- An infinite series in \mathbb{R} is an expression $\sum_{n=1}^{\infty} x_{n}$, where $\left(x_{n}\right)$ is a sequence in \mathbb{R}.
- An infinite series in \mathbb{R} is an expression $\sum_{n=1}^{\infty} x_{n}$, where $\left(x_{n}\right)$ is a sequence in \mathbb{R}.

More formally, it is an ordered pair $\left(\left(x_{n}\right),\left(s_{n}\right)\right)$, where $\left(x_{n}\right)$ is a sequence in \mathbb{R}, and $s_{n}=x_{1}+\cdots+x_{n}$ for all $n \in \mathbb{N}$.

- An infinite series in \mathbb{R} is an expression $\sum_{n=1}^{\infty} x_{n}$, where $\left(x_{n}\right)$ is a sequence in \mathbb{R}.

More formally, it is an ordered pair $\left(\left(x_{n}\right),\left(s_{n}\right)\right)$, where $\left(x_{n}\right)$ is a sequence in \mathbb{R}, and $s_{n}=x_{1}+\cdots+x_{n}$ for all $n \in \mathbb{N}$.

- x_{n} : nth term of the series
s_{n} : nth partial sum of the series
- An infinite series in \mathbb{R} is an expression $\sum_{n=1}^{\infty} x_{n}$, where $\left(x_{n}\right)$ is a sequence in \mathbb{R}.

More formally, it is an ordered pair $\left(\left(x_{n}\right),\left(s_{n}\right)\right)$, where $\left(x_{n}\right)$ is a sequence in \mathbb{R}, and $s_{n}=x_{1}+\cdots+x_{n}$ for all $n \in \mathbb{N}$.

- x_{n} : nth term of the series
s_{n} : nth partial sum of the series
- Convergence of series: $\sum_{n=1}^{\infty} x_{n}$ is convergent if $\left(s_{n}\right)$ is convergent.
Otherwise $\sum_{n=1}^{\infty} x_{n}$ is divergent (not convergent).
- Sum of a convergent series: $\sum_{n=1}^{\infty} x_{n}=\lim _{n \rightarrow \infty} s_{n}$
- Sum of a convergent series: $\sum_{n=1}^{\infty} x_{n}=\lim _{n \rightarrow \infty} s_{n}$
- Examples:

1. The geometric series $\sum_{n=1}^{\infty} a r^{n-1}$ (where $a \neq 0$) converges iff $|r|<1$.

- Sum of a convergent series: $\sum_{n=1}^{\infty} x_{n}=\lim _{n \rightarrow \infty} s_{n}$
- Examples:

1. The geometric series $\sum_{n=1}^{\infty} a r^{n-1}$ (where $a \neq 0$) converges iff $|r|<1$.
2. The series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent.

- Sum of a convergent series: $\sum_{n=1}^{\infty} x_{n}=\lim _{n \rightarrow \infty} s_{n}$
- Examples:

1. The geometric series $\sum_{n=1}^{\infty} a r^{n-1}$ (where $a \neq 0$) converges iff $|r|<1$.
2. The series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent.
3. The series $1-1+1-1+\cdots$ is not convergent.

- Algebraic operations on series: Let $\sum_{n=1}^{\infty} x_{n}$ and $\sum_{n=1}^{\infty} y_{n}$ be convergent with sums x and y respectively.
- Algebraic operations on series: Let $\sum_{n=1}^{\infty} x_{n}$ and $\sum_{n=1}^{\infty} y_{n}$ be convergent with sums x and y respectively.

Then
(a) $\sum_{n=1}^{\infty}\left(x_{n}+y_{n}\right)$ is convergent with sum $x+y$.

- Algebraic operations on series: Let $\sum_{n=1}^{\infty} x_{n}$ and $\sum_{n=1}^{\infty} y_{n}$ be convergent with sums x and y respectively.

Then
(a) $\sum_{n=1}^{\infty}\left(x_{n}+y_{n}\right)$ is convergent with sum $x+y$.
(b) $\sum_{n=1}^{\infty} \alpha x_{n}$ is convergent with sum αx, where $\alpha \in \mathbb{R}$.

- Algebraic operations on series: Let $\sum_{n=1}^{\infty} x_{n}$ and $\sum_{n=1}^{\infty} y_{n}$ be convergent with sums x and y respectively.

Then
(a) $\sum_{n=1}^{\infty}\left(x_{n}+y_{n}\right)$ is convergent with sum $x+y$.
(b) $\sum_{n=1}^{\infty} \alpha x_{n}$ is convergent with sum αx, where $\alpha \in \mathbb{R}$.

- Monotonic criterion: A series $\sum_{n=1}^{\infty} x_{n}$ of non-negative terms is convergent iff the sequence $\left(s_{n}\right)$ is bounded above.
- Algebraic operations on series: Let $\sum_{n=1}^{\infty} x_{n}$ and $\sum_{n=1}^{\infty} y_{n}$ be convergent with sums x and y respectively.
Then
(a) $\sum_{n=1}^{\infty}\left(x_{n}+y_{n}\right)$ is convergent with sum $x+y$.
(b) $\sum_{n=1}^{\infty} \alpha x_{n}$ is convergent with sum αx, where $\alpha \in \mathbb{R}$.
- Monotonic criterion: A series $\sum_{n=1}^{\infty} x_{n}$ of non-negative terms is convergent iff the sequence $\left(s_{n}\right)$ is bounded above.
- Example: $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent.

Cauchy criterion: $\sum_{n=1}^{\infty} x_{n}$ is convergent iff for each $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that $\left|x_{n+1}+\cdots+x_{m}\right|<\varepsilon$ for all $m>n \geq n_{0}$.

Cauchy criterion: $\sum_{n=1}^{\infty} x_{n}$ is convergent iff for each $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that $\left|x_{n+1}+\cdots+x_{m}\right|<\varepsilon$ for all $m>n \geq n_{0}$.
Example: $\sum_{n=1}^{\infty} \frac{1}{n}$ is not convergent.

Cauchy criterion: $\sum_{n=1}^{\infty} x_{n}$ is convergent iff for each $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that $\left|x_{n+1}+\cdots+x_{m}\right|<\varepsilon$ for all $m>n \geq n_{0}$.
Example: $\sum_{n=1}^{\infty} \frac{1}{n}$ is not convergent.
Result: If $\sum_{n=1}^{\infty} x_{n}$ is convergent, then $x_{n} \rightarrow 0$.

Cauchy criterion: $\sum_{n=1}^{\infty} x_{n}$ is convergent iff for each $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that $\left|x_{n+1}+\cdots+x_{m}\right|<\varepsilon$ for all $m>n \geq n_{0}$.
Example: $\sum_{n=1}^{\infty} \frac{1}{n}$ is not convergent.
Result: If $\sum_{n=1}^{\infty} x_{n}$ is convergent, then $x_{n} \rightarrow 0$.
Hence if $x_{n} \nrightarrow 0$, then $\sum_{n=1}^{\infty} x_{n}$ cannot be convergent.

Cauchy criterion: $\sum_{n=1}^{\infty} x_{n}$ is convergent iff for each $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that $\left|x_{n+1}+\cdots+x_{m}\right|<\varepsilon$ for all $m>n \geq n_{0}$.
Example: $\sum_{n=1}^{\infty} \frac{1}{n}$ is not convergent.
Result: If $\sum_{n=1}^{\infty} x_{n}$ is convergent, then $x_{n} \rightarrow 0$.
Hence if $x_{n} \nrightarrow 0$, then $\sum_{n=1}^{\infty} x_{n}$ cannot be convergent.
Examples: The following series are not convergent.
(a) $\sum_{n=1}^{\infty} \frac{n^{2}+1}{(n+3)(n+4)}$
(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n+2}$

Comparison test: Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences in \mathbb{R} such that for some $n_{0} \in \mathbb{N}, 0 \leq x_{n} \leq y_{n}$ for all $n \geq n_{0}$.

Comparison test: Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences in \mathbb{R} such that for some $n_{0} \in \mathbb{N}, 0 \leq x_{n} \leq y_{n}$ for all $n \geq n_{0}$. Then
(a) $\sum_{n=1}^{\infty} y_{n}$ is convergent $\Rightarrow \sum_{n=1}^{\infty} x_{n}$ is convergent.
(b) $\sum_{n=1}^{\infty} x_{n}$ is divergent $\Rightarrow \sum_{n=1}^{\infty} y_{n}$ is divergent.

Comparison test: Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences in \mathbb{R} such that for some $n_{0} \in \mathbb{N}, 0 \leq x_{n} \leq y_{n}$ for all $n \geq n_{0}$. Then
(a) $\sum_{n=1}^{\infty} y_{n}$ is convergent $\Rightarrow \sum_{n=1}^{\infty} x_{n}$ is convergent.
(b) $\sum_{n=1}^{\infty} x_{n}$ is divergent $\Rightarrow \sum_{n=1}^{\infty} y_{n}$ is divergent.

Limit comparison test: Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences of positive real numbers such that $\frac{x_{n}}{y_{n}} \rightarrow \ell \in \mathbb{R}$.

Comparison test: Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences in \mathbb{R} such that for some $n_{0} \in \mathbb{N}, 0 \leq x_{n} \leq y_{n}$ for all $n \geq n_{0}$.
Then
(a) $\sum_{n=1}^{\infty} y_{n}$ is convergent $\Rightarrow \sum_{n=1}^{\infty} x_{n}$ is convergent.
(b) $\sum_{n=1}^{\infty} x_{n}$ is divergent $\Rightarrow \sum_{n=1}^{\infty} y_{n}$ is divergent.

Limit comparison test: Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences of positive real numbers such that $\frac{x_{n}}{y_{n}} \rightarrow \ell \in \mathbb{R}$.
(a) If $\ell \neq 0$, then $\sum_{n=1}^{\infty} x_{n}$ is convergent iff $\sum_{n=1}^{\infty} y_{n}$ is convergent.
(b) If $\ell=0$, then $\sum_{n=1}^{\infty} y_{n}$ is convergent $\Rightarrow \sum_{n=1}^{\infty} x_{n}$ is convergent.
Examples: (a) $\sum_{n=1}^{\infty} \frac{1+\sin n}{1+n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{1}{2^{n}+n}$
(c) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n-1)}}$
(d) $\sum_{n=1}^{\infty} \frac{n}{4 n^{3}-2}$
Examples: (a) $\sum_{n=1}^{\infty} \frac{1+\sin n}{1+n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{1}{2^{n}+n}$
(c) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n-1)}}$
(d) $\sum_{n=1}^{\infty} \frac{n}{4 n^{3}-2}$

Cauchy's condensation test: Let $\left(x_{n}\right)$ be a decreasing sequence of nonnegative real numbers. Then $\sum_{n=1}^{\infty} x_{n}$ is convergent iff $\sum_{n=1}^{\infty} 2^{n} x_{2^{n}}$ is convergent.
Examples: (a) $\sum_{n=1}^{\infty} \frac{1+\sin n}{1+n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{1}{2^{n}+n}$
(c) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n-1)}}$
(d) $\sum_{n=1}^{\infty} \frac{n}{4 n^{3}-2}$

Cauchy's condensation test: Let $\left(x_{n}\right)$ be a decreasing sequence of nonnegative real numbers. Then $\sum_{n=1}^{\infty} x_{n}$ is convergent iff $\sum_{n=1}^{\infty} 2^{n} x_{2^{n}}$ is convergent.

Examples:
(a) p-series: $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent iff $p>1$.
Examples: (a) $\sum_{n=1}^{\infty} \frac{1+\sin n}{1+n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{1}{2^{n}+n}$
(c) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n-1)}}$
(d) $\sum_{n=1}^{\infty} \frac{n}{4 n^{3}-2}$

Cauchy's condensation test: Let $\left(x_{n}\right)$ be a decreasing sequence of nonnegative real numbers. Then $\sum_{n=1}^{\infty} x_{n}$ is convergent iff $\sum_{n=1}^{\infty} 2^{n} x_{2^{n}}$ is convergent.

Examples:
(a) p-series: $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent iff $p>1$.
(b) $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}}$ is convergent iff $p>1$.

Definitions: $\sum_{n=1}^{\infty} x_{n}$ is called absolutely convergent if $\sum_{n=1}^{\infty}\left|x_{n}\right|$ is convergent.

Definitions: $\sum_{n=1}^{\infty} x_{n}$ is called absolutely convergent if $\sum_{n=1}^{\infty}\left|x_{n}\right|$ is convergent.
$\sum_{n=1}^{\infty} x_{n}$ is called conditionally convergent if $\sum_{n=1}^{\infty} x_{n}$ is convergent but $\sum_{n=1}^{\infty}\left|x_{n}\right|$ is divergent.

Definitions: $\sum_{n=1}^{\infty} x_{n}$ is called absolutely convergent if $\sum_{n=1}^{\infty}\left|x_{n}\right|$ is convergent.
$\sum_{n=1}^{\infty} x_{n}$ is called conditionally convergent if $\sum_{n=1}^{\infty} x_{n}$ is convergent but $\sum_{n=1}^{\infty}\left|x_{n}\right|$ is divergent.

Result: Every absolutely convergent series is convergent.

Definitions: $\sum_{n=1}^{\infty} x_{n}$ is called absolutely convergent if $\sum_{n=1}^{\infty}\left|x_{n}\right|$ is convergent.
$\sum_{n=1}^{\infty} x_{n}$ is called conditionally convergent if $\sum_{n=1}^{\infty} x_{n}$ is convergent but $\sum_{n=1}^{\infty}\left|x_{n}\right|$ is divergent.

Result: Every absolutely convergent series is convergent.
Ratio test: Let $\left(x_{n}\right)$ be a sequence of nonzero real numbers such that $\left|\frac{x_{n+1}}{x_{n}}\right| \rightarrow \ell$.

Definitions: $\sum_{n=1}^{\infty} x_{n}$ is called absolutely convergent if $\sum_{n=1}^{\infty}\left|x_{n}\right|$ is convergent.
$\sum_{n=1}^{\infty} x_{n}$ is called conditionally convergent if $\sum_{n=1}^{\infty} x_{n}$ is convergent but $\sum_{n=1}^{\infty}\left|x_{n}\right|$ is divergent.

Result: Every absolutely convergent series is convergent.
Ratio test: Let $\left(x_{n}\right)$ be a sequence of nonzero real numbers such that $\left|\frac{x_{n+1}}{x_{n}}\right| \rightarrow \ell$.
(a) If $\ell<1$, then $\sum_{n=1}^{\infty} x_{n}$ is absolutely convergent.
(b) If $\ell>1$, then $\sum_{n=1}^{\infty} x_{n}$ is divergent.

Examples: (a) $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$ (b) $\sum_{n=1}^{\infty} \frac{(2 n))^{n}}{(n)^{2}}$

Examples: (a) $\sum_{n=1}^{\infty} \frac{n}{2^{n}} \quad$ (b) $\sum_{n=1}^{\infty} \frac{(2 n)!}{(n!)^{2}}$
Root test: Let $\left(x_{n}\right)$ be a sequence in \mathbb{R} such that $\left|x_{n}\right|^{\frac{1}{n}} \rightarrow \ell$.
Examples: (a) $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{(2 n)!}{(n!)^{2}}$

Root test: Let $\left(x_{n}\right)$ be a sequence in \mathbb{R} such that $\left|x_{n}\right|^{\frac{1}{n}} \rightarrow \ell$.
(a) If $\ell<1$, then $\sum_{n=1}^{\infty} x_{n}$ is absolutely convergent.
(b) If $\ell>1$, then $\sum_{n=1}^{\infty} x_{n}$ is divergent.
Examples: (a) $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{(2 n)!}{(n!)^{2}}$

Root test: Let $\left(x_{n}\right)$ be a sequence in \mathbb{R} such that $\left|x_{n}\right|^{\frac{1}{n}} \rightarrow \ell$.
(a) If $\ell<1$, then $\sum_{n=1}^{\infty} x_{n}$ is absolutely convergent.
(b) If $\ell>1$, then $\sum_{n=1}^{\infty} x_{n}$ is divergent.

Examples: (a) $\sum_{n=1}^{\infty} \frac{(n!)^{n}}{n^{n^{2}}}$
(b) $\sum_{n=1}^{\infty} \frac{5^{n}}{3^{n}+4^{n}}$

Examples: (a) $\sum_{n=1}^{\infty} \frac{n}{2^{n}} \quad$ (b) $\sum_{n=1}^{\infty} \frac{(2 n)!}{(n!)^{2}}$
Root test: Let $\left(x_{n}\right)$ be a sequence in \mathbb{R} such that $\left|x_{n}\right|^{\frac{1}{n}} \rightarrow \ell$.
(a) If $\ell<1$, then $\sum_{n=1}^{\infty} x_{n}$ is absolutely convergent.
(b) If $\ell>1$, then $\sum_{n=1}^{\infty} x_{n}$ is divergent.

Examples: (a) $\sum_{n=1}^{\infty} \frac{(n!)^{n}}{n^{n^{2}}} \quad$ (b) $\sum_{n=1}^{\infty} \frac{5^{n}}{3^{n}+4^{n}}$
Leibniz's test: Let $\left(x_{n}\right)$ be a decreasing sequence of positive real numbers such that $x_{n} \rightarrow 0$.

Examples: (a) $\sum_{n=1}^{\infty} \frac{n}{2^{n}} \quad$ (b) $\sum_{n=1}^{\infty} \frac{(2 n)!}{(n!)^{2}}$
Root test: Let $\left(x_{n}\right)$ be a sequence in \mathbb{R} such that $\left|x_{n}\right|^{\frac{1}{n}} \rightarrow \ell$.
(a) If $\ell<1$, then $\sum_{n=1}^{\infty} x_{n}$ is absolutely convergent.
(b) If $\ell>1$, then $\sum_{n=1}^{\infty} x_{n}$ is divergent.

Examples: (a) $\sum_{n=1}^{\infty} \frac{(n!)^{n}}{n^{n^{2}}} \quad$ (b) $\sum_{n=1}^{\infty} \frac{5^{n}}{3^{n}+4^{n}}$
Leibniz's test: Let $\left(x_{n}\right)$ be a decreasing sequence of positive real numbers such that $x_{n} \rightarrow 0$.
Then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} x_{n}$ is convergent

Examples: (a) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{p}}, p \in \mathbb{R}$
(b) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n^{3}+1}$

Examples: (a) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{p}}, p \in \mathbb{R} \quad$ (b) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n^{3}+1}$
Result: Grouping of terms of a convergent series does not change the convergence and the sum.

Examples: (a) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{p}}, p \in \mathbb{R} \quad$ (b) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n^{3}+1}$
Result: Grouping of terms of a convergent series does not change the convergence and the sum.

However, a divergent series can become convergent after grouping of terms.

Examples: (a) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{p}}, p \in \mathbb{R} \quad$ (b) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n^{3}+1}$
Result: Grouping of terms of a convergent series does not change the convergence and the sum.

However, a divergent series can become convergent after grouping of terms.

Result: Rearrangement of terms does not change the convergence and the sum of an absolutely convergent series.

Examples: (a) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{p}}, p \in \mathbb{R} \quad$ (b) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n^{3}+1}$
Result: Grouping of terms of a convergent series does not change the convergence and the sum.

However, a divergent series can become convergent after grouping of terms.

Result: Rearrangement of terms does not change the convergence and the sum of an absolutely convergent series.

Example: $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=s$

Examples: (a) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{p}}, p \in \mathbb{R} \quad$ (b) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n^{3}+1}$
Result: Grouping of terms of a convergent series does not change the convergence and the sum.

However, a divergent series can become convergent after grouping of terms.

Result: Rearrangement of terms does not change the convergence and the sum of an absolutely convergent series.

Example: $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=s$

$$
1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\cdots=\frac{3}{2} s
$$

Riemann's rearrangement theorem: Let $\sum_{n=1}^{\infty} x_{n}$ be a conditionally convergent series.

Riemann's rearrangement theorem: Let $\sum_{n=1}^{\infty} x_{n}$ be a conditionally convergent series.
(a) If $s \in \mathbb{R}$, then there exists a rearrangement of terms of $\sum_{n=1}^{\infty} x_{n}$ such that the rearranged series has the sum s.

Riemann's rearrangement theorem: Let $\sum_{n=1}^{\infty} x_{n}$ be a conditionally convergent series.
(a) If $s \in \mathbb{R}$, then there exists a rearrangement of terms of $\sum_{n=1}^{\infty} x_{n}$ such that the rearranged series has the sum s.
(b) There exists a rearrangement of terms of $\sum_{n=1}^{\infty} x_{n}$ such that the rearranged series diverges.

