MA 101 (Mathematics I)

Integration: Summary of Lectures

Riemann Integral: Motivation

Partition of [a,b]: A finite set $\{x_0, x_1, ..., x_n\} \subset [a,b]$ such that $a = x_0 < x_1 < \cdots < x_n = b$.

Upper sum & Lower sum: Let $f:[a,b]\to\mathbb{R}$ be bounded. For a partition $P=\{x_0,x_1,...,x_n\}$ of [a, b], let $M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\}$ and $m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\}$ for i = 1, 2, ..., n.

 $U(f,P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$ – Upper sum of f for the partition P

 $L(f, P) = \sum_{i=1}^{n} m_i(x_i - x_{i-1})$ – Lower sum of f for the partition P

We have $m(b-a) \leq L(f,P) \leq U(f,P) \leq M(b-a)$, where $M = \sup\{f(x) : x \in [a,b]\}$ and $m = \inf\{f(x) : x \in [a, b]\}.$

Example: Let $f(x) = x^4 - 4x^3 + 10$ for all $x \in [1, 4]$. Then for the partition $P = \{1, 2, 3, 4\}$ of [1,4], U(f,P) = 11 and L(f,P) = -40.

Upper integral: $\int_{a}^{b} f = \inf_{P} U(f, P)$

Lower integral: $\int_{a}^{b} f = \sup_{P} L(f, P)$

Riemann integral: If $\int_a^b f = \int_a^b f$, then f is said to be Riemann integrable on [a,b] and the common value is the Riemann integral of f on [a, b], denoted by $\int_{a}^{b} f$.

Examples:

- (a) f(x) = k for all $x \in [0, 1]$
- (b) Let $f(x) = \begin{cases} 0 & \text{if } x \in (0, 1], \\ 1 & \text{if } x = 0. \end{cases}$ (c) Let $f(x) = \begin{cases} 1 & \text{if } x \in [0, 1] \cap \mathbb{Q}, \\ 0 & \text{if } x \in [0, 1] \cap (\mathbb{R} \setminus \mathbb{Q}). \end{cases}$
- (d) f(x) = x for all $x \in [0, 1]$
- (e) $f(x) = x^2$ for all $x \in [0, 1]$.

Remark: Let $f:[a,b]\to\mathbb{R}$ be bounded. Let there exist a sequence (P_n) of partitions of [a,b]such that $L(f, P_n) \to \alpha$ and $U(f, P_n) \to \alpha$. Then $f \in \mathcal{R}[a, b]$ and that $\int_a^b f = \alpha$.

Riemann's criterion for integrability: A bounded function $f:[a,b]\to\mathbb{R}$ is Riemann integrable on [a, b] iff for each $\varepsilon > 0$, there exists a partition P of [a, b] such that $U(f, P) - L(f, P) < \varepsilon$.

Some Riemann integrable functions:

- (a) A continuous function on [a, b]
- (b) A bounded function on [a, b] which is continuous except at finitely many points in [a, b]
- (c) A monotonic function on [a, b]

Properties of Riemann integrable functions:

Example: $\frac{1}{3\sqrt{2}} \le \int_{0}^{1} \frac{x^2}{\sqrt{1+x}} dx \le \frac{1}{3}$

First fundamental theorem of calculus: Let $f:[a,b]\to\mathbb{R}$ be Riemann integrable on [a,b] and let $F(x) = \int_{-\infty}^{x} f(t) dt$ for all $x \in [a, b]$. Then $F: [a, b] \to \mathbb{R}$ is continuous. Also, if f is continuous at $x_0 \in [a, b]$, then F is differentiable at x_0 and $F'(x_0) = f(x_0)$.

Second fundamental theorem of calculus: Let $f:[a,b] \to \mathbb{R}$ be Riemann integrable on [a,b]. If there exists a differentiable function $F:[a,b]\to\mathbb{R}$ such that F'(x)=f(x) for all $x \in [a, b]$, then $\int_{a}^{b} f(x) dx = F(b) - F(a)$.

Riemann sum: $S(f, P) = \sum_{i=1}^{n} f(c_i)(x_i - x_{i-1}),$

where $f:[a,b]\to\mathbb{R}$ is bounded, $P=\{x_0,x_1,...,x_n\}$ is a partition of [a,b] and $c_i\in[x_{i-1},x_i]$ for i = 1, 2, ..., n.

Result: A bounded function $f:[a,b]\to\mathbb{R}$ is Riemann integrable on [a,b] iff $\lim_{\|P\|\to 0}S(f,P)$ exists in \mathbb{R} .

Also, in this case, $\int_{a}^{b} f = \lim_{\|P\| \to 0} S(f, P)$.

Example: $\lim_{n \to \infty} \left[\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right] = \log 2.$

Improper integrals:

- (a) Type I: The interval of integration is infinite
- (b) Type II: The integrand is unbounded in the (finite) interval of integration

Also, combination of Type I and Type II is possible.

Convergence of Type I improper integrals: Let $f \in \mathcal{R}[a,x]$ for all x > a. If $\lim_{x \to \infty} \int_a^x f(t) dt$ exists in \mathbb{R} , then $\int_a^\infty f(t) dt$ converges and $\int_a^\infty f(t) dt = 0$ $\lim_{x\to\infty} \int_{a}^{x} f(t) dt$. Otherwise, $\int_{a}^{\infty} f(t) dt$ is divergent.

Similarly, we define convergence of $\int_{-\infty}^{b} f(t) dt$ and $\int_{-\infty}^{\infty} f(t) dt$. **Examples:** (a) $\int_{1}^{\infty} \frac{1}{t^{p}} dt$ converges iff p > 1. (b) $\int_{-\infty}^{\infty} e^{t} dt$ (c) $\int_{0}^{\infty} \frac{1}{1+t^{2}} dt$

Comparison test: Let $0 \le f(t) \le g(t)$ for all $x \ge a$. If $\int_{-\infty}^{\infty} g(t) dt$ converges, then $\int_{-\infty}^{\infty} f(t) dt$ converges.

Limit comparison test: Let $f(t) \ge 0$ let g(t) > 0 for all $t \ge a$ and let $\lim_{t \to \infty} \frac{f(t)}{g(t)} = \ell \in \mathbb{R}$.

- (a) If $\ell \neq 0$, then $\int_{0}^{\infty} f(t) dt$ converges iff $\int_{0}^{\infty} g(t) dt$ converges.
- (b) If $\ell = 0$, then $\int_{a}^{\infty} f(t) dt$ converges if $\int_{a}^{\infty} g(t) dt$ converges.

Examples: (a)
$$\int_{1}^{\infty} \frac{\sin^2 t}{t^2} dt$$
 (b) $\int_{1}^{\infty} \frac{dt}{t\sqrt{1+t^2}}$

Absolute convergence: If
$$\int_{a}^{\infty} |f(t)| dt$$
 converges, then $\int_{a}^{\infty} f(t) dt$ converges.

Example:
$$\int_{0}^{\infty} \frac{\cos t}{1+t^2} dt$$
 converges.

Integral test for series: Let
$$f:[1,\infty)\to\mathbb{R}$$
 be a positive decreasing function. Then $\sum_{n=1}^{\infty}f(n)$ converges iff $\int_{1}^{\infty}f(t)\,dt$ converges.

Dirichlet's test: Let
$$f:[a,\infty)\to\mathbb{R}$$
 and $g:[a,\infty)\to\mathbb{R}$ such that

(a)
$$f$$
 is decreasing and $\lim_{t\to\infty} f(t) = 0$, and

(b)
$$g$$
 is continuous and there exists $M > 0$ such that $\left| \int_{a}^{x} g(t) dt \right| \leq M$ for all $x \geq a$.

Then
$$\int_{a}^{\infty} f(t)g(t) dt$$
 converges.

Example:
$$\int_{1}^{\infty} \frac{\sin t}{t} dt$$
 converges.

Convergence of Type II and mixed type improper integrals:

Example:
$$\int_{0}^{1} \frac{1}{t^{p}} dt$$
 converges iff $p < 1$.

Lengths of smooth curves:

- (a) Let y = f(x), where $f : [a, b] \to \mathbb{R}$ is such that f' is continuous. Then $L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$
- (b) Let $x = \varphi(t)$, $y = \psi(t)$, where $\varphi : [a, b] \to \mathbb{R}$ and $\psi : [a, b] \to \mathbb{R}$ are such that φ' and ψ' are continuous. Then $L = \int_{-b}^{b} \sqrt{(\varphi'(t))^2 + (\psi'(t))^2} dt$
- (c) Let $r = f(\theta)$, where $f : [\alpha, \beta] \to \mathbb{R}$ is such that f' is continuous. Then $L = \int_{0}^{\beta} \sqrt{r^2 + (f'(\theta))^2} d\theta$

Examples:

- (a) The length of the curve $y = \frac{1}{3}(x^2 + 2)^{\frac{3}{2}}$ from x = 0 to x = 3 is 12.
- (b) The perimeter of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- (c) The length of the curve $x = e^t \sin t$, $y = e^t \cos t$, $0 \le t \le \frac{\pi}{2}$, is $\sqrt{2}(e^{\frac{\pi}{2}} 1)$.
- (d) The length of the cardioid $r = 1 \cos \theta$ is 8.

Area between two curves: If
$$f, g : [a, b] \to \mathbb{R}$$
 are continuous and $f(x) \geq g(x)$ for all $x \in [a, b]$, then we define the area between $y = f(x)$ and $y = g(x)$ from a to b to be $\int_a^b (f(x) - g(x)) dx$.

Example: The area above the x-axis which is included between the parabola
$$y^2 = ax$$
 and the circle $x^2 + y^2 = 2ax$, where $a > 0$, is $(\frac{3\pi - 8}{12})a^2$.

Area in polar coordinates: Let f; $[\alpha, \beta] \to \mathbb{R}$ be continuous. We define the area bounded by $r = f(\theta)$ and the lines $\theta = \alpha$ and $\theta = \beta$ to be $\frac{1}{2} \int_{\alpha}^{\beta} (f(\theta))^2 d\theta$.

Example: The area of the region that is inside the cardioid $r = a(1 + \cos \theta)$ and also inside the circle $r = \frac{3}{2}a$.

Volume by slicing: $V = \int_a^b A(x) dx$.

Example: A solid lies between planes perpendicular to the x-axis at x=0 and x=4. The cross sections perpendicular to the axis on the interval $0 \le x \le 4$ are squares whose diagonals run from the parabola $y=-\sqrt{x}$ to the parabola $y=\sqrt{x}$. Then the volume of the solid is 16.

Volume of solid of revolution: $V = \int_a^b \pi(f(x))^2 dx$.

Example: The volume of a sphere of radius r is $\frac{4}{3}\pi r^3$.

Volume by washer method: $V = \int_a^b \pi((f(x))^2 - (g(x))^2) dx$

Example: A round hole of radius $\sqrt{3}$ is bored through the centre of a solid sphere of radius 2. Then the volume of the portion bored out is $\frac{28}{3}\pi$.

Area of surface of revolution: $S = \int_a^b 2\pi f(x) \sqrt{1 + (f'(x))^2} dx$.

Example: The volume and area of the curved surface of a paraboloid of revolution formed by revolving the parabola $y^2 = 4ax$ about the x-axis, and bounded by the section $x = x_1$.