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» An infinite series in R is an expression _ x,,
n=1

where (x,) is a sequence in R.

More formally, it is an ordered pair ((x,), (s4)),
where (x,) is a sequence in R,

and s, =xy +---+x, for all n € N.

» X, : nth term of the series

S, © nth partial sum of the series

o
» Convergence of series: > x, is convergent if (s,) is
n=1
convergent.

o0
Otherwise ) x, is divergent (not convergent).
n=1
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» Sum of a convergent series: Y x, = lim s,

=1 n—r00

» Examples:

1.

o0
The geometric series > ar"~! (where a # 0) converges

n=1
iff |r] < 1.
The series E o n+1 is convergent.

The series1 —1+4+1—1+--- is not convergent.
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» Monotonic criterion: A series ) x, of non-negative terms
n=1

is convergent iff the sequence (s,) is bounded above.

o

> Example: Y~ % is convergent.
n=1
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Cauchy criterion: ) x, is convergent iff for each € > 0, there
n=1
exists ng € N such that |x,1 + -+ + x| < € for all
m>n 2> ng.
oo 1 -
Example: ) = is not convergent.

n=1

o0
Result: If > x, is convergent, then x, — 0.
n=1

[e.e]
Hence if x, /4 0, then ) x, cannot be convergent.
n=1

Examples: The following series are not convergent.

= n? - n_n
O S O SCwn



Comparison test: Let (x,) and (y,) be sequences in R such
that for some ny € N, 0 < x, <y, for all n > ny.



Comparison test: Let (x,) and (y,) be sequences in R such
that for some ny € N, 0 < x, <y, for all n > ny.
Then

oo oo
(a) > yais convergent = > x, is convergent.

n=1 n=1

(b) > x, is divergent = > y, is divergent.

n=1 n=1



Comparison test: Let (x,) and (y,) be sequences in R such
that for some ny € N, 0 < x, <y, for all n > ny.
Then

oo oo
(a) > yais convergent = > x, is convergent.

n=1 n=1

(b) > x, is divergent = > y, is divergent.

n=1 n=1

Limit comparison test: Let (x,) and (y,) be sequences of
positive real numbers such that ? —leR.



Comparison test: Let (x,) and (y,) be sequences in R such
that for some ny € N, 0 < x, <y, for all n > ny.
Then

oo oo
(a) > yais convergent = > x, is convergent.

n=1 n=1

(b) > x, is divergent = > y, is divergent.

n=1 n=1

Limit comparison test: Let (x,) and (y,) be sequences of
positive real numbers such that ? —leR.

(a) If £ #0, then > x, is convergent iff > y, is convergent.
n=1 n=1

(b) If £=0, then ) y, is convergent = > x, is convergent.

n=1 n=1
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n
(d) Z 4n3-2
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Cauchy's condensation test: Let (x,) be a decreasing sequence
o)
of nonnegative real numbers. Then ) x, is convergent iff

n=1
00

2"xon is convergent.
n=1

Examples:

(a) p-series: > L is convergent iff p > 1.
n=1

o0

(b) 2_32 m is convergent iff p > 1.
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Definitions: _ x, is called absolutely convergent if > |x,| is

n=1 n=1
convergent.

o0 [o¢]

> x, is called conditionally convergent if ) x, is convergent
-1 =1

n o n

but > |x,| is divergent.

n=1

Result: Every absolutely convergent series is convergent.

Ratio test: Let (x,) be a sequence of nonzero real numbers
such that [Z24] — /.

(a) If £ <1, then > x, is absolutely convergent.

n=1

(b) If £ > 1, then > x, is divergent.

n=1



Examples: (a) > 5
n=1
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Root test: Let (x,) be a sequence in R such that |x,

(a) If £ <1, then > x, is absolutely convergent.
n=1

(b) If £ >1, then > x, is divergent.
n=1

[e.°]

Examples: (a) Z nl)n (b) Z 3"+4n

Leibniz's test: Let (x,) be a decreasing sequence of positive
real numbers such that x, — 0.

o
Then the alternating series > (—1)""1x, is convergent
n=1
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o0
Riemann’s rearrangement theorem: Let > x, be a

n=1
conditionally convergent series.

(a) If s € R, then there exists a rearrangement of terms of

o0
> X, such that the rearranged series has the sum s.
n=1

o0
(b) There exists a rearrangement of terms of ) x, such that
n=1
the rearranged series diverges.



