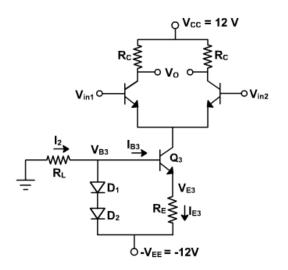
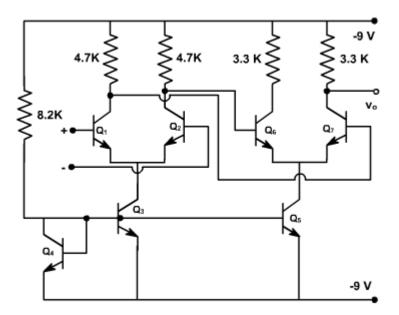
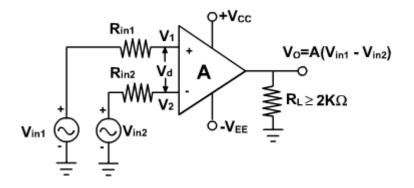
PH-218 Analog & Digital Electronics


Assignment-4 (Due date: 21st March 2011)

1. The following specifications are given for the dual input, balanced-output differential


amplifier: $R_C = 2.2 \text{ k}\Omega$, $R_B = 4.7 \text{k}\Omega$, $R_{\text{in 1}} = R_{\text{in 2}} = 50\Omega$, $+V_{CC} = 10V$, $-V_{EE} = -10 \text{ V}$,

 $\beta_{dc} = 100 \text{ and } V_{BE} = 0.715 \text{ V}.$


- a. Determine the voltage gain.
- b. Determine the input resistance
- c. Determine the output resistance.
- 2. For the dual input, balanced output differential amplifier of Example-1:
 - a. Determine the output voltage (v_o) if $v_{in 1} = 50 \text{mV}$ peak to peak (pp) at 1 kHz and $v_{in 2} = 20 \text{ mV}$ pp at 1 kHz.
 - b. What is the maximum peal to peak output voltage without clipping?
- 3. Determine the value of all the components for the fig shown below which is dual-input balanced output differential amplifier using the diode constant current bias and have the following specifications.
 - 1. supply voltage = \pm 12 V.
 - 2. Emitter current I_E in each differential amplifier transistor = 1.5 mA.
 - 3. Voltage gain ≤ 60 .

- 4. For the circuit show in fig., it is given that $\beta = 100$, $V_{BE} = 0715V$. Determine
- (a) The dc conditions for each state
- (b) The overall voltage gain
- (c) The maximum peak to peak output voltage swing

- 5. Determine the output voltage and draw the transfer characteristics in each of the following cases for the open loop differential amplifier of fig.:
- a. $v_{in 1} = 5 \ \mu V \ dc, \ v_{in 2} = -7 \ \mu V_{dc}$ b. $v_{in 1} = 10 \ mV \ rms, \ v_{in 2} = 20 \ mV \ rms$

