▶ A sequence of real numbers or a sequence in \mathbb{R} is a mapping $f : \mathbb{N} \to \mathbb{R}$.

- ▶ A sequence of real numbers or a sequence in \mathbb{R} is a mapping $f : \mathbb{N} \to \mathbb{R}$.
- Notation: We write x_n for f(n), $n \in \mathbb{N}$ and the notation for a sequence is (x_n) .

- ▶ A sequence of real numbers or a sequence in \mathbb{R} is a mapping $f : \mathbb{N} \to \mathbb{R}$.
- Notation: We write x_n for f(n), $n \in \mathbb{N}$ and the notation for a sequence is (x_n) .
- ► Examples:
 - 1. Constant sequence: (a, a, a, ...), where $a \in \mathbb{R}$

- ▶ A sequence of real numbers or a sequence in \mathbb{R} is a mapping $f : \mathbb{N} \to \mathbb{R}$.
- ▶ Notation: We write x_n for f(n), $n \in \mathbb{N}$ and the notation for a sequence is (x_n) .
- ► Examples:
 - 1. Constant sequence: (a, a, a, ...), where $a \in \mathbb{R}$
 - 2. Sequence defined by listing: (1, 4, 8, 11, 52, ...)

- ▶ A sequence of real numbers or a sequence in \mathbb{R} is a mapping $f : \mathbb{N} \to \mathbb{R}$.
- ▶ Notation: We write x_n for f(n), $n \in \mathbb{N}$ and the notation for a sequence is (x_n) .
- ► Examples:
 - 1. Constant sequence: (a, a, a, ...), where $a \in \mathbb{R}$
 - 2. Sequence defined by listing: (1, 4, 8, 11, 52, ...)
 - 3. Sequence defined by rule: (x_n) , where $x_n = 3n^2$ for all $n \in \mathbb{N}$

- ▶ A sequence of real numbers or a sequence in \mathbb{R} is a mapping $f : \mathbb{N} \to \mathbb{R}$.
- ▶ Notation: We write x_n for f(n), $n \in \mathbb{N}$ and the notation for a sequence is (x_n) .
- ► Examples:
 - 1. Constant sequence: (a, a, a, ...), where $a \in \mathbb{R}$
 - 2. Sequence defined by listing: (1, 4, 8, 11, 52, ...)
 - 3. Sequence defined by rule: (x_n) , where $x_n = 3n^2$ for all $n \in \mathbb{N}$
 - 4. Sequence defined recursively: (x_n) , where $x_1 = 4$ and $x_{n+1} = 2x_n 5$ for all $n \in \mathbb{N}$

► Convergence: What does it mean?

- ► Convergence: What does it mean?
- ► Think of the examples:

$$(2,2,2,...)$$

$$(\frac{1}{n})$$

$$((-1)^{n}\frac{1}{n})$$

$$(1,2,1,2,...)$$

$$((-1)^{n}(1-\frac{1}{n}))$$

$$(n^{2}-1)$$

- ► Convergence: What does it mean?
- ► Think of the examples:

$$(2,2,2,...)$$

$$(\frac{1}{n})$$

$$((-1)^{n}\frac{1}{n})$$

$$(1,2,1,2,...)$$

$$((-1)^{n}(1-\frac{1}{n}))$$

$$(n^{2}-1)$$

Definition: The sequence (x_n) is convergent if there exists $\ell \in \mathbb{R}$ such that for every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ satisfying $|x_n - \ell| < \varepsilon$ for all $n \ge n_0$.

- ► Convergence: What does it mean?
- ► Think of the examples:

$$(2,2,2,...)$$

$$(\frac{1}{n})$$

$$((-1)^{n}\frac{1}{n})$$

$$(1,2,1,2,...)$$

$$((-1)^{n}(1-\frac{1}{n}))$$

$$(n^{2}-1)$$

Definition: The sequence (x_n) is convergent if there exists $\ell \in \mathbb{R}$ such that for every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ satisfying $|x_n - \ell| < \varepsilon$ for all $n \ge n_0$.

▶ We say: ℓ is a limit of (x_n) : $\lim_{n\to\infty} x_n = \ell$ or $x_n \to \ell$.

Result: The limit of a convergent sequence is unique.

Result: The limit of a convergent sequence is unique.

Examples: (a)
$$(\frac{n+1}{2n+3})$$
 (b) $(1, 2, 1, 2, ...)$ (c) $(n^3 + 1)$

Result: The limit of a convergent sequence is unique.

Examples: (a)
$$(\frac{n+1}{2n+3})$$
 (b) $(1,2,1,2,...)$ (c) (n^3+1)

Definition: The sequence (x_n) is bounded if there exists M > 0 such that $|x_n| \le M$ for all $n \in \mathbb{N}$.

Otherwise (x_n) is called unbounded (not bounded).

Result: The limit of a convergent sequence is unique.

Examples: (a)
$$(\frac{n+1}{2n+3})$$
 (b) $(1,2,1,2,...)$ (c) (n^3+1)

Definition: The sequence (x_n) is bounded if there exists M > 0 such that $|x_n| \le M$ for all $n \in \mathbb{N}$.

Otherwise (x_n) is called unbounded (not bounded).

Examples: (a)
$$(\frac{3n+2}{2n+5})$$
 (b) $(1,2,1,3,1,4,...)$

Result: The limit of a convergent sequence is unique.

Examples: (a)
$$(\frac{n+1}{2n+3})$$
 (b) $(1,2,1,2,...)$ (c) (n^3+1)

Definition: The sequence (x_n) is bounded if there exists M > 0 such that $|x_n| \le M$ for all $n \in \mathbb{N}$.

Otherwise (x_n) is called unbounded (not bounded).

Examples: (a)
$$(\frac{3n+2}{2n+5})$$
 (b) $(1,2,1,3,1,4,...)$

Result: Every convergent sequence is bounded.

So, Not bounded implies Not convergent.

Let $x_n \to x$ and $y_n \to y$.

Let $x_n \to x$ and $y_n \to y$.

Then

- (a) $x_n + y_n \rightarrow x + y$.
- (b) $\alpha x_n \to \alpha x$ for all $\alpha \in \mathbb{R}$.
- (c) $|x_n| \rightarrow |x|$.
- (d) $x_n y_n \to xy$.
- (e) $\frac{x_n}{y_n} \to \frac{x}{y}$ if $y_n \neq 0$ for all $n \in \mathbb{N}$ and $y \neq 0$.

Let $x_n \to x$ and $y_n \to y$.

Then

- (a) $x_n + y_n \rightarrow x + y$.
- (b) $\alpha x_n \to \alpha x$ for all $\alpha \in \mathbb{R}$.
- (c) $|x_n| \rightarrow |x|$.
- (d) $x_n y_n \to xy$.
- (e) $\frac{x_n}{y_n} \to \frac{x}{y}$ if $y_n \neq 0$ for all $n \in \mathbb{N}$ and $y \neq 0$.

Examples: (a)
$$(\frac{2n^2-3n}{3n^2+5n+3})$$
 (b) $(\sqrt{n+1}-\sqrt{n})$

Let $x_n \to x$ and $y_n \to y$.

Then

- (a) $x_n + y_n \rightarrow x + y$.
- (b) $\alpha x_n \to \alpha x$ for all $\alpha \in \mathbb{R}$.
- (c) $|x_n| \rightarrow |x|$.
- (d) $x_n y_n \to xy$.
- (e) $\frac{x_n}{y_n} \to \frac{x}{y}$ if $y_n \neq 0$ for all $n \in \mathbb{N}$ and $y \neq 0$.

Examples: (a)
$$(\frac{2n^2-3n}{3n^2+5n+3})$$
 (b) $(\sqrt{n+1}-\sqrt{n})$

Standard examples: (a) (α^n) , where $|\alpha| < 1$

(b)
$$(\alpha^{\frac{1}{n}})$$
, where $\alpha > 0$ (c) $(n^{\frac{1}{n}})$

If both (x_n) and (z_n) converge to the same limit ℓ , then (y_n) also converges to ℓ .

If both (x_n) and (z_n) converge to the same limit ℓ , then (y_n) also converges to ℓ .

Examples: (a)
$$((2^n + 3^n)^{\frac{1}{n}})$$
 (b) $(\frac{1}{\sqrt{n^2+1}} + \cdots + \frac{1}{\sqrt{n^2+n}})$

If both (x_n) and (z_n) converge to the same limit ℓ , then (y_n) also converges to ℓ .

Examples: (a)
$$((2^n + 3^n)^{\frac{1}{n}})$$
 (b) $(\frac{1}{\sqrt{n^2+1}} + \cdots + \frac{1}{\sqrt{n^2+n}})$

Result: Let $x_n \neq 0$ for all $n \in \mathbb{N}$ and let $L = \lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right|$ exist.

If both (x_n) and (z_n) converge to the same limit ℓ , then (y_n) also converges to ℓ .

Examples: (a)
$$((2^n + 3^n)^{\frac{1}{n}})$$
 (b) $(\frac{1}{\sqrt{n^2+1}} + \cdots + \frac{1}{\sqrt{n^2+n}})$

Result: Let $x_n \neq 0$ for all $n \in \mathbb{N}$ and let $L = \lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right|$ exist.

- (a) If L < 1, then $x_n \to 0$.
- (b) If L > 1, then (x_n) is divergent.

If both (x_n) and (z_n) converge to the same limit ℓ , then (y_n) also converges to ℓ .

Examples: (a)
$$((2^n + 3^n)^{\frac{1}{n}})$$
 (b) $(\frac{1}{\sqrt{n^2+1}} + \cdots + \frac{1}{\sqrt{n^2+n}})$

Result: Let $x_n \neq 0$ for all $n \in \mathbb{N}$ and let $L = \lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right|$ exist.

- (a) If L < 1, then $x_n \to 0$.
- (b) If L > 1, then (x_n) is divergent.

Examples: (a)
$$\left(\frac{\alpha^n}{n!}\right)$$
, $\alpha \in \mathbb{R}$ (b) $\left(\frac{2^n}{n^4}\right)$

 (x_n) is decreasing if $x_{n+1} \leq x_n$ for all $n \in \mathbb{N}$.

 (x_n) is monotonic if it is either increasing or decreasing.

 (x_n) is decreasing if $x_{n+1} \leq x_n$ for all $n \in \mathbb{N}$.

 (x_n) is monotonic if it is either increasing or decreasing.

Examples: (a) $(1-\frac{1}{n})$ (b) $(n+\frac{1}{n})$ (c) $(\cos \frac{n\pi}{3})$

 (x_n) is decreasing if $x_{n+1} \leq x_n$ for all $n \in \mathbb{N}$.

 (x_n) is monotonic if it is either increasing or decreasing.

Examples: (a)
$$(1 - \frac{1}{n})$$
 (b) $(n + \frac{1}{n})$ (c) $(\cos \frac{n\pi}{3})$

Definition: Let $S(\neq \emptyset) \subset \mathbb{R}$ and $u \in \mathbb{R}$. u is an upper bound of S in \mathbb{R} if $x \leq u$ for all $x \in S$.

 (x_n) is decreasing if $x_{n+1} \leq x_n$ for all $n \in \mathbb{N}$.

 (x_n) is monotonic if it is either increasing or decreasing.

Examples: (a)
$$(1 - \frac{1}{n})$$
 (b) $(n + \frac{1}{n})$ (c) $(\cos \frac{n\pi}{3})$

Definition: Let $S(\neq \emptyset) \subset \mathbb{R}$ and $u \in \mathbb{R}$. u is an upper bound of S in \mathbb{R} if $x \leq u$ for all $x \in S$. u is the supremum (least upper bound) of S in \mathbb{R} if

- (a) u is an upper bound of S in \mathbb{R} , and
- (b) u is the least among all the upper bounds of S in \mathbb{R} , *i.e.* if u' is any upper bound of S in \mathbb{R} , then $u \leq u'$.

 (x_n) is decreasing if $x_{n+1} \leq x_n$ for all $n \in \mathbb{N}$.

 (x_n) is monotonic if it is either increasing or decreasing.

Examples: (a)
$$(1 - \frac{1}{n})$$
 (b) $(n + \frac{1}{n})$ (c) $(\cos \frac{n\pi}{3})$

Definition: Let $S(\neq \emptyset) \subset \mathbb{R}$ and $u \in \mathbb{R}$. u is an upper bound of S in \mathbb{R} if $x \leq u$ for all $x \in S$. u is the supremum (least upper bound) of S in \mathbb{R} if

- (a) u is an upper bound of S in \mathbb{R} , and
- (b) u is the least among all the upper bounds of S in \mathbb{R} , i.e. if u' is any upper bound of S in \mathbb{R} , then $u \leq u'$.

Lower bound and infimum (greatest lower bound) are defined similarly.

A decreasing sequence (x_n) which is bounded below converges to $\inf\{x_n : n \in \mathbb{N}\}.$

A decreasing sequence (x_n) which is bounded below converges to $\inf\{x_n : n \in \mathbb{N}\}.$

So a monotonic sequence converges iff it is bounded.

A decreasing sequence (x_n) which is bounded below converges to $\inf\{x_n:n\in\mathbb{N}\}.$

So a monotonic sequence converges iff it is bounded.

Example: Let $x_1 = 1$, $x_{n+1} = \frac{1}{3}(x_n + 1)$ for all $n \in \mathbb{N}$. Then (x_n) is convergent and $\lim_{n \to \infty} x_n = \frac{1}{2}$.

A decreasing sequence (x_n) which is bounded below converges to $\inf\{x_n : n \in \mathbb{N}\}.$

So a monotonic sequence converges iff it is bounded.

Example: Let $x_1 = 1$, $x_{n+1} = \frac{1}{3}(x_n + 1)$ for all $n \in \mathbb{N}$. Then (x_n) is convergent and $\lim_{n \to \infty} x_n = \frac{1}{2}$.

Cauchy sequence: A sequence (x_n) is called a Cauchy sequence if for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $|x_m - x_n| < \varepsilon$ for all $m, n \ge n_0$.

Result: An increasing sequence (x_n) which is bounded above converges to $\sup\{x_n : n \in \mathbb{N}\}.$

A decreasing sequence (x_n) which is bounded below converges to $\inf\{x_n : n \in \mathbb{N}\}.$

So a monotonic sequence converges iff it is bounded.

Example: Let $x_1 = 1$, $x_{n+1} = \frac{1}{3}(x_n + 1)$ for all $n \in \mathbb{N}$. Then (x_n) is convergent and $\lim_{n \to \infty} x_n = \frac{1}{2}$.

Cauchy sequence: A sequence (x_n) is called a Cauchy sequence if for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $|x_m - x_n| < \varepsilon$ for all $m, n \ge n_0$.

Result: A sequence in $\mathbb R$ is convergent iff it is a Cauchy sequence.

Example: Let (x_n) satisfy either of the following conditions:

(a)
$$|x_{n+1} - x_n| \le \alpha^n$$
 for all $n \in \mathbb{N}$,

(b)
$$|x_{n+2} - x_{n+1}| \le \alpha |x_{n+1} - x_n|$$
 for all $n \in \mathbb{N}$,

where $0 < \alpha < 1$.

Then (x_n) is a Cauchy sequence.

Example: Let (x_n) satisfy either of the following conditions:

- (a) $|x_{n+1} x_n| \le \alpha^n$ for all $n \in \mathbb{N}$,
- (b) $|x_{n+2} x_{n+1}| \le \alpha |x_{n+1} x_n|$ for all $n \in \mathbb{N}$,

where $0 < \alpha < 1$.

Then (x_n) is a Cauchy sequence.

Example: Let $x_1=1$ and let $x_{n+1}=\frac{1}{x_n+2}$ for all $n\in\mathbb{N}$. Then (x_n) is convergent and $\lim_{n\to\infty}x_n=\sqrt{2}-1$.

Example: Let (x_n) satisfy either of the following conditions:

- (a) $|x_{n+1} x_n| \le \alpha^n$ for all $n \in \mathbb{N}$,
- (b) $|x_{n+2} x_{n+1}| \le \alpha |x_{n+1} x_n|$ for all $n \in \mathbb{N}$,

where $0 < \alpha < 1$.

Then (x_n) is a Cauchy sequence.

Example: Let $x_1=1$ and let $x_{n+1}=\frac{1}{x_n+2}$ for all $n\in\mathbb{N}$. Then (x_n) is convergent and $\lim_{n\to\infty}x_n=\sqrt{2}-1$.

Subsequence: Let (x_n) be a sequence in \mathbb{R} . If (n_k) is a sequence of positive integers such that $n_1 < n_2 < n_3 < \cdots$, then (x_{n_k}) is called a subsequence of (x_n) .

Result: If a sequence (x_n) converges to ℓ , then every subsequence of (x_n) must converge to ℓ .

Result: If a sequence (x_n) converges to ℓ , then every subsequence of (x_n) must converge to ℓ .

So, if (x_n) has a subsequence (x_{n_k}) such that $x_{n_k} \not\to \ell$, then $x_n \not\to \ell$.

Result: If a sequence (x_n) converges to ℓ , then every subsequence of (x_n) must converge to ℓ .

So, if (x_n) has a subsequence (x_{n_k}) such that $x_{n_k} \not\to \ell$, then $x_n \not\to \ell$.

Also, if (x_n) has two subsequences converging to two different limits, then (x_n) cannot be convergent.

Result: If a sequence (x_n) converges to ℓ , then every subsequence of (x_n) must converge to ℓ .

So, if (x_n) has a subsequence (x_{n_k}) such that $x_{n_k} \not\to \ell$, then $x_n \not\to \ell$.

Also, if (x_n) has two subsequences converging to two different limits, then (x_n) cannot be convergent.

Example: Let $x_n = (-1)^n (1 - \frac{1}{n})$ for all $n \in \mathbb{N}$. Then $x_n \not\to 1$.

Result: If a sequence (x_n) converges to ℓ , then every subsequence of (x_n) must converge to ℓ .

So, if (x_n) has a subsequence (x_{n_k}) such that $x_{n_k} \not\to \ell$, then $x_n \not\to \ell$.

Also, if (x_n) has two subsequences converging to two different limits, then (x_n) cannot be convergent.

Example: Let $x_n = (-1)^n (1 - \frac{1}{n})$ for all $n \in \mathbb{N}$. Then $x_n \not\to 1$. In fact, (x_n) is not convergent.

Example: The sequence $(1, \frac{1}{2}, 1, \frac{2}{3}, 1, \frac{3}{4}, ...)$ converges to 1.

Example: The sequence $(1, \frac{1}{2}, 1, \frac{2}{3}, 1, \frac{3}{4}, ...)$ converges to 1.

Bolzano-Weierstrass Theorem: Every bounded sequence in \mathbb{R} has a convergent subsequence.

Example: The sequence $(1, \frac{1}{2}, 1, \frac{2}{3}, 1, \frac{3}{4}, ...)$ converges to 1.

Bolzano-Weierstrass Theorem: Every bounded sequence in \mathbb{R} has a convergent subsequence.

Examples: If $x \in \mathbb{R}$, then there exists a sequence (r_n) of rationals converging to x.

Example: The sequence $(1, \frac{1}{2}, 1, \frac{2}{3}, 1, \frac{3}{4}, ...)$ converges to 1.

Bolzano-Weierstrass Theorem: Every bounded sequence in \mathbb{R} has a convergent subsequence.

Examples: If $x \in \mathbb{R}$, then there exists a sequence (r_n) of rationals converging to x.

Similarly, if $x \in \mathbb{R}$, then there exists a sequence (t_n) of irrationals converging to x.