Analog & Digital Electronics Course No: PH-218

Lec-26: Field Effect Transistors (FETs)

Course Instructor:

Dr. A. P. VAJPEYI

Department of Physics, Indian Institute of Technology Guwahati, India

Field Effect Transistors (FETs)

➢ Field effect transistors are unipolar device because current is carried by only one type of carriers (majority carriers) while BJTs were bipolar.

FETs are voltage controlled device where output current is controlled by voltage between two terminals gate and source while BJTs were current controlled device.

 \succ FETs are characterized by very high input resistance (in mega ohm) while BJT have high gain.

➢ FETs are less sensitive to temperature variations and are more easily integrated on ICs.

Types of FETs:

Junction Field Effect Transistor (JFET)

Metal Oxide semiconductor Field Effect Transistor (MOSFET)

Junction Field Effect Transistors (JFETs)

> Junction field effect transistor (JFET) is a type FET that operates with a reverse biased p-n junction to control current in a channel.

Depending on the structure, JFET fall in two categories: n channel and p channel JFET

Operation of n channel FET

Case I: JFET at V_{GS}=0 and V_{DS} > 0

> JFET has two p-n junction. When $V_{GS}=0$, both gate and source are at same potential so depletion region in low end of each p material is similar.

>The depletion region is wider near the top of both p type material because of higher potential at upper region. (Upper end of n-channel (drain) is at V_D and lower end (source) is at ground)

The instant V_{DS} is applied across the channel, the electrons are drawn towards the drain giving drain current.

As the V_{DS} is increased from 0V to a few V, the current will increase according to Ohm's law.

As the V_{DS} approaches to V_p , the depletion width increases causing a reduction in channel width.

The value of V_{DS} (at V_{GS} =0) for which two depletion region touches is called pinch off voltage and denoted by V_P .

Operation of n channel FET

Case II: JFET at $V_{GS} < 0$ and $V_{DS} > 0$

The level of V_{GS} that results in $I_D = 0$ mA is $V_{GS} = V_P$. Vp is a negative voltage for n-channel and positive for p-channel JFETs.

Transfer Characteristics

The relationship between I_D and V_{GS} is defined by Shockley's equation:

$$\boldsymbol{I}_{D} = \boldsymbol{I}_{DSS} \left(1 - \frac{\boldsymbol{V}_{GS}}{\boldsymbol{V}_{P}} \right)^{2}$$

Where I_{DSS} and V_P are constants and V_{GS} is variable and controllable

The transfer function curve may be plotted from the characteristic curve, as shown. Notice the parabolic shape due to the square term relationship between I_D and V_{GS}

Biasing scheme of FET: Voltage divider Bias

Biasing schemes for FETs are similar to BJT. Most popular voltage divider scheme is shown here.