(D_r \) (for \(N = 1 \))

- Liquefaction resistance decreases with increase of \(N \) and \(\gamma \), whereas, increases with the increase of \(\sigma_c' \) and \(D_r \)

- Decrease in liquefaction resistance indicate increase in liquefaction potential, and vice-versa

Regular Excitations (Stress-Controlled): SBS

- Variation of \(r_u \) and \(\gamma \) with loading cycles at different \(D_r \)

- Liquefaction resistance increases with increase in \(D_r \)

<table>
<thead>
<tr>
<th>CSR ()</th>
<th>(D_r) (%)</th>
<th>(\sigma_c') (kPa)</th>
<th>(N) for liquefaction</th>
<th>(\gamma_{max}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05, 0.1, 0.2, 0.3</td>
<td>30</td>
<td>50</td>
<td>NL, NL, 10, 2</td>
<td>0.02, 0.02, 0.5, 1.4</td>
</tr>
<tr>
<td>0.05, 0.1, 0.2, 0.3</td>
<td>60</td>
<td>50</td>
<td>NL, NL, 30, 3</td>
<td>0.02, 0.02, 1.0, 1.0</td>
</tr>
<tr>
<td>0.05, 0.1, 0.2, 0.3</td>
<td>90</td>
<td>50</td>
<td>NL, NL, 50, 10</td>
<td>0.02, 0.02, 1.0, 1.0</td>
</tr>
</tbody>
</table>
Irregular Excitations (Stress-Controlled): SBS

- Effect of σ'_u

<table>
<thead>
<tr>
<th>Input motion</th>
<th>σ'_u (kPa)</th>
<th>D_r (%)</th>
<th>CSR$_{max}$</th>
<th>τ_{max} (%)</th>
<th>τ_{max} (kPa)</th>
<th>G (MPa)</th>
<th>Excess PWP ratio (r_u)</th>
<th>Liquefaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bhuj (0.36g)</td>
<td>50</td>
<td>0.097</td>
<td>0.01</td>
<td>4.85</td>
<td>48.50</td>
<td>0.05</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.092</td>
<td>0.03</td>
<td>9.2</td>
<td>30.67</td>
<td>0.13</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>0.078</td>
<td>0.03</td>
<td>11.7</td>
<td>39.00</td>
<td>0.13</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Tezpur (0.35g)</td>
<td>50</td>
<td>0.346</td>
<td>0.06</td>
<td>17.3</td>
<td>28.34</td>
<td>0.25</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.327</td>
<td>0.70</td>
<td>32.7</td>
<td>4.67</td>
<td>1.00</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>0.278</td>
<td>1.80</td>
<td>41.7</td>
<td>2.32</td>
<td>1.00</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Kobe (0.834g)</td>
<td>50</td>
<td>0.862</td>
<td>3.00</td>
<td>46.1</td>
<td>0.50</td>
<td>2.00</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.756</td>
<td>15.0</td>
<td>75.6</td>
<td>0.50</td>
<td>2.00</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>0.645</td>
<td>18.0</td>
<td>96.7</td>
<td>0.54</td>
<td>2.00</td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

Dynamic Response under Irregular Excitations

- Hysteresis loops during irregular loading are highly irregular/asymmetrical
- Random values of γ from 0.001% to 5% was chosen
- Shear modulus was evaluated from the shear stress corresponding to these γ
- r_u values corresponding to γ from 0.001% to 5%
Optimum Magnitudes for Liquefaction Initiation in Saturated Cohesionless Soils

- BS ($D_r = 30\%-90\%$) liquefy under the following optimum conditions:
 - PGA $\geq 0.36g$, CSR ≥ 0.3 and $\gamma_{max} > 0.5\%$
- Limiting value of $\gamma = 0.5\%$ is to be adopted for liquefaction evaluation study for cohesionless soil at loose condition
- Limiting value of $\gamma = 1.0\%$ is to be adopted for liquefaction study for cohesionless soil at dense condition

<table>
<thead>
<tr>
<th>Field or laboratory cycle building condition</th>
<th>Soil type</th>
<th>Supporting data</th>
<th>References and figures in this paper</th>
<th>Cycle shear strain needed to trigger liquefaction, $\gamma_{max} (%)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean and sandy soils</td>
<td>Clean and sandy soils</td>
<td>Dobry et al. (2015), Dobry et al. (2015)</td>
<td>0.5 or 1.0</td>
<td></td>
</tr>
</tbody>
</table>

Ground Response Analysis

- Evaluation of ground response
 - Predict ground surface motions for evaluation of design ground response spectra
 - Evaluate dynamic stresses and strains for evaluation of liquefaction hazards
 - Determine earthquake induced forces that lead to instability of earth and earth-retaining structures

- Types of Ground Response Analysis
 - Linear, Equivalent linear or Nonlinear
 - 1-D, 2-D or 3D
 - Total stress GRA or Effective Stress GRA

One-Dimensional Ground Response Analysis

- Basic mechanism
 - Body waves generated by the fault mechanism undergoes multiple refraction through low-velocity shallow layers
 - Strike the shallow layers in near vertical orientation
- Basic assumptions
 - All boundaries are horizontal and infinitely extended
 - Response of the soil is primarily due to the vertically propagating SH-waves travelling from the bedrock

Ground Response Analysis

- Evaluate dynamic properties of soil
- Input: dynamic properties
- Soil Layer n
- Soil Layer n-1
- Half-Space Layer
- Apply motion at base layer
- Output: acceleration
- Output: response spectrum
- Output: Fourier amplitude ratio
- Iteration procedure: Analysis
- Ordonez (2011)
Ground Response Analysis

• Methodology
 ➢ DEEPSOIL: A computer program
 ❖ One-dimensional equivalent linear approach
 ❖ Based on the solution of wave motion through Fast Fourier Transformation Algorithm
 » Consider the response associated with vertical propagation of shear waves through the linear viscoelastic system
 ❖ Account nonlinear dynamic soil properties for the use of equivalent linear analysis through an iterative procedure
 » Iterative procedure: for the evaluation of modulus and damping compatible with the effective strains generated in each layer
 • Limitation: incapable to represent the actual change in soil stiffness during earthquake

Study Region: Ground Response Analysis

• Guwahati city (North-East India) situated at 26.18°N & 91.75°E
 ➢ Several tectonic faults (Raghukanth and Dash, 2010)
 ❖ As per IS:1893-2002
 » Design PGA for Maximum Considered Earthquake (MCE) is 0.36g
 » Design PGA for Design Basis Earthquake (DBE) is 0.18g
Input Parameters

- Boreholes – Four typical borehole profiles
- Material properties
 - Evaluated (experimentally)
 - For both Sand and Clay
 - Existing (from literature)
 - Seed and Idriss (SI) (1970) - Sand
 - Vucetic and Dobry (VD) (1991) - Clay
- Three strong motions
 - Bhuj motion (0.103g), Tezpur motion (0.36g) & Kobe motion (0.834g)

Material properties

- Evaluated (experimentally)
 - For both Sand and Clay
- Existing (from literature)
 - Seed and Idriss (SI) (1970) - Sand
 - Vucetic and Dobry (VD) (1991) - Clay

Three strong motions

- Bhuj motion (0.103g), Tezpur motion (0.36g) & Kobe motion (0.834g)

Response of Soil Profile due to Bhuj Motion

- Experimental data shows significantly higher values near ground surface, compared to VD-SI model
 - Deamplification in acceleration was observed with experimental data, when a strong motion encounters a loose stratum
- Significant higher strain observed near soft layer with present dynamic model
 - Due to the degradation behavior of damping ratio of soil
 - Possibility of liquefaction or cyclic mobility
 - γ > 0.5%, as per previous results on liquefaction studies
Response of Soil Profile due to Bhuj Motion

- Amplification ratio, at BRGN and STGN site, showed 30-40% difference based on Experimental and VD-SI models.

- Amplification and deamplification of strong motion also depend on the damping behavior of soil.

PGA Contours based on Bhuj Motion

- Based on Experimental soil model
- Based on VD-SI soil model
Typical Response of Soil Profile

Comparison of percentage difference in PGA, PSA and FAR obtained using VD-SI and Experimental data for GRA Guwahati city using Bhuj, Tezpur and Kobe motions

<table>
<thead>
<tr>
<th>Earthquake</th>
<th>Average value</th>
<th>Experimental model</th>
<th>VD-SI model</th>
<th>Difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bhuj</td>
<td>0.27</td>
<td>0.287</td>
<td>6.29</td>
<td></td>
</tr>
<tr>
<td>Tezpur</td>
<td>0.45</td>
<td>0.437</td>
<td>2.97</td>
<td></td>
</tr>
<tr>
<td>Kobe</td>
<td>0.75</td>
<td>1.039</td>
<td>38.53</td>
<td></td>
</tr>
<tr>
<td>Bhuj</td>
<td>6.58</td>
<td>6.389</td>
<td>2.99</td>
<td></td>
</tr>
<tr>
<td>Tezpur</td>
<td>6.85</td>
<td>6.336</td>
<td>8.11</td>
<td></td>
</tr>
<tr>
<td>Kobe</td>
<td>4.16</td>
<td>3.202</td>
<td>29.92</td>
<td></td>
</tr>
<tr>
<td>Bhuj</td>
<td>1.32</td>
<td>1.358</td>
<td>2.88</td>
<td></td>
</tr>
<tr>
<td>Tezpur</td>
<td>1.79</td>
<td>1.673</td>
<td>6.99</td>
<td></td>
</tr>
<tr>
<td>Kobe</td>
<td>2.60</td>
<td>3.228</td>
<td>24.15</td>
<td></td>
</tr>
</tbody>
</table>

Summary and Final Remarks

- Cyclic Triaxial Tests provides a comprehensive understanding of the dynamic response of soils and estimation of dynamic properties
 - Strain dependent shear modulus
 - Strain dependent damping
 - Liquefaction parameters and potential

- New insight into the estimation of damping ratio (D, D^#) from asymmetric hysteresis loops developed at high cyclic strains
 - D (SHL) decreases beyond γ ≈ 0.5%, while D^# (ASHL) decreases beyond γ ≈ 1%
 - For SBS, D^# (ASHL) exceeds D (SHL) by 40-70% within a shear strain range 0.015-4.5%
 - For DBS, D^# exceeds D by 5-70% within a shear strain range 0.045-7%

- Application of on-sample transducers provide immense scope to ascertain the dynamic properties over a wide strain range from a single test (3×10^{-3} – 7 %)
 - Not possible to achieve by simply using conventional external transducers
Summary and Final Remarks

- Development of guidelines for liquefaction initiation and address liquefaction potential of cohesionless soil
 - *Brahmaputra Sand* ($D_r = 30-90\%$) liquefies under the following optimum conditions:
 - $PGA \geq 0.36g$, $CSR \geq 0.3$ and $\gamma_{\text{max}} > 0.5\%$
 - Limiting value of $\gamma = 0.5\%$ should be adopted for liquefaction evaluation study of loose cohesionless specimens
 - Limiting value of $\gamma = 1.0\%$ should be adopted for liquefaction study of dense cohesionless specimens

- Seismic ground response analysis
 - Degradation of damping ratio at high shear strains ($\gamma > 0.8\%$) significantly affects the ground response analysis, especially when a strong motion encounters a loose stratum
 - Use of regional dynamic soil properties is highly recommended for proper estimation of ground response under different degrees of shaking

Acknowledgments

Dr. Shiv Shankar Kumar
Assistant Professor
KIIT University, Odisha

Dr. A. Murali Krishna
Associate Professor
IIT Tirupati, Andhra Pradesh
Selected Publications

Further Interaction

- http://www.iitg.ac.in/arindam.dey/homepage/index.html

- https://www.researchgate.net/profile/Arindam_Dey11
Thank You for Patient Hearing