MA 101 (Mathematics I) Series : Summary of Lectures

An infinite series in \mathbb{R} is an expression $\sum_{n=1}^{\infty} x_n$, where (x_n) is a sequence in \mathbb{R} . More formally, it is an ordered pair $((x_n), (s_n))$, where (x_n) is a sequence in \mathbb{R} and $s_n = x_1 + \dots + x_n$ for all $n \in \mathbb{N}$.

 x_n : *n*th term of the series s_n : *n*th partial sum of the series

Convergence of series: $\sum_{n=1}^{\infty} x_n$ is convergent if (s_n) is convergent. In this case, the sum of the series is $\sum_{n=1}^{\infty} x_n = \lim_{n \to \infty} s_n$.

A series which is not convergent is called divergent.

Examples:

1. The geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ (where $a \neq 0$) converges iff |r| < 1.

- 2. The series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent with sum 1. 3. The series $1 1 + 1 1 + \cdots$ is not convergent.

Algebraic operations on series: Let $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ be convergent with sums x and y respectively. Then

(a) $\sum_{n=1}^{\infty} (x_n + y_n)$ is convergent with sum x + y(b) $\sum_{n=1}^{\infty} \alpha x_n$ is convergent with sum αx , where $\alpha \in \mathbb{R}$

Monotonic criterion: A series $\sum_{n=1}^{\infty} x_n$ of non-negative terms is convergent iff the sequence (s_n) is bounded above.

Example: $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

Cauchy criterion: A series $\sum_{n=1}^{\infty} x_n$ is convergent iff for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $|x_{m+1} + \cdots + x_n| < \varepsilon$ for all $m > n \ge n_0$.

Example: $\sum_{n=1}^{\infty} \frac{1}{n}$ is not convergent. **Result:** If $\sum_{n=1}^{\infty} x_n$ is convergent, then $x_n \to 0$. Hence if $x_n \not\to 0$, then $\sum_{n=1}^{\infty} x_n$ cannot be convergent. **Examples:** The following series are not convergent.

(a) $\sum_{n=1}^{\infty} \frac{n^2 + 1}{(n+3)(n+4)}$ (b) $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+2}$

Comparison test: Let (x_n) and (y_n) be sequences in \mathbb{R} such that for some $n_0 \in \mathbb{N}$,

 $0 \le x_n \le y_n \text{ for all } n \ge n_0.$ Then (a) $\sum_{n=1}^{\infty} y_n \text{ is convergent} \Rightarrow \sum_{n=1}^{\infty} x_n \text{ is convergent},$ (b) $\sum_{n=1}^{\infty} x_n \text{ is divergent} \Rightarrow \sum_{n=1}^{\infty} y_n \text{ is divergent}.$

Limit comparison test: Let (x_n) and (y_n) be sequences of positive real numbers such that $\frac{x_n}{y_n} \to \ell \in \mathbb{R}$.

(a) If l ≠ 0, then ∑_{n=1}[∞] x_n is convergent iff ∑_{n=1}[∞] y_n is convergent.
(b) If l = 0, then ∑_{n=1}[∞] y_n is convergent ⇒ ∑_{n=1}[∞] x_n is convergent.

Examples: (a) $\sum_{n=1}^{\infty} \frac{1+\sin n}{1+n^2}$ (b) $\sum_{n=1}^{\infty} \frac{1}{2^n+n}$ (c) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n-1)}}$ (d) $\sum_{n=1}^{\infty} \frac{n}{4n^3-2}$

Cauchy's condensation test: Let (x_n) be a decreasing sequence of nonnegative real numbers. Then $\sum_{n=1}^{\infty} x_n$ is convergent iff $\sum_{n=1}^{\infty} 2^n x_{2^n}$ is convergent.

Examples:

(a) *p*-series: $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent iff p > 1. (b) $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ is convergent iff p > 1.

Definitions: $\sum_{n=1}^{\infty} x_n$ is called absolutely convergent if $\sum_{n=1}^{\infty} |x_n|$ is convergent. $\sum_{n=1}^{\infty} x_n$ is called conditionally convergent if $\sum_{n=1}^{\infty} x_n$ is convergent but $\sum_{n=1}^{\infty} |x_n|$ is divergent. **Result:** Every absolutely convergent series is convergent.

Ratio test: Let (x_n) be a sequence of nonzero real numbers such that $|\frac{x_{n+1}}{x_n}| \to \ell$.

(a) If ℓ < 1, then ∑[∞]_{n=1} x_n is absolutely convergent.
(b) If ℓ > 1, then ∑[∞]_{n=1} x_n is divergent.

Examples: (a) $\sum_{n=1}^{\infty} \frac{n}{2^n}$ (b) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$

Root test: Let (x_n) be a sequence in \mathbb{R} such that $|x_n|^{\frac{1}{n}} \to \ell$.

(a) If ℓ < 1, then ∑[∞]_{n=1} x_n is absolutely convergent.
(b) If ℓ > 1, then ∑[∞]_{n=1} x_n is divergent.

Examples: (a) $\sum_{n=1}^{\infty} \frac{(n!)^n}{n^{n^2}}$ (b) $\sum_{n=1}^{\infty} \frac{5^n}{3^n + 4^n}$

Leibniz's test: Let (x_n) be a decreasing sequence of positive real numbers such that

 $x_n \to 0$. Then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} x_n$ is convergent.

Examples: (a) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^p}, p \in \mathbb{R}$ (b) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^3+1}$

Result: Grouping of terms of a convergent series does not change the convergence and the sum.

However, a divergent series can become convergent after grouping of terms.

Result: Rearrangement of terms does not change the convergence and the sum of an absolutely convergent series.

Example: $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = s$ $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \dots = \frac{3}{2}s$

Riemann's rearrangement theorem: Let $\sum_{n=1}^{\infty} x_n$ be a conditionally convergent series.

- (a) If $s \in \mathbb{R}$, then there exists a rearrangement of terms of $\sum_{n=1}^{\infty} x_n$ such that the rearranged series has the sum s.
- (b) There exists a rearrangement of terms of $\sum_{n=1}^{\infty} x_n$ such that the rearranged series diverges.