Lec-29: CMOS Logic Family

Course Instructor:

❖ Dr. A. P. VAJPEYI

Department of Physics,
Indian Institute of Technology Guwahati, India
MOSFETs as an inverter

- 0 V input turns **OFF** lower (n-channel) FET, turns **ON** upper (p-channel), so output is connected to +5 V
- 5 V input turns **ON** lower (n-channel) FET, turns **OFF** upper (p-channel), so output is connected to 0 V
 - Net effect is logic inversion: 0 → 5; 5 → 0
- Complementary MOSFET pairs → **CMOS**
NAND gate from MOSFETs

Lower two FETs are NMOS and Upper two FETS are PMOS.

When Both Inputs A & B at zero:
✓ Lower two NMOS is OFF, Upper two PMOS is ON – resulting output C at HI

When Both Inputs A & B at 5V (HI):
✓ Lower two NMOS is ON, Upper two PMOS is Off – result in output C at LOW.

When Inputs A at 5V & B at 0V:
✓ upper left OFF, lowest ON
✓ upper right ON, middle OFF
✓ result is output HI

When Inputs A at 0V & B at 5V:
✓ upper left ON, lowest OFF
✓ upper right OFF, middle ON
✓ result is output HI
NOR gate from MOSFETs

Both inputs at zero:
- lower two FETs OFF, upper two ON
- result is output HI

Both inputs at 5 V:
- lower two FETs ON, upper two OFF
- result is output LOW

IN A at 5V, IN B at 0 V:
- lower left OFF, lower right ON
- upper ON, middle OFF
- result is output LOW

IN A at 0 V, IN B at 5 V:
- opposite of previous entry
- result is output LOW

A B	C
0 0 | 1
0 1 | 0
1 0 | 0
1 1 | 0

A B -- C

just a NAND flipped upside-down...
Input/Output Voltage of MOS logic family

• **VOHmin**: The minimum output voltage in HIGH state (logic '1') = 4.7V for CMOS

• **VOLmax**: The maximum output voltage in LOW state (logic '0') = 0.2V for CMOS

• **VIHmin**: The minimum input voltage in HIGH state (logic '1') = 3.7 V for CMOS

• **VILmax**: The maximum input voltage in LOW state (logic '0') = 1.3 V for CMOS

Low noise margin (LNM):

\[LNM = V_{IL_{max}} - V_{OL_{max}} = 1.3 - 0.2 = 1.1V \]

High noise margin (HNM):

\[HNM = V_{OH_{min}} - V_{IH_{min}} = 4.7 - 3.7 = 1.0V \]
Input/Output Current of MOS logic family / Fan-out

When a CMOS driver output is LOW, the maximum input current to the CMOS load is only 1uA. This means CMOS driver has to sink only 1uA. (\(I_{\text{IL, max}} = -1\mu\text{A}\))

Similarly when CMOS driver output is high, the CMOS driver is sourcing 1uA. (\(I_{\text{IH, max}} = 1\mu\text{A}\))

To determine fan-out, one must know how much input current gate load draws (\(I_{\text{in}}\)) and how much output current the driving gate can supply (\(I_{\text{o}}\)).

For 74C00 series, output current for CMOS driving CMOS:
\(I_{\text{OL, max}} = 10\mu\text{A}\) and \(I_{\text{OH, max}} = -10\mu\text{A}\)

Fan-out under HIGH & LOW condition is same and equal to 10.
Evolution of CMOS Logic Family

CMOS Logic Trend:
Reduction of dynamic losses (cross-conduction, capacitive charge/discharge cycles) by decreasing supply voltages
(12V → 5V → 3.3V → 2.5V → 1.8V → 1.5V...).

Reduction of IC power dissipation is the key to:
- lower cost (packaging)
- higher integration
- improved reliability
Comparison between CMOS & TTL Logic Family

TTL: transistor-transistor logic: BJT based
- chips have L, LS, F, AS, ALS, or H designation
- output: logic high has $V_{OH} > 3.3$ V; logic low has $V_{OL} < 0.35$ V
- input: logic high has $V_{IH} > 2.0$ V; logic low has $V_{IL} < 0.8$ V
- dead zone between 0.8V and 2.0 V
- nominal threshold: $V_T = 1.5$ V

CMOS: complimentary MOSFET
- chips have HC or AC designation
- output: logic high has $V_{OH} > 4.7$ V; logic low has $V_{OL} < 0.2$ V
- input: logic high has $V_{IH} > 3.7$ V; logic low has $V_{IL} < 1.3$ V
- dead zone between 1.3V and 3.7 V
- nominal threshold: $V_T = 2.5$ V

Chips with HCT are CMOS with TTL-compatible thresholds
Interfacing CMOS with TTL Logic Family
Interfacing TTL with CMOS Logic Family