Analog & Digital Electronics Course No: PH-218

Lecture 1: Semiconductor Materials

Course Instructors:

Dr. A. P. VAJPEYI

Department of Physics, Indian Institute of Technology Guwahati, India

<u>Semiconductors</u>

Semiconductors are those materials whose conductivity lies in between the conductivity of conductors and insulators.

> At 0K, semiconductors behave like a insulators.

> At room temperature the resistivity of semiconducting materials lies in the range of 10^{-3} to 10^{-8} ohm cm.

 \succ The three most important semiconductors used in the construction of electronic devices are Si, Ge and GaAs.

Important properties of semiconductors (at RT)								
	Si	Ge	GaAs					
Electrons mobility ((m ² /V/s))	0.14	0.39	0.85					
Holes mobility (m ² / V / s)	0.05	0.19	0.04					
Bandgap (eV)	1.1	0.67	1.43					
Intrinsic carrier (/cm ³)	1.5×10^{10}	2.5×10 ¹³	1.7×10^{6}					

Conductors, Insulators and Semiconductors

> In conductors valence band (VB) and conduction band (CB) overlap hence no bandgap.

➢ In insulators there is large bandgap (typically 5 to 10eV) between VB and CB. In insulators VB is completely filled and CB is completely empty.

➤ In semiconductors bandgap between VB and CB is low.

➤The resistivity of semiconductors generally decrease with increasing temperature (resistivity of Si is -.07/°C and that of Ge is -0.05/°C) in contrast with that of metals which generally increases. (Why?)

Semiconductors

When an electron in the valence band of a semiconductor makes a transition to the conduction band, it leaves behind a vacant state known as a 'hole'.

When a potential difference is applied across the semiconductor sample, the electrons in the conduction band result in a current flow.

- However the electrons in the valence band also contribute to the current by filling the empty states (or holes) left behind by electrons that have made transitions to the conduction band.
- Both electrons and holes contribute to conduction, and the resistivity decreases.

III-V SCs - GaN (3.4eV), InN (0.7eV), AIN (6.2eV), GaP, GaAs, InP, InAs, InSb

➢ II-VI SCs – ZnS(3.68eV), ZnSe, ZnTe, CdS(2.42eV), CdSe, and CdTe

> IV –VI - PbS(0.41eV), PbSe (0.27eV), and PbTe (0.31eV) – Useful for infrared detectors and radiation sources

	GROUP		PE	ERI	OD	OIC	TA	BL	E (DF	TH	ĒF		M	EN	TS		
	1 IA					\leq	\geq	77		$\Box \Box \Box \to \Box$	$\left(\left(\left$		http	://www.ktf-	split.hr/per	iodni/en/		18 VIIIA
-	1 1.0079			RELATI	VE ATOMIC N	4ASS (1)	Me	ıtal 🚺	Semimetal	Nonme	ital							2 4.0026
1	H		GRO	OUP IUPAC	6	ROUPCAS		ali metal		16 Chalco	oens elemen							He
2	HYDROGEN	2 11A			3 1114	/ /		aline earth m	etal	17 Haloge	ns element		13 IIIA	14 IVA	15 VA	16 VIA	17 VIA	HELIUM
	3 6.941	4 9.0122	ATOMIC N	UMBER -	5 10.811		Tre	insition metal	ş	18 Noble	gas		5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20.180
2	Li	Be	s	SYMBOL -	-B			Lanthanide	STAN	DARD STATE	(25 °C; 101 k	(Pa)	B	C	N	0	F	Ne
	LITHIUM	BERYLLIUM			BORON			Actinide	Ne	- gas	Fe - solid	. 🗋	BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON
-	11 22.990	12 24.305	/	ELE	MENT NAME	/	//		Ga	- liquid	TC - synthet	ic	13 26.982	14 28.086	15 30.974	16 32.065	17 35.453	18 39.94
	Na	Mg					/						Al	Si	P	S	Cl	Ar
7	SODIUM	MAGNESIUM	3 B	4 IVB	5 / VB	6 VIB	7 VIIB	8	9	10	11 IB	12 IIB	ALUMINIUM	SILICON	PHOSPHORUS	SULPHUR	CHLORINE	ARGON
	19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.39	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.8
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
	37 85.468	38 87.62	39 88.906	40 91.224	41 92.906	42 95.94	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 131.2
1	Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
	RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON
ľ	55 132.91	56 137.33	57-71	72 178.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98	84 (209)	85 (210)	86 (222
1	Cs	Ba	La-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	CAESIUM	BARIUM	Lanthanide	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
Ì	87 (223)	88 (226)	89-103	104 (261)	105 (262)	106 (266)	107 (264)	108 (277)	109 (268)	110 (281)	111 (272)	112 (285)		114 (289)			· / ·	
	Fr	Ra	Ac-Lr	TRI	IDIb	Sø	IBIh	THIS	Mit	ານເມ	ແມ່ນມານ	Մախ		Wina				
	FRANCIUM	RADIUM	Actinide	RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	UNUNNILIUM	UNUNUNIUM	UNUNBIUM		UNUNQUADIUM				
j	/		/		. /		· /	•			/				,	\mathbf{A}		2110
_	Anni Chom 7	3 No. 4 667 65	22 /20043	LANTHAN	IDE	50	(0	(1)	(2) (2) (2)	(2) (2) (2)	(1	18 100.00	11	(7	(0	Copyright © 19	98-2003 EniG	(eni@ktf-split.)
lat	tive atomic ma	ass is shown	with five	5/ 138.91	58 140.12	59 140.91	00 144.24	01 (145)	62 150.36	03 151.96	04 157.25	05 158.93	00 162.50	0/ 164.93	08 167.26	09 168.93	10 173.04	71 174.9
clia	des, the value	e enclosed in	brackets	La	Ce	Pr	Nd	IPm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
isotope of the element.						LUTETIUM												
do have a characteristic terrestrial isotopic composition and for these an atomic weight is				90 232 04	91 231 04	97 238 03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (282	
xul	ated.			10	Th	Do	TI	NIN	1000	A	Com	1001-	CAR	100	100 (201)	D/17-21	DI.	П т
				AC	In	ra	U	1416	IFUI	A/100)	Cim	TRIK	CI	ICS	16 100)	TATTOL	140	كاملا
ito	or: Aditya Vardha	an (adivar@netl	linx.com)	ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIU

Additional Semiconductors: Wurzite III-V's and II-VI's Lead Salts (IV-VI's), Column IV

Material	Semicondu	ictor	Crysta	Energy Band		
System	Name	Symbol	Structur	e Period(A)	Gap(eV)	Туре
III-V	Aluminum Nitride	AIN	W	a = , c =	6.2	i
(nitrides)	Gallium Nitride	GaN	W	a = 3.189, c = 5.185	3.36	d
	Indium Nitride	InN	W	a = , c =	0.7	d
II-VI	Zinc Sulfide	ZnS	W	a = 3.82, c = 6.28	3.68	d
(wurtzite)	Cadmium Sulfide	CdS	W	a = 4.16, c = 6.756	5 2.42	d
IV-VI	Lead Sulfide	PbS	R	5.9362	0.41	d
	Lead Selenide	PbSe	R	6.128	0.27	d
	Lead Telluride	PbTe	R	6.4620	0.31	d
IV	Diamond	С	D	3.56683	5.47	i
	Silicon	Si 🗆	D	5.43095	1.124	i
	Germanium	Ge□	D	5.64613	0.66	i
	Grey Tin	Sn□	D	6.48920	0.08	d
IV-IV	Silicon Carbide	SiC	W	a = 3.086, c = 15.117	2.996	i
S	ilicon-Germanium	Si _x Ge _{1-x}	Z	vary with x (i.e.	an alloy)	i

Key: Z = zinc blende, W = wurtzite, R = rock salt; i = indirect gap, d = direct gap

Taken from SMA-5111 - Prof. Fonstad

Crystal Structure of Si (IV elements)

The diamond cubic structure consists of two interpenetrating face-centered cubic lattices, with one offset 1/4 of a cube along the cube diagonal.

Each of the atoms (e.g., C) is four coordinate, and the shortest interatomic distance (C-C) may be determined from the unit cell parameter (a).

 $C-C = a(3)^{0.5} / 4 = 0.422a$

Intrinsic semiconductors

➤ In pure state semiconductor is called intrinsic semiconductor.

> At room temperature a few electrons have sufficient energy to overcome the bandgap and contribute to the current.

> $n.p = n_i^2$ also valid for extrinsic SC

Intrinsic Si

Extrinsic semiconductors (doped intrinsic semiconductor)

> The incorporation of impurity elements (dopants) in an intrinsic semiconductor by a controlled way is called doping.

> The objective of doping is to increases the conductivity of a semiconductor.

> The main dopants are from column V (for n-type semiconductor) and Column III elements (for p-type semiconductor).

Extrinsic semiconductors (doped intrinsic semiconductor)

n-type semiconductor

- Silicon samples doped with a pentavalent atom such as arsenic is known as an n-type semiconductor because conduction is due to negative charges (electrons).
- Since each pentavalent atom essentially 'donates' an electron to the lattice, it is called a donor atom.

p-type semiconductor

- Silicon samples doped with trivalent atoms such as gallium are known as ptype semiconductors because conduction is due to positive holes.
- Note that both n-type and p-type semiconductors are electrically neutral.

n and p-type Semiconductors

- In n-type semiconductors the 'impurity' energy level lies very close to the conduction band. Electrons are readily promoted to the conduction band from the 'impurity' level which is, therefore, known as the donor level. Majority carriers concentration $\mathbf{n} = \mathbf{N}_d$ and minority carriers $p = n_i^2 / n$
- In p-type semiconductors the 'impurity' level lies just above the valence band. Electrons are readily accepted from the valence band leaving holes behind. The 'impurity' levels are therefore known as acceptor levels. Majority carriers concentration $\mathbf{p} = \mathbf{N}_a$ and minority carriers $n = n_i^2 / p$

Main dopants and their ionization energies

Ionization energies for dopants in Si & Ge (eV)							
Туре	Element	Si	Ge				
n-type	Р	0.044	0.012				
	As	0.049	0.013				
	Sb	0.039	0.010				
	В	0.045	0.010				
	Al	0.057	0.010				
р-туре	Ga	0.065	0.011				
	In	0.16	0.011				