• An infinite series in \mathbb{R} is an expression $\sum_{n=1}^{\infty} x_n$,

where (x_n) is a sequence in \mathbb{R} .

• An infinite series in \mathbb{R} is an expression $\sum_{n=1}^{\infty} x_n$,

where (x_n) is a sequence in \mathbb{R} .

More formally, it is an ordered pair $((x_n), (s_n))$, where (x_n) is a sequence in \mathbb{R} , and $s_n = x_1 + \cdots + x_n$ for all $n \in \mathbb{N}$.

• An infinite series in \mathbb{R} is an expression $\sum_{n=1}^{\infty} x_n$, where (x_n) is a sequence in \mathbb{R} .

More formally, it is an ordered pair $((x_n), (s_n))$, where (x_n) is a sequence in \mathbb{R} , and $s_n = x_1 + \cdots + x_n$ for all $n \in \mathbb{N}$.

x_n: nth term of the series
 s_n: nth partial sum of the series

An infinite series in ℝ is an expression ∑_{n=1}[∞] x_n, where (x_n) is a sequence in ℝ.

More formally, it is an ordered pair $((x_n), (s_n))$, where (x_n) is a sequence in \mathbb{R} , and $s_n = x_1 + \cdots + x_n$ for all $n \in \mathbb{N}$.

- x_n : nth term of the series
 s_n : nth partial sum of the series
- ► Convergence of series: ∑[∞]_{n=1} x_n is convergent if (s_n) is convergent.

Otherwise
$$\sum_{n=1}^{\infty} x_n$$
 is divergent (not convergent).

• Sum of a convergent series: $\sum_{n=1}^{\infty} x_n = \lim_{n \to \infty} s_n$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- Sum of a convergent series: $\sum_{n=1}^{\infty} x_n = \lim_{n \to \infty} s_n$
- ► Examples:
 - 1. The geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ (where $a \neq 0$) converges iff |r| < 1.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Sum of a convergent series: $\sum_{n=1}^{\infty} x_n = \lim_{n \to \infty} s_n$
- Examples:
 - The geometric series ∑_{n=1}[∞] arⁿ⁻¹ (where a ≠ 0) converges iff |r| < 1.
 The series ∑_{n=1}[∞] 1/n(n+1) is convergent.

- Sum of a convergent series: $\sum_{n=1}^{\infty} x_n = \lim_{n \to \infty} s_n$
- Examples:
 - 1. The geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ (where $a \neq 0$) converges iff |r| < 1.

- 2. The series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent.
- 3. The series $1 1 + 1 1 + \cdots$ is not convergent.

► Algebraic operations on series: Let ∑[∞]_{n=1} x_n and ∑[∞]_{n=1} y_n be convergent with sums x and y respectively.

► Algebraic operations on series: Let ∑[∞]_{n=1} x_n and ∑[∞]_{n=1} y_n be convergent with sums x and y respectively.

Then
(a)
$$\sum_{n=1}^{\infty} (x_n + y_n)$$
 is convergent with sum $x + y$.

► Algebraic operations on series: Let ∑_{n=1}[∞] x_n and ∑_{n=1}[∞] y_n be convergent with sums x and y respectively.

Then
(a)
$$\sum_{n=1}^{\infty} (x_n + y_n)$$
 is convergent with sum $x + y$.
(b) $\sum_{n=1}^{\infty} \alpha x_n$ is convergent with sum αx , where $\alpha \in \mathbb{R}$.

► Algebraic operations on series: Let ∑[∞]_{n=1} x_n and ∑[∞]_{n=1} y_n be convergent with sums x and y respectively.

Then
(a)
$$\sum_{n=1}^{\infty} (x_n + y_n)$$
 is convergent with sum $x + y$.
(b) $\sum_{n=1}^{\infty} \alpha x_n$ is convergent with sum αx , where $\alpha \in \mathbb{R}$.

► Monotonic criterion: A series ∑[∞]_{n=1} x_n of non-negative terms is convergent iff the sequence (s_n) is bounded above.

► Algebraic operations on series: Let ∑[∞]_{n=1} x_n and ∑[∞]_{n=1} y_n be convergent with sums x and y respectively.

Then
(a)
$$\sum_{n=1}^{\infty} (x_n + y_n)$$
 is convergent with sum $x + y$.
(b) $\sum_{n=1}^{\infty} \alpha x_n$ is convergent with sum αx , where $\alpha \in \mathbb{R}$.

► Monotonic criterion: A series ∑_{n=1}[∞] x_n of non-negative terms is convergent iff the sequence (s_n) is bounded above.

• Example:
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 is convergent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example: $\sum_{n=1}^{\infty} \frac{1}{n}$ is not convergent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example:
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 is not convergent.
Result: If $\sum_{n=1}^{\infty} x_n$ is convergent, then $x_n \to 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example:
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 is not convergent.
Result: If $\sum_{n=1}^{\infty} x_n$ is convergent, then $x_n \to 0$.
Hence if $x_n \not\to 0$, then $\sum_{n=1}^{\infty} x_n$ cannot be convergent.

Example:
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 is not convergent.

Result: If
$$\sum_{n=1}^{\infty} x_n$$
 is convergent, then $x_n \to 0$.
Hence if $x_n \not\to 0$, then $\sum_{n=1}^{\infty} x_n$ cannot be convergent.

Examples: The following series are not convergent.

(a)
$$\sum_{n=1}^{\infty} \frac{n^2+1}{(n+3)(n+4)}$$
 (b) $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+2}$

Comparison test: Let (x_n) and (y_n) be sequences in \mathbb{R} such that for some $n_0 \in \mathbb{N}$, $0 \le x_n \le y_n$ for all $n \ge n_0$.

Comparison test: Let (x_n) and (y_n) be sequences in \mathbb{R} such that for some $n_0 \in \mathbb{N}$, $0 \le x_n \le y_n$ for all $n \ge n_0$. Then

(a)
$$\sum_{n=1}^{\infty} y_n$$
 is convergent $\Rightarrow \sum_{n=1}^{\infty} x_n$ is convergent.
(b) $\sum_{n=1}^{\infty} x_n$ is divergent $\Rightarrow \sum_{n=1}^{\infty} y_n$ is divergent.

Comparison test: Let (x_n) and (y_n) be sequences in \mathbb{R} such that for some $n_0 \in \mathbb{N}$, $0 \le x_n \le y_n$ for all $n \ge n_0$. Then

(a)
$$\sum_{n=1}^{\infty} y_n$$
 is convergent $\Rightarrow \sum_{n=1}^{\infty} x_n$ is convergent.
(b) $\sum_{n=1}^{\infty} x_n$ is divergent $\Rightarrow \sum_{n=1}^{\infty} y_n$ is divergent.

Limit comparison test: Let (x_n) and (y_n) be sequences of positive real numbers such that $\frac{x_n}{y_n} \to \ell \in \mathbb{R}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Comparison test: Let (x_n) and (y_n) be sequences in \mathbb{R} such that for some $n_0 \in \mathbb{N}$, $0 \le x_n \le y_n$ for all $n \ge n_0$. Then

(a)
$$\sum_{n=1}^{\infty} y_n$$
 is convergent $\Rightarrow \sum_{n=1}^{\infty} x_n$ is convergent.
(b) $\sum_{n=1}^{\infty} x_n$ is divergent $\Rightarrow \sum_{n=1}^{\infty} y_n$ is divergent.

Limit comparison test: Let (x_n) and (y_n) be sequences of positive real numbers such that $\frac{x_n}{y_n} \to \ell \in \mathbb{R}$.

(a) If
$$\ell \neq 0$$
, then $\sum_{n=1}^{\infty} x_n$ is convergent iff $\sum_{n=1}^{\infty} y_n$ is convergent.
(b) If $\ell = 0$, then $\sum_{n=1}^{\infty} y_n$ is convergent $\Rightarrow \sum_{n=1}^{\infty} x_n$ is convergent.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 • のへで

Examples: (a)
$$\sum_{n=1}^{\infty} \frac{1+\sin n}{1+n^2}$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{2^n+n}$ (c) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n-1)}}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

(d)
$$\sum_{n=1}^{\infty} \frac{n}{4n^3-2}$$

Examples: (a)
$$\sum_{n=1}^{\infty} \frac{1+\sin n}{1+n^2}$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{2^n+n}$ (c) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n-1)}}$ (d) $\sum_{n=1}^{\infty} \frac{n}{4n^3-2}$

Cauchy's condensation test: Let (x_n) be a decreasing sequence of nonnegative real numbers. Then $\sum_{n=1}^{\infty} x_n$ is convergent iff

 $\sum_{n=1}^{\infty} 2^n x_{2^n}$ is convergent.

Examples: (a)
$$\sum_{n=1}^{\infty} \frac{1+\sin n}{1+n^2}$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{2^n+n}$ (c) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n-1)}}$ (d) $\sum_{n=1}^{\infty} \frac{n}{4n^3-2}$

Cauchy's condensation test: Let (x_n) be a decreasing sequence of nonnegative real numbers. Then $\sum_{n=1}^{\infty} x_n$ is convergent iff

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\sum_{n=1}^{\infty} 2^n x_{2^n}$$
 is convergent

Examples:

(a) *p*-series:
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 is convergent iff $p > 1$.

Examples: (a)
$$\sum_{n=1}^{\infty} \frac{1+\sin n}{1+n^2}$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{2^n+n}$ (c) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n-1)}}$ (d) $\sum_{n=1}^{\infty} \frac{n}{4n^3-2}$

Cauchy's condensation test: Let (x_n) be a decreasing sequence of nonnegative real numbers. Then $\sum_{n=1}^{\infty} x_n$ is convergent iff

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\sum_{n=1}^{\infty} 2^n x_{2^n} \text{ is convergent.}$

Examples:

(a) *p*-series:
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 is convergent iff $p > 1$.

(b)
$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$$
 is convergent iff $p > 1$.

Definitions:
$$\sum_{n=1}^{\infty} x_n$$
 is called absolutely convergent if $\sum_{n=1}^{\infty} |x_n|$ is convergent.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

 $\sum_{n=1}^{\infty} x_n \text{ is called conditionally convergent if } \sum_{n=1}^{\infty} x_n \text{ is convergent}$ but $\sum_{n=1}^{\infty} |x_n| \text{ is divergent.}$

< ロ ト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

 $\sum_{n=1}^{\infty} x_n \text{ is called conditionally convergent if } \sum_{n=1}^{\infty} x_n \text{ is convergent}$ but $\sum_{n=1}^{\infty} |x_n| \text{ is divergent.}$

Result: Every absolutely convergent series is convergent.

 $\sum_{n=1}^{\infty} x_n \text{ is called conditionally convergent if } \sum_{n=1}^{\infty} x_n \text{ is convergent}$ but $\sum_{n=1}^{\infty} |x_n| \text{ is divergent.}$

Result: Every absolutely convergent series is convergent.

Ratio test: Let (x_n) be a sequence of nonzero real numbers such that $\left|\frac{x_{n+1}}{x_n}\right| \to \ell$.

 $\sum_{n=1}^{\infty} x_n \text{ is called conditionally convergent if } \sum_{n=1}^{\infty} x_n \text{ is convergent}$ but $\sum_{n=1}^{\infty} |x_n| \text{ is divergent.}$

Result: Every absolutely convergent series is convergent.

Ratio test: Let (x_n) be a sequence of nonzero real numbers such that $|\frac{x_{n+1}}{x_n}| \to \ell$.

(a) If
$$\ell < 1$$
, then $\sum_{n=1}^{\infty} x_n$ is absolutely convergent.
(b) If $\ell > 1$, then $\sum_{n=1}^{\infty} x_n$ is divergent.

Examples: (a)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Examples: (a)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$

Examples: (a)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

(a) If
$$\ell < 1$$
, then $\sum_{n=1}^{\infty} x_n$ is absolutely convergent.
(b) If $\ell > 1$, then $\sum_{n=1}^{\infty} x_n$ is divergent.

Examples: (a)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

(a) If
$$\ell < 1$$
, then $\sum_{n=1}^{\infty} x_n$ is absolutely convergent.
(b) If $\ell > 1$, then $\sum_{n=1}^{\infty} x_n$ is divergent.

Examples: (a)
$$\sum_{n=1}^{\infty} \frac{(n!)^n}{n^{n^2}}$$
 (b) $\sum_{n=1}^{\infty} \frac{5^n}{3^n+4^n}$

Examples: (a)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$

(a) If
$$\ell < 1$$
, then $\sum_{n=1}^{\infty} x_n$ is absolutely convergent
(b) If $\ell > 1$, then $\sum_{n=1}^{\infty} x_n$ is divergent.

Examples: (a)
$$\sum_{n=1}^{\infty} \frac{(n!)^n}{n^{n^2}}$$
 (b) $\sum_{n=1}^{\infty} \frac{5^n}{3^n+4^n}$

Leibniz's test: Let (x_n) be a decreasing sequence of positive real numbers such that $x_n \rightarrow 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Examples: (a)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$

(a) If
$$\ell < 1$$
, then $\sum_{n=1}^{\infty} x_n$ is absolutely convergent
(b) If $\ell > 1$, then $\sum_{n=1}^{\infty} x_n$ is divergent.

Examples: (a)
$$\sum_{n=1}^{\infty} \frac{(n!)^n}{n^{n^2}}$$
 (b) $\sum_{n=1}^{\infty} \frac{5^n}{3^n+4^n}$

Leibniz's test: Let (x_n) be a decreasing sequence of positive real numbers such that $x_n \rightarrow 0$.

Then the alternating series
$$\sum\limits_{n=1}^{\infty}(-1)^{n+1}x_n$$
 is convergent

Examples: (a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^p}$$
, $p \in \mathbb{R}$ (b) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^3+1}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Examples: (a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^p}$$
, $p \in \mathbb{R}$ (b) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^3+1}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Result: Grouping of terms of a convergent series does not change the convergence and the sum.

Examples: (a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^p}$$
, $p \in \mathbb{R}$ (b) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^3+1}$

However, a divergent series can become convergent after grouping of terms.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Examples: (a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^p}$$
, $p \in \mathbb{R}$ (b) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^3+1}$

However, a divergent series can become convergent after grouping of terms.

Result: Rearrangement of terms does not change the convergence and the sum of an absolutely convergent series.

Examples: (a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^p}$$
, $p \in \mathbb{R}$ (b) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^3+1}$

However, a divergent series can become convergent after grouping of terms.

Result: Rearrangement of terms does not change the convergence and the sum of an absolutely convergent series.

Example:
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = s$$

Examples: (a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^p}$$
, $p \in \mathbb{R}$ (b) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^3+1}$

However, a divergent series can become convergent after grouping of terms.

Result: Rearrangement of terms does not change the convergence and the sum of an absolutely convergent series.

Example:
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = s$$

 $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \dots = \frac{3}{2}s$

Riemann's rearrangement theorem: Let $\sum_{n=1}^{\infty} x_n$ be a conditionally convergent series.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Riemann's rearrangement theorem: Let $\sum_{n=1}^{\infty} x_n$ be a conditionally convergent series.

(a) If $s \in \mathbb{R}$, then there exists a rearrangement of terms of $\sum_{n=1}^{\infty} x_n$ such that the rearranged series has the sum s.

Riemann's rearrangement theorem: Let $\sum_{n=1}^{\infty} x_n$ be a conditionally convergent series.

- (a) If $s \in \mathbb{R}$, then there exists a rearrangement of terms of $\sum_{n=1}^{\infty} x_n$ such that the rearranged series has the sum s.
- (b) There exists a rearrangement of terms of $\sum_{n=1}^{\infty} x_n$ such that the rearranged series diverges.