MA 101 (Mathematics I) Sequence : Summary of Lectures

A sequence of real numbers or a sequence in \mathbb{R} is a mapping $f : \mathbb{N} \to \mathbb{R}$. Notation: We write x_n for $f(n), n \in \mathbb{N}$ and the notation for a sequence is (x_n) .

Examples:

- 1. Constant sequence: (a, a, a, ...), where $a \in \mathbb{R}$
- 2. Sequence defined by listing: $(1, 4, 8, 11, 52, \ldots)$
- 3. Sequence defined by rule: (x_n) , where $x_n = 3n^2$ for all $n \in \mathbb{N}$
- 4. Sequence defined recursively: (x_n) , where $x_1 = 4$ and $x_{n+1} = 2x_n 5$ for all $n \in \mathbb{N}$

Convergence: What does it mean?

Think of the examples:

 $\begin{array}{l} (2,2,2,\ldots) \\ (\frac{1}{n}) \\ ((-1)^n \frac{1}{n}) \\ (1,2,1,2,\ldots) \\ ((-1)^n (1-\frac{1}{n})) \\ (n^2-1) \end{array}$

Definition: The sequence (x_n) is convergent if there exists $\ell \in \mathbb{R}$ such that for every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ satisfying $|x_n - \ell| < \varepsilon$ for all $n \ge n_0$. We say: ℓ is a limit of (x_n) : $\lim_{n \to \infty} x_n = \ell$ or $x_n \to \ell$.

A sequence which is not convergent is called divergent.

Result: The limit of a convergent sequence is unique.

Examples: (a) $\left(\frac{n+1}{2n+3}\right)$ (b) (1, 2, 1, 2, ...) (c) $(n^3 + 1)$

Definition: The sequence (x_n) is bounded if there exists M > 0 such that $|x_n| \leq M$ for all $n \in \mathbb{N}$.

Otherwise (x_n) is called unbounded (not bounded).

Examples: (a) $\left(\frac{3n+2}{2n+5}\right)$ (b) (1, 2, 1, 3, 1, 4, ...)

Result: Every convergent sequence is bounded. So, Not bounded implies Not convergent.

Limit rules for convergent sequences: Let $x_n \to x$ and $y_n \to y$. Then

(a) $x_n + y_n \to x + y$. (b) $\alpha x_n \to \alpha x$ for all $\alpha \in \mathbb{R}$.

(c) $|x_n| \to |x|$.

(d) $x_n y_n \to xy$. (e) $\frac{x_n}{y_n} \to \frac{x}{y}$ if $y_n \neq 0$ for all $n \in \mathbb{N}$ and $y \neq 0$.

Examples: (a) $\left(\frac{2n^2 - 3n}{3n^2 + 5n + 3}\right)$ (b) $\left(\sqrt{n+1} - \sqrt{n}\right)$

Standard examples: (a) (α^n) , where $|\alpha| < 1$ (b) $(\alpha^{\frac{1}{n}})$, where $\alpha > 0$ (ii) $(n^{\frac{1}{n}})$

Sandwich theorem: Let (x_n) , (y_n) , (z_n) be sequences such that $x_n \leq y_n \leq z_n$ for all $n \in \mathbb{N}$. If both (x_n) and (z_n) converge to the same limit ℓ , then (y_n) also converges to ℓ . **Examples:** (a) $((2^n + 3^n)^{\frac{1}{n}})$ (b) $\left(\frac{1}{\sqrt{n^2 + 1}} + \dots + \frac{1}{\sqrt{n^2 + n}}\right)$

Result: Let $x_n \neq 0$ for all $n \in \mathbb{N}$ and let $L = \lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right|$ exist.

(a) If L < 1, then $x_n \to 0$.

(b) If L > 1, then (x_n) is divergent.

Examples: (a) $\left(\frac{\alpha^n}{n!}\right)$, where $\alpha \in \mathbb{R}$ (b) $\left(\frac{2^n}{n^4}\right)$

Definition: (x_n) is increasing if $x_{n+1} \ge x_n$ for all $n \in \mathbb{N}$. (x_n) is decreasing if $x_{n+1} \le x_n$ for all $n \in \mathbb{N}$. (x_n) is monotonic if it is either increasing or decreasing.

Examples: (a) $(1 - \frac{1}{n})$ (b) $(n + \frac{1}{n})$ (c) $(\cos \frac{n\pi}{3})$

Definition: Let $S \neq \emptyset \subset \mathbb{R}$ and $u \in \mathbb{R}$. *u* is an upper bound of *S* in \mathbb{R} if $x \leq u$ for all $x \in S$. *u* is the supremum (least upper bound) of *S* in \mathbb{R} if

- (a) u is an upper bound of S in \mathbb{R} , and
- (b) u is the least among all the upper bounds of S in \mathbb{R} , *i.e.* if u' is any upper bound of S in \mathbb{R} , then $u \leq u'$.

Lower bound and infimum (greatest lower bound) are defined similarly.

Result: An increasing sequence (x_n) which is bounded above converges to $\sup\{x_n : n \in \mathbb{N}\}$. A decreasing sequence (x_n) which is bounded below converges to $\inf\{x_n : n \in \mathbb{N}\}$. So a monotonic sequence converges iff it is bounded.

Example: Let $x_1 = 1$ and $x_{n+1} = \frac{1}{3}(x_n + 1)$ for all $n \in \mathbb{N}$. Then (x_n) is convergent and $\lim_{n \to \infty} x_n = \frac{1}{2}$.

Cauchy sequence: A sequence (x_n) is called a Cauchy sequence if for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $|x_m - x_n| < \varepsilon$ for all $m, n \ge n_0$.

Result: A sequence in \mathbb{R} is convergent iff it is a Cauchy sequence.

Example: Let $x_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}$ for all $n \in \mathbb{N}$. Then (x_n) is convergent.

Example: Let (x_n) satisfy either of the following conditions:

(a) $|x_{n+1} - x_n| \leq \alpha^n$ for all $n \in \mathbb{N}$ (b) $|x_{n+2} - x_{n+1}| \leq \alpha |x_{n+1} - x_n|$ for all $n \in \mathbb{N}$, where $0 < \alpha < 1$. Then (x_n) is a Cauchy sequence.

Example: Let $x_1 = 1$ and let $x_{n+1} = \frac{1}{x_n+2}$ for all $n \in \mathbb{N}$. Then (x_n) is convergent and $\lim_{n \to \infty} x_n = \sqrt{2} - 1$.

Subsequence: Let (x_n) be a sequence in \mathbb{R} . If (n_k) is a sequence of positive integers such that $n_1 < n_2 < n_3 < \cdots$, then (x_{n_k}) is called a subsequence of (x_n) .

Examples: Think of some divergent sequences and their convergent subsequences.

Result: If a sequence (x_n) converges to ℓ , then every subsequence of (x_n) must converge to ℓ .

So, if (x_n) has a subsequence (x_{n_k}) such that $x_{n_k} \not\to \ell$, then $x_n \not\to \ell$.

Also, if (x_n) has two subsequences converging to two different limits, then (x_n) cannot be convergent.

Example: Let $x_n = (-1)^n (1 - \frac{1}{n})$ for all $n \in \mathbb{N}$. Then $x_n \not\to 1$. In fact, (x_n) is not convergent.

Remark: Let (x_n) be a sequence such that $x_{2n} \to \ell$ and $x_{2n-1} \to \ell$. Then $x_n \to \ell$.

Example: The sequence $(1, \frac{1}{2}, 1, \frac{2}{3}, 1, \frac{3}{4}, ...)$ converges to 1.

Bolzano-Weierstrass Theorem: Every bounded sequence in \mathbb{R} has a convergent subsequence.

Examples: If $x \in \mathbb{R}$, then there exists a sequence (r_n) of rationals converging to x. Similarly, if $x \in \mathbb{R}$, then there exists a sequence (t_n) of irrationals converging to x.