MA 101 (Mathematics I)

Sequence : Summary of Lectures

A sequence of real numbers or a sequence in \mathbb{R} is a mapping $f: \mathbb{N} \rightarrow \mathbb{R}$.
Notation: We write x_{n} for $f(n), n \in \mathbb{N}$ and the notation for a sequence is $\left(x_{n}\right)$.

Examples:

1. Constant sequence: (a, a, a, \ldots), where $a \in \mathbb{R}$
2. Sequence defined by listing: $(1,4,8,11,52, \ldots)$
3. Sequence defined by rule: $\left(x_{n}\right)$, where $x_{n}=3 n^{2}$ for all $n \in \mathbb{N}$
4. Sequence defined recursively: $\left(x_{n}\right)$, where $x_{1}=4$ and $x_{n+1}=2 x_{n}-5$ for all $n \in \mathbb{N}$

Convergence: What does it mean?
Think of the examples:
$(2,2,2, \ldots)$
($\frac{1}{n}$)
$\left((-1)^{n} \frac{1}{n}\right)$
$(1,2,1,2, \ldots)$
$\left((-1)^{n}\left(1-\frac{1}{n}\right)\right)$
$\left(n^{2}-1\right)$
Definition: The sequence $\left(x_{n}\right)$ is convergent if there exists $\ell \in \mathbb{R}$ such that for every $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ satisfying $\left|x_{n}-\ell\right|<\varepsilon$ for all $n \geq n_{0}$.
We say: ℓ is a limit of $\left(x_{n}\right): \lim _{n \rightarrow \infty} x_{n}=\ell$ or $x_{n} \rightarrow \ell$.
A sequence which is not convergent is called divergent.
Result: The limit of a convergent sequence is unique.
Examples: (a) $\left(\frac{n+1}{2 n+3}\right)$
(b) $(1,2,1,2, \ldots)$
(c) $\left(n^{3}+1\right)$

Definition: The sequence $\left(x_{n}\right)$ is bounded if there exists $M>0$ such that $\left|x_{n}\right| \leq M$ for all $n \in \mathbb{N}$.
Otherwise $\left(x_{n}\right)$ is called unbounded (not bounded).
Examples: (a) $\left(\frac{3 n+2}{2 n+5}\right) \quad$ (b) $(1,2,1,3,1,4, \ldots)$
Result: Every convergent sequence is bounded.
So, Not bounded implies Not convergent.
Limit rules for convergent sequences: Let $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$. Then
(a) $x_{n}+y_{n} \rightarrow x+y$.
(b) $\alpha x_{n} \rightarrow \alpha x$ for all $\alpha \in \mathbb{R}$.
(c) $\left|x_{n}\right| \rightarrow|x|$.
(d) $x_{n} y_{n} \rightarrow x y$.
(e) $\frac{x_{n}}{y_{n}} \rightarrow \frac{x}{y}$ if $y_{n} \neq 0$ for all $n \in \mathbb{N}$ and $y \neq 0$.

Examples: (a) $\left(\frac{2 n^{2}-3 n}{3 n^{2}+5 n+3}\right)$
(b) $(\sqrt{n+1}-\sqrt{n})$

Standard examples: (a) $\left(\alpha^{n}\right)$, where $|\alpha|<1$
(b) $\left(\alpha^{\frac{1}{n}}\right)$, where $\alpha>0$
(ii) $\left(n^{\frac{1}{n}}\right)$

Sandwich theorem: Let $\left(x_{n}\right),\left(y_{n}\right),\left(z_{n}\right)$ be sequences such that $x_{n} \leq y_{n} \leq z_{n}$ for all $n \in \mathbb{N}$. If both $\left(x_{n}\right)$ and $\left(z_{n}\right)$ converge to the same limit ℓ, then $\left(y_{n}\right)$ also converges to ℓ.

Examples: (a) $\left(\left(2^{n}+3^{n}\right)^{\frac{1}{n}}\right) \quad$ (b) $\left(\frac{1}{\sqrt{n^{2}+1}}+\cdots+\frac{1}{\sqrt{n^{2}+n}}\right)$
Result: Let $x_{n} \neq 0$ for all $n \in \mathbb{N}$ and let $L=\lim _{n \rightarrow \infty}\left|\frac{x_{n+1}}{x_{n}}\right|$ exist.
(a) If $L<1$, then $x_{n} \rightarrow 0$.
(b) If $L>1$, then $\left(x_{n}\right)$ is divergent.

Examples: (a) ($\frac{\alpha^{n}}{n!}$, where $\alpha \in \mathbb{R} \quad$ (b) $\left(\frac{2^{n}}{n^{4}}\right)$
Definition: $\left(x_{n}\right)$ is increasing if $x_{n+1} \geq x_{n}$ for all $n \in \mathbb{N}$.
$\left(x_{n}\right)$ is decreasing if $x_{n+1} \leq x_{n}$ for all $n \in \mathbb{N}$.
$\left(x_{n}\right)$ is monotonic if it is either increasing or decreasing.
Examples: (a) $\left(1-\frac{1}{n}\right) \quad$ (b) $\left(n+\frac{1}{n}\right) \quad$ (c) $\left(\cos \frac{n \pi}{3}\right)$
Definition: Let $S(\neq \emptyset) \subset \mathbb{R}$ and $u \in \mathbb{R}$.
u is an upper bound of S in \mathbb{R} if $x \leq u$ for all $x \in S$.
u is the supremum (least upper bound) of S in \mathbb{R} if
(a) u is an upper bound of S in \mathbb{R}, and
(b) u is the least among all the upper bounds of S in \mathbb{R}, i.e. if u^{\prime} is any upper bound of S in \mathbb{R}, then $u \leq u^{\prime}$.
Lower bound and infimum (greatest lower bound) are defined similarly.
Result: An increasing sequence $\left(x_{n}\right)$ which is bounded above converges to $\sup \left\{x_{n}: n \in \mathbb{N}\right\}$. A decreasing sequence $\left(x_{n}\right)$ which is bounded below converges to $\inf \left\{x_{n}: n \in \mathbb{N}\right\}$.
So a monotonic sequence converges iff it is bounded.
Example: Let $x_{1}=1$ and $x_{n+1}=\frac{1}{3}\left(x_{n}+1\right)$ for all $n \in \mathbb{N}$. Then $\left(x_{n}\right)$ is convergent and $\lim _{n \rightarrow \infty} x_{n}=\frac{1}{2}$.

Cauchy sequence: A sequence $\left(x_{n}\right)$ is called a Cauchy sequence if for each $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that $\left|x_{m}-x_{n}\right|<\varepsilon$ for all $m, n \geq n_{0}$.

Result: A sequence in \mathbb{R} is convergent iff it is a Cauchy sequence.
Example: Let $x_{n}=1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}$ for all $n \in \mathbb{N}$. Then $\left(x_{n}\right)$ is convergent.
Example: Let $\left(x_{n}\right)$ satisfy either of the following conditions:
(a) $\left|x_{n+1}-x_{n}\right| \leq \alpha^{n}$ for all $n \in \mathbb{N}$
(b) $\left|x_{n+2}-x_{n+1}\right| \leq \alpha\left|x_{n+1}-x_{n}\right|$ for all $n \in \mathbb{N}$,
where $0<\alpha<1$.
Then $\left(x_{n}\right)$ is a Cauchy sequence.
Example: Let $x_{1}=1$ and let $x_{n+1}=\frac{1}{x_{n}+2}$ for all $n \in \mathbb{N}$. Then $\left(x_{n}\right)$ is convergent and $\lim _{n \rightarrow \infty} x_{n}=\sqrt{2}-1$.

Subsequence: Let $\left(x_{n}\right)$ be a sequence in \mathbb{R}. If $\left(n_{k}\right)$ is a sequence of positive integers such that $n_{1}<n_{2}<n_{3}<\cdots$, then $\left(x_{n_{k}}\right)$ is called a subsequence of $\left(x_{n}\right)$.

Examples: Think of some divergent sequences and their convergent subsequences.

Result: If a sequence $\left(x_{n}\right)$ converges to ℓ, then every subsequence of $\left(x_{n}\right)$ must converge to ℓ.
So, if $\left(x_{n}\right)$ has a subsequence $\left(x_{n_{k}}\right)$ such that $x_{n_{k}} \nrightarrow \ell$, then $x_{n} \nrightarrow \ell$.
Also, if $\left(x_{n}\right)$ has two subsequences converging to two different limits, then $\left(x_{n}\right)$ cannot be convergent.

Example: Let $x_{n}=(-1)^{n}\left(1-\frac{1}{n}\right)$ for all $n \in \mathbb{N}$. Then $x_{n} \nrightarrow 1$.
In fact, $\left(x_{n}\right)$ is not convergent.
Remark: Let $\left(x_{n}\right)$ be a sequence such that $x_{2 n} \rightarrow \ell$ and $x_{2 n-1} \rightarrow \ell$. Then $x_{n} \rightarrow \ell$.
Example: The sequence $\left(1, \frac{1}{2}, 1, \frac{2}{3}, 1, \frac{3}{4}, \ldots\right)$ converges to 1 .
Bolzano-Weierstrass Theorem: Every bounded sequence in \mathbb{R} has a convergent subsequence.
Examples: If $x \in \mathbb{R}$, then there exists a sequence $\left(r_{n}\right)$ of rationals converging to x.
Similarly, if $x \in \mathbb{R}$, then there exists a sequence $\left(t_{n}\right)$ of irrationals converging to x.

