
I An infinite series in R is an expression
∞∑
n=1

xn,

where (xn) is a sequence in R.

More formally, it is an ordered pair ((xn), (sn)),

where (xn) is a sequence in R,

and sn = x1 + · · ·+ xn for all n ∈ N.

I xn : nth term of the series

sn : nth partial sum of the series

I Convergence of series:
∞∑
n=1

xn is convergent if (sn) is

convergent.

Otherwise
∞∑
n=1

xn is divergent (not convergent).
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I Sum of a convergent series:
∞∑
n=1

xn = lim
n→∞

sn

I Examples:

1. The geometric series
∞∑
n=1

arn−1 (where a 6= 0) converges

iff |r | < 1.

2. The series
∞∑
n=1

1
n(n+1) is convergent.

3. The series 1− 1 + 1− 1 + · · · is not convergent.
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I Algebraic operations on series: Let
∞∑
n=1

xn and
∞∑
n=1

yn be

convergent with sums x and y respectively.

Then

(a)
∞∑
n=1

(xn + yn) is convergent with sum x + y .

(b)
∞∑
n=1

αxn is convergent with sum αx , where α ∈ R.

I Monotonic criterion: A series
∞∑
n=1

xn of non-negative terms

is convergent iff the sequence (sn) is bounded above.

I Example:
∞∑
n=1

1
n2

is convergent.
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Cauchy criterion:
∞∑
n=1

xn is convergent iff for each ε > 0, there

exists n0 ∈ N such that |xn+1 + · · ·+ xm| < ε for all
m > n ≥ n0.

Example:
∞∑
n=1

1
n

is not convergent.

Result: If
∞∑
n=1

xn is convergent, then xn → 0.

Hence if xn 6→ 0, then
∞∑
n=1

xn cannot be convergent.

Examples: The following series are not convergent.

(a)
∞∑
n=1

n2+1
(n+3)(n+4)

(b)
∞∑
n=1

(−1)n n
n+2
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Comparison test: Let (xn) and (yn) be sequences in R such
that for some n0 ∈ N, 0 ≤ xn ≤ yn for all n ≥ n0.

Then

(a)
∞∑
n=1

yn is convergent ⇒
∞∑
n=1

xn is convergent.

(b)
∞∑
n=1

xn is divergent ⇒
∞∑
n=1

yn is divergent.

Limit comparison test: Let (xn) and (yn) be sequences of
positive real numbers such that xn

yn
→ ` ∈ R.

(a) If ` 6= 0, then
∞∑
n=1

xn is convergent iff
∞∑
n=1

yn is convergent.

(b) If ` = 0, then
∞∑
n=1

yn is convergent ⇒
∞∑
n=1

xn is convergent.



Comparison test: Let (xn) and (yn) be sequences in R such
that for some n0 ∈ N, 0 ≤ xn ≤ yn for all n ≥ n0.
Then

(a)
∞∑
n=1

yn is convergent ⇒
∞∑
n=1

xn is convergent.

(b)
∞∑
n=1

xn is divergent ⇒
∞∑
n=1

yn is divergent.

Limit comparison test: Let (xn) and (yn) be sequences of
positive real numbers such that xn

yn
→ ` ∈ R.

(a) If ` 6= 0, then
∞∑
n=1

xn is convergent iff
∞∑
n=1

yn is convergent.

(b) If ` = 0, then
∞∑
n=1

yn is convergent ⇒
∞∑
n=1

xn is convergent.



Comparison test: Let (xn) and (yn) be sequences in R such
that for some n0 ∈ N, 0 ≤ xn ≤ yn for all n ≥ n0.
Then

(a)
∞∑
n=1

yn is convergent ⇒
∞∑
n=1

xn is convergent.

(b)
∞∑
n=1

xn is divergent ⇒
∞∑
n=1

yn is divergent.

Limit comparison test: Let (xn) and (yn) be sequences of
positive real numbers such that xn

yn
→ ` ∈ R.

(a) If ` 6= 0, then
∞∑
n=1

xn is convergent iff
∞∑
n=1

yn is convergent.

(b) If ` = 0, then
∞∑
n=1

yn is convergent ⇒
∞∑
n=1

xn is convergent.



Comparison test: Let (xn) and (yn) be sequences in R such
that for some n0 ∈ N, 0 ≤ xn ≤ yn for all n ≥ n0.
Then

(a)
∞∑
n=1

yn is convergent ⇒
∞∑
n=1

xn is convergent.

(b)
∞∑
n=1

xn is divergent ⇒
∞∑
n=1

yn is divergent.

Limit comparison test: Let (xn) and (yn) be sequences of
positive real numbers such that xn

yn
→ ` ∈ R.

(a) If ` 6= 0, then
∞∑
n=1

xn is convergent iff
∞∑
n=1

yn is convergent.

(b) If ` = 0, then
∞∑
n=1

yn is convergent ⇒
∞∑
n=1

xn is convergent.



Examples: (a)
∞∑
n=1

1+sin n
1+n2

(b)
∞∑
n=1

1
2n+n

(c)
∞∑
n=2

1√
n(n−1)

(d)
∞∑
n=1

n
4n3−2

Cauchy’s condensation test: Let (xn) be a decreasing sequence

of nonnegative real numbers. Then
∞∑
n=1

xn is convergent iff

∞∑
n=1

2nx2n is convergent.

Examples:

(a) p-series:
∞∑
n=1

1
np

is convergent iff p > 1.

(b)
∞∑
n=2

1
n(log n)p

is convergent iff p > 1.
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Definitions:
∞∑
n=1

xn is called absolutely convergent if
∞∑
n=1

|xn| is

convergent.

∞∑
n=1

xn is called conditionally convergent if
∞∑
n=1

xn is convergent

but
∞∑
n=1

|xn| is divergent.

Result: Every absolutely convergent series is convergent.

Ratio test: Let (xn) be a sequence of nonzero real numbers
such that | xn+1

xn
| → `.

(a) If ` < 1, then
∞∑
n=1

xn is absolutely convergent.

(b) If ` > 1, then
∞∑
n=1

xn is divergent.
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Examples: (a)
∞∑
n=1

n
2n

(b)
∞∑
n=1

(2n)!
(n!)2

Root test: Let (xn) be a sequence in R such that |xn|
1
n → `.

(a) If ` < 1, then
∞∑
n=1

xn is absolutely convergent.

(b) If ` > 1, then
∞∑
n=1

xn is divergent.

Examples: (a)
∞∑
n=1

(n!)n

nn2
(b)

∞∑
n=1

5n

3n+4n

Leibniz’s test: Let (xn) be a decreasing sequence of positive
real numbers such that xn → 0.

Then the alternating series
∞∑
n=1

(−1)n+1xn is convergent
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Examples: (a)
∞∑
n=1

(−1)n+1 1
np

, p ∈ R (b)
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n=1

(−1)n+1 n
n3+1

Result: Grouping of terms of a convergent series does not
change the convergence and the sum.

However, a divergent series can become convergent after
grouping of terms.

Result: Rearrangement of terms does not change the
convergence and the sum of an absolutely convergent series.

Example: 1− 1
2

+ 1
3
− 1

4
+ 1

5
− 1

6
+ · · · = s

1 + 1
3
− 1

2
+ 1

5
+ 1

7
− 1

4
+ 1

9
+ · · · = 3

2
s
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Riemann’s rearrangement theorem: Let
∞∑
n=1

xn be a

conditionally convergent series.

(a) If s ∈ R, then there exists a rearrangement of terms of
∞∑
n=1

xn such that the rearranged series has the sum s.

(b) There exists a rearrangement of terms of
∞∑
n=1

xn such that

the rearranged series diverges.
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