Analog & Digital Electronics Course No: PH-218

BJT Lec-6: I-V characteristics and Ebers-Moll Model

Course Instructors:

Dr. A. P. VAJPEYI

Department of Physics, Indian Institute of Technology Guwahati, India

I-V Characteristics of BJT under common base configuration

 \succ Input characteristics are like a normal forward biased diode.

>As the CB junction is reverse biased, the current I_C is independent of collector voltage and depends only upon the emitter current I_E . The collector current is almost constant and work as a current source.

>When $I_E=0$, $I_C=I_{CB0}$ is the leakage current caused by the minority carriers crossing the pn-junction.

$$I_C = \alpha I_E + I_{CB0}$$

I-V Characteristics of BJT common emitter configuration

 \succ Input characteristics are like a normal forward biased diode.

>As the CE junction is reverse biased, the current I_C is independent of collector voltage and depends only upon the base current I_B .

➤ In real diode, the collector current slightly increases with increase in collector emitter voltage(Early effect).

> At low value of V_{CE} , the CBJ becomes forward-biased and the transistor enters the saturation region.

Early Effect (Base width modulation)

Observed by James Early

$$I_{C} = I_{s} e^{\left(\frac{eV_{BE}}{kT}\right)} \left[1 + \frac{V_{CE}}{V_{A}}\right]$$

 V_A is called the Early voltage and ranges from about 50 V to 100 V.

Early effect can be modeled as

Base punch through

 \succ if reverse bias voltage of C-B junction is keep on increasing, a situation arises where E-B and C-B space charge regions touch each other, and the width of the quasi-neutral base region becomes zero, Known as base punch through.

> Any increase in V_{CB} beyond the punch-through point lowers the E-B potential barrier and allows a large injection of carriers from the emitter directly into the collector.

> If punch-through occurs, the maximum voltage (V_{CB0} or V_{CE0}) that can be applied to a BJT is limited.

DC Load Line Analysis

Application of KVL in output (CE)circuit: $V_{CE} = V_{CC} - I_C R_C$; is called Load line equation. When $I_C = 0$, $V_{CE} = V_{CC}$; When $V_{CE} = 0$, $I_C = V_{CC}/R_C$

> The operating point Q (V_{CEQ} , I_{CEQ}) is determined by finding the intersection point of load line and BJT output characteristics for a particular value of base current.

> The Ebers-Moll (EM) model is a large-signal model for BJT. It relates the transistor d.c terminal currents to voltages.

> EM model is low frequency (static) model based on the fact that BJT is composed of two pn junctions – EB and CB junction.

Therefore terminal currents of BJT can be expressed as a superposition of the currents due to the two pn junctions.

7

BJT with input ac signal

$$i_{B} = I_{B} + I_{b}$$
$$i_{E} = I_{E} + i_{e}$$
$$i_{C} = I_{C} + i_{c}$$

 I_B , I_C , I_E - D.C. currents I_b , i_c , i_e - A.C. currents i_B , i_C , i_E - D.C + A.C. currents

Similarly, V_{BE} , V_{CE} – D.C. Voltages v_{be} , v_{ce} – A.C.Voltages v_{BE} , v_{CE} – D.C+ A.C Voltages

Biasing schemes for BJT

Biasing refers to the application of D.C. voltages to setup the operating point in such a way that output signal is undistorted throughout the whole operation.

 \succ Also once selected properly, the Q point should not shift because of change of I_c due to

(i) β variation(ii) Temperature variation

Different biasing schemes

(i) Fixed bias (base resistor biasing)
(ii) Collector base bias
(iii) Emitter bias
(iv) Voltage divider bias

$$I_E = I_{DE} - \alpha_R I_{DC}$$
$$I_C = -I_{DC} + \alpha_F I_{DC}$$
$$I_B = (1 - \alpha_F) I_{DE} + (1 - \alpha_R) I_{DC}$$

$$I_{E} = \frac{I_{S}}{\alpha_{F}} (e^{\frac{V_{BE}}{V_{T}}} - 1) - I_{S} (e^{\frac{V_{BC}}{V_{T}}} - 1)$$
$$I_{C} = I_{S} (e^{\frac{V_{BE}}{V_{T}}} - 1) - \frac{I_{S}}{\alpha_{R}} (e^{\frac{V_{BC}}{V_{T}}} - 1)$$