Analog & Digital Electronics Course No: PH-218

Lec-5: Bipolar Junction Transistor (BJT)

Course Instructors:

Dr. A. P. VAJPEYI

Department of Physics, Indian Institute of Technology Guwahati, India

Bipolar Junction Transistor (BJT)

- Beside diodes, the most popular semiconductor devices is transistors. Eg: Bipolar Junction Transistor (BJT)
- Few most important applications of transistor are: as an amplifier as an oscillator and as a switch
- Amplification can make weak signal strong in general, provide function called Gain
- BJT is bipolar because both holes (+) and electrons (-) will take part in the current flow through the device
 - N-type regions contains free electrons (negative carriers)
 - P-type regions contains free holes (positive carriers)

Bipolar Junction Transistor (BJT)

npnTransistor

pnpTransistor

a 3 terminal device. namely- emitter, base and collector

> npn transistor: emitter & collector are n-doped and base is p-doped.

heavily doped, collector is moderately doped and base is lightly doped and base is very thin. i.e. $N_{DE} >> N_{DC} >> N_{AB}$

Mode of operation for BJT

Mode	V _{BE}	V _{BC}	
Forward active	Forward bias	Reverse Bias	
Reverse active	Reverse Bias	Forward Bias	
Saturation	Forward bias	ward bias Forward bias	
Cut off	Reverse Bias	Reverse Bias	

> Forward active region is widely used and Reverse active region is rarely used.

Different configuration of BJT

Common base configuration

Non-inverting voltage amplifier circuit

Common emitter configuration

Common collector configuration

This type of configuration is commonly known as a **Voltage Follower** or **Emitter Follower** circuit.

Summary of BJT characteristics for different configuration

Characteristic	Common Base	Common Emitter	Common Collector
Input impedance	Low	Medium	High
Output impedance	Very High	High	Low
Phase Angle	0 °	180°	0°
Voltage Gain	High	Medium	Low
Current Gain	Low	Medium	High
Power Gain	Low	Very High	Medium

➤The CB mode is generally only used in single stage amplifier circuits such as microphone pre-amplifier or RF radio amplifiers due to its very good high frequency response.

> The Emitter follower configuration is very useful for impedance matching applications because of the very high input impedance, in the region of hundreds of thousands of Ohms, and it has relatively low output impedance.

• For npn BJT in forward active mode:

$$V_{BE} > 0$$
 and $V_{BC} < 0$

Energy band diagram for npn BJT

Reference: From L.C.G. Lesurf's (University of St. Andrews) The Scot's Guide to Electronics

➤1. Forward bias of EBJ causes electrons to diffuse from emitter into base.
➤ 2. As base region is very thin, the majority of these electrons diffuse to the edge of the depletion region of CBJ, and then are swept to the collector by the electric field of the reverse-biased CBJ.

> 3. A small fraction of these electrons recombine with the holes in base region.

> 4. Holes are injected from base to emitter region. (4) << (1).

> The two-carrier flow from [(1) and (4)] forms the emitter current (I_E).

Collector current

Collector-base diode is reverse biased therefore $V_{CB} > 0$

$$I_{C} = I_{s} \left[e^{\left(\frac{eV_{BE}}{kT} - 1\right)} \right] \quad \text{where} \qquad I_{s} = \frac{qA_{e}D_{n}n_{po}}{W} = \frac{qA_{e}D_{n}n_{i}^{2}}{N_{A}W}$$

- A_e Area of base-emitter junction
- W Width of base region
- N_A Doping concentration in base
- D_n Electron diffusion constant

 n_i Intrinsic carrier concentration = f(T)

Base current

- > Base current consists of two components: i_{B1} and i_{B2} :
- ↔ i_{B1} , due to forward bias of EBJ, is an exponential function of V_{BE} .
- \clubsuit $i_{\rm B2}$, due to recombination, is directly proportional to the numbers of
- electrons injected from the emitter, which in turn is an exponential function of V_{BE} .

$\mathbf{I}_{\mathbf{C}}$ is independent of collector voltage

Forward Active Mode common base current gain (α)

In common base configuration, the current transfer mode ratio (α) of a bipolar transistor in the forward active mode is defined as the ratio of the collector current (I_C) to the emitter current (I_E):

$$\alpha = \frac{I_C}{I_E} \qquad \qquad I_E = I_C + I_B$$

Forward Active Mode common emitter current gain (β)

The current gain (β) of a bipolar transistor under common emitter forward active mode is defined as the ratio of the collector current (I_C) to the base current (I_B):

$$\beta = \frac{I_C}{I_B}$$

$$\frac{I_E}{I_C} = 1 + \frac{I_B}{I_C} \qquad \frac{1}{\alpha} = 1 + \frac{1}{\beta} \qquad \beta = \frac{\alpha}{1 - \alpha}$$

I-V Characteristics of npn BJT under forward active mode

> Input characteristics are like a normal forward biased diode. As V_{CB} increased I_E also increased due to Early Effect (increased reverse biased at CB junction causes reduction in effective base width).

► As the CB junction is reverse biased, the current I_C depends totally on I_E . When $I_E=0$, $I_C=I_{CB0}$ is the current caused by the minority carriers crossing the pn-junction. I_{cB0} is leakage current called as collector base current with emitter open. When I_E is increased, I_C is increased correspondingly. $I_C = \alpha I_E + I_{CB0}$