◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A function $f: D \to \mathbb{R}$ is said to be differentiable at x_0 if $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \text{ (or, equivalently } \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \text{) exists in } \mathbb{R}.$

A function $f: D \to \mathbb{R}$ is said to be differentiable at x_0 if $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \text{ (or, equivalently } \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \text{) exists in } \mathbb{R}.$

If f is differentiable at x_0 , then the derivative of f at x_0 is $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$

A function $f: D \to \mathbb{R}$ is said to be differentiable at x_0 if $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \text{ (or, equivalently } \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \text{) exists in } \mathbb{R}.$

If f is differentiable at x_0 , then the derivative of f at x_0 is $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$

 $f: D \to \mathbb{R}$ is said to be differentiable if f is differentiable at each $x_0 \in D$.

A function $f: D \to \mathbb{R}$ is said to be differentiable at x_0 if $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \text{ (or, equivalently } \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \text{) exists in } \mathbb{R}.$

If f is differentiable at x_0 , then the derivative of f at x_0 is $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$

 $f: D \to \mathbb{R}$ is said to be differentiable if f is differentiable at each $x_0 \in D$.

Result: If $f : D \to \mathbb{R}$ is differentiable at $x_0 \in D$, then f is continuous at x_0 .

1. For
$$n = 1, 2, 3$$
, let $f_n(x) = \begin{cases} x^n \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$

<□ > < @ > < E > < E > E のQ @

1. For
$$n = 1, 2, 3$$
, let $f_n(x) = \begin{cases} x^n \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$
2. $f(x) = \begin{cases} x^2 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

1. For
$$n = 1, 2, 3$$
, let $f_n(x) = \begin{cases} x^n \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$
2. $f(x) = \begin{cases} x^2 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$

Rules for finding derivatives:

1. For
$$n = 1, 2, 3$$
, let $f_n(x) = \begin{cases} x^n \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$
2. $f(x) = \begin{cases} x^2 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$

Rules for finding derivatives:

Definition: $f : D \to \mathbb{R}$ has a local maximum (resp. minimum) at $x_0 \in D$ if there exists $\delta > 0$ such that $f(x) \leq f(x_0)$ (resp. $f(x_0) \leq f(x)$) for all $x \in (x_0 - \delta, x_0 + \delta) \cap D$.

1. For
$$n = 1, 2, 3$$
, let $f_n(x) = \begin{cases} x^n \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$
2. $f(x) = \begin{cases} x^2 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$

Rules for finding derivatives:

Definition: $f : D \to \mathbb{R}$ has a local maximum (resp. minimum) at $x_0 \in D$ if there exists $\delta > 0$ such that $f(x) \leq f(x_0)$ (resp. $f(x_0) \leq f(x)$) for all $x \in (x_0 - \delta, x_0 + \delta) \cap D$.

Result: If $f : D \to \mathbb{R}$ has a local maximum or local minimum at an interior point x_0 of D and if f is differentiable at x_0 , then $f'(x_0) = 0$.

(日) (日) (日) (日) (日) (日) (日) (日)

Examples:

(a) The equation $x^2 = x \sin x + \cos x$ has exactly two real roots.

Examples:

- (a) The equation $x^2 = x \sin x + \cos x$ has exactly two real roots.
- (b) The equation $x^4 + 2x^2 6x + 2 = 0$ has exactly two real roots.

Examples:

(a) The equation $x^2 = x \sin x + \cos x$ has exactly two real roots.

(b) The equation $x^4 + 2x^2 - 6x + 2 = 0$ has exactly two real roots.

Mean value theorem: If $f : [a, b] \to \mathbb{R}$ is continuous and if f is differentiable on (a, b), then there exists $c \in (a, b)$ such that f(b) - f(a) = f'(c)(b - a).

(日) (同) (三) (三) (三) (○) (○)

Result: Let $f : I \to \mathbb{R}$ be differentiable. Then (a) f'(x) = 0 for all $x \in I$ iff f is constant on I.

Result: Let $f : I \to \mathbb{R}$ be differentiable. Then (a) f'(x) = 0 for all $x \in I$ iff f is constant on I. (b) $f'(x) \ge 0$ for all $x \in I$ iff f is increasing on I.

Result: Let $f : I \to \mathbb{R}$ be differentiable. Then (a) f'(x) = 0 for all $x \in I$ iff f is constant on I. (b) $f'(x) \ge 0$ for all $x \in I$ iff f is increasing on I. (c) $f'(x) \le 0$ for all $x \in I$ iff f is decreasing on I.

Result: Let $f : I \to \mathbb{R}$ be differentiable. Then

- (a) f'(x) = 0 for all $x \in I$ iff f is constant on I.
- (b) $f'(x) \ge 0$ for all $x \in I$ iff f is increasing on I.
- (c) $f'(x) \leq 0$ for all $x \in I$ iff f is decreasing on I.
- (d) f'(x) > 0 for all $x \in I \Rightarrow f$ is strictly increasing on *I*.

Result: Let $f : I \to \mathbb{R}$ be differentiable. Then (a) f'(x) = 0 for all $x \in I$ iff f is constant on I. (b) $f'(x) \ge 0$ for all $x \in I$ iff f is increasing on I. (c) $f'(x) \le 0$ for all $x \in I$ iff f is decreasing on I. (d) f'(x) > 0 for all $x \in I \Rightarrow f$ is strictly increasing on I.

(e) f'(x) < 0 for all $x \in I \Rightarrow f$ is strictly decreasing on *I*.

Result: Let $f : I \to \mathbb{R}$ be differentiable. Then (a) f'(x) = 0 for all $x \in I$ iff f is constant on I. (b) $f'(x) \ge 0$ for all $x \in I$ iff f is increasing on I. (c) $f'(x) \le 0$ for all $x \in I$ iff f is decreasing on I. (d) f'(x) > 0 for all $x \in I \Rightarrow f$ is strictly increasing on I. (e) f'(x) < 0 for all $x \in I \Rightarrow f$ is strictly decreasing on I. (f) $f'(x) \ne 0$ for all $x \in I \Rightarrow f$ is one-one on I.

Result: Let
$$f : I \to \mathbb{R}$$
 be differentiable. Then
(a) $f'(x) = 0$ for all $x \in I$ iff f is constant on I .
(b) $f'(x) \ge 0$ for all $x \in I$ iff f is increasing on I .
(c) $f'(x) \le 0$ for all $x \in I$ iff f is decreasing on I .
(d) $f'(x) > 0$ for all $x \in I \Rightarrow f$ is strictly increasing on I .
(e) $f'(x) < 0$ for all $x \in I \Rightarrow f$ is strictly decreasing on I .
(f) $f'(x) \ne 0$ for all $x \in I \Rightarrow f$ is one-one on I .

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Examples:

(a)
$$\sin x \ge x - \frac{x^3}{6}$$
 for all $x \in [0, \frac{\pi}{2}]$.

Result: Let
$$f : I \to \mathbb{R}$$
 be differentiable. Then
(a) $f'(x) = 0$ for all $x \in I$ iff f is constant on I .
(b) $f'(x) \ge 0$ for all $x \in I$ iff f is increasing on I .
(c) $f'(x) \le 0$ for all $x \in I$ iff f is decreasing on I .
(d) $f'(x) > 0$ for all $x \in I \Rightarrow f$ is strictly increasing on I .
(e) $f'(x) < 0$ for all $x \in I \Rightarrow f$ is strictly decreasing on I .
(f) $f'(x) \ne 0$ for all $x \in I \Rightarrow f$ is one-one on I .

(a)
$$\sin x \ge x - \frac{x^3}{6}$$
 for all $x \in [0, \frac{\pi}{2}]$.

(b) If $f(x) = x^3 + x^2 - 5x + 3$ for all $x \in \mathbb{R}$, then f is one-one on [1,5] but not one-one on \mathbb{R} .

Example: Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable such that f(-1) = 5, f(0) = 0 and f(1) = 10. Then there exist $c_1, c_2 \in (-1, 1)$ such that $f'(c_1) = -3$ and $f'(c_2) = 3$.

Example: Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable such that f(-1) = 5, f(0) = 0 and f(1) = 10. Then there exist $c_1, c_2 \in (-1, 1)$ such that $f'(c_1) = -3$ and $f'(c_2) = 3$.

Local maximum & Local minimum : Sufficient conditions:

Example: Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable such that f(-1) = 5, f(0) = 0 and f(1) = 10. Then there exist $c_1, c_2 \in (-1, 1)$ such that $f'(c_1) = -3$ and $f'(c_2) = 3$.

Local maximum & Local minimum : Sufficient conditions: 1. First derivative test

Example: Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable such that f(-1) = 5, f(0) = 0 and f(1) = 10. Then there exist $c_1, c_2 \in (-1, 1)$ such that $f'(c_1) = -3$ and $f'(c_2) = 3$.

Local maximum & Local minimum : Sufficient conditions:

- 1. First derivative test
- 2. Second derivative test

Example: Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable such that f(-1) = 5, f(0) = 0 and f(1) = 10. Then there exist $c_1, c_2 \in (-1, 1)$ such that $f'(c_1) = -3$ and $f'(c_2) = 3$.

Local maximum & Local minimum : Sufficient conditions:

- 1. First derivative test
- 2. Second derivative test

Example: Local maxima and local minima of f, where $f(x) = 1 - x^{2/3}$ for all $x \in \mathbb{R}$.

(日) (同) (三) (三) (三) (○) (○)

L'Hôpital's rules:

1. Let
$$f: (a, b) \to \mathbb{R}$$
 and $g: (a, b) \to \mathbb{R}$ be differentiable at $x_0 \in (a, b)$. Also, let $f(x_0) = g(x_0) = 0$ and $g'(x_0) \neq 0$.
Then $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{f'(x_0)}{g'(x_0)}$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

L'Hôpital's rules:

1. Let
$$f : (a, b) \to \mathbb{R}$$
 and $g : (a, b) \to \mathbb{R}$ be differentiable at $x_0 \in (a, b)$. Also, let $f(x_0) = g(x_0) = 0$ and $g'(x_0) \neq 0$.
Then $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{f'(x_0)}{g'(x_0)}$.

2. Let $f: (a, b) \to \mathbb{R}$ and $g: (a, b) \to \mathbb{R}$ be differentiable such that $\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = 0$ and $g'(x) \neq 0$ for all $x \in (a, b)$. If $\lim_{x \to a+} \frac{f'(x)}{g'(x)} = \ell$, then $\lim_{x \to a+} \frac{f(x)}{g(x)} = \ell$.

L'Hôpital's rules:

1. Let
$$f : (a, b) \to \mathbb{R}$$
 and $g : (a, b) \to \mathbb{R}$ be differentiable at $x_0 \in (a, b)$. Also, let $f(x_0) = g(x_0) = 0$ and $g'(x_0) \neq 0$.
Then $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{f'(x_0)}{g'(x_0)}$.

2. Let $f: (a, b) \to \mathbb{R}$ and $g: (a, b) \to \mathbb{R}$ be differentiable such that $\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = 0$ and $g'(x) \neq 0$ for all $x \in (a, b)$. If $\lim_{x \to a+} \frac{f'(x)}{g'(x)} = \ell$, then $\lim_{x \to a+} \frac{f(x)}{g(x)} = \ell$.

Examples: (a)
$$\lim_{x \to 0} \frac{\sqrt{1+x-1}}{x}$$
 (b) $\lim_{x \to \frac{\pi}{2}} \frac{1-\sin x}{1+\cos 2x}$
(c) $\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x}$ (d) $\lim_{x \to 0} (\frac{\sin x}{x})^{\frac{1}{x}}$ (e) $\lim_{x \to \infty} \frac{x-\sin x}{2x+\sin x}$

Taylor's theorem: Let $f : [a, b] \to \mathbb{R}$ be such that $f, f', f'', ..., f^{(n)}$ are continuous on [a, b] and $f^{(n+1)}$ exists on (a, b).

$$\begin{split} f(b) &= f(a) + f'(a)(b-a) + \frac{f''(a)}{2!}(b-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(b-a)^n \\ &+ \frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}. \end{split}$$

$$f(b) = f(a) + f'(a)(b-a) + \frac{f''(a)}{2!}(b-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(b-a)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}.$$

Example:
$$1 + \frac{x}{2} - \frac{x^2}{8} \le \sqrt{1 + x} \le 1 + \frac{x}{2}$$
 for all $x > 0$.

$$f(b) = f(a) + f'(a)(b-a) + \frac{f''(a)}{2!}(b-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(b-a)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}.$$

Example:
$$1 + \frac{x}{2} - \frac{x^2}{8} \le \sqrt{1+x} \le 1 + \frac{x}{2}$$
 for all $x > 0$.

Power series: A series of the form $\sum_{n=0}^{\infty} a_n (x - x_0)^n$, where x_0 , $a_n \in \mathbb{R}$ for n = 0, 1, 2, ... and $x \in \mathbb{R}$.

$$f(b) = f(a) + f'(a)(b-a) + \frac{f''(a)}{2!}(b-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(b-a)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}.$$

Example:
$$1 + \frac{x}{2} - \frac{x^2}{8} \le \sqrt{1+x} \le 1 + \frac{x}{2}$$
 for all $x > 0$.

Power series: A series of the form $\sum_{n=0}^{\infty} a_n (x - x_0)^n$, where x_0 , $a_n \in \mathbb{R}$ for n = 0, 1, 2, ... and $x \in \mathbb{R}$.

It is sufficient to consider the series $\sum_{n=0}^{\infty} a_n x^n$.

(a)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 (b) $\sum_{n=0}^{\infty} n! x^n$ (c) $\sum_{n=0}^{\infty} x^n$

<□ > < @ > < E > < E > E のQ @

(a)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 (b) $\sum_{n=0}^{\infty} n! x^n$ (c) $\sum_{n=0}^{\infty} x^n$

Result:

(a) If $\sum_{n=0}^{\infty} a_n x^n$ converges for $x = x_1 \neq 0$, then it converges absolutely for all $x \in \mathbb{R}$ satisfying $|x| < |x_1|$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

(a)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 (b) $\sum_{n=0}^{\infty} n! x^n$ (c) $\sum_{n=0}^{\infty} x^n$

Result:

(a) If
$$\sum_{n=0}^{\infty} a_n x^n$$
 converges for $x = x_1 \neq 0$, then it converges absolutely for all $x \in \mathbb{R}$ satisfying $|x| < |x_1|$.

(b) If
$$\sum_{n=0}^{\infty} a_n x^n$$
 diverges for $x = x_2$, then it diverges for all $x \in \mathbb{R}$ satisfying $|x| > |x_2|$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(a)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 (b) $\sum_{n=0}^{\infty} n! x^n$ (c) $\sum_{n=0}^{\infty} x^n$

Result:

(a) If
$$\sum_{n=0}^{\infty} a_n x^n$$
 converges for $x = x_1 \neq 0$, then it converges absolutely for all $x \in \mathbb{R}$ satisfying $|x| < |x_1|$.

(b) If
$$\sum_{n=0}^{\infty} a_n x^n$$
 diverges for $x = x_2$, then it diverges for all $x \in \mathbb{R}$ satisfying $|x| > |x_2|$.

Radius of convergence: For every power series $\sum_{n=0}^{\infty} a_n x^n$, there exists a unique R satisfying $0 \le R \le \infty$ such that the series converges absolutely if |x| < R and diverges if |x| > R.

(a)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 (b) $\sum_{n=0}^{\infty} n! x^n$ (c) $\sum_{n=0}^{\infty} x^n$

Result:

(a) If
$$\sum_{n=0}^{\infty} a_n x^n$$
 converges for $x = x_1 \neq 0$, then it converges absolutely for all $x \in \mathbb{R}$ satisfying $|x| < |x_1|$.

(b) If
$$\sum_{n=0}^{\infty} a_n x^n$$
 diverges for $x = x_2$, then it diverges for all $x \in \mathbb{R}$ satisfying $|x| > |x_2|$.

Radius of convergence: For every power series $\sum_{n=0}^{\infty} a_n x^n$, there exists a unique R satisfying $0 \le R \le \infty$ such that the series converges absolutely if |x| < R and diverges if |x| > R. The series may or may not converge for |x| = R.

Examples: (a)
$$\sum_{n=0}^{\infty} \frac{x^n}{n^2}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot 4^n} (x-1)^n$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Examples: (a)
$$\sum_{n=0}^{\infty} \frac{x^n}{n^2}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot 4^n} (x-1)^n$

Term-by-term operations on power series:

Examples: (a)
$$\sum_{n=0}^{\infty} \frac{x^n}{n^2}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot 4^n} (x-1)^n$

Term-by-term operations on power series:

Taylor series & Maclaurin series: Convergence

Examples: (a)
$$\sum_{n=0}^{\infty} \frac{x^n}{n^2}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot 4^n} (x-1)^n$

Term-by-term operations on power series:

Taylor series & Maclaurin series: Convergence

Examples: Taylor series expansions of e^x , sin x and cos x.

Result on local maxima and local minima:

Let $x_0 \in (a, b)$ and let $n \ge 2$. Also, let $f, f', ..., f^{(n)}$ be continuous on (a, b) and $f'(x_0) = f''(x_0) = \cdots = f^{(n-1)}(x_0) = 0$ but $f^{(n)}(x_0) \ne 0$.

Result on local maxima and local minima:

Let $x_0 \in (a, b)$ and let $n \ge 2$. Also, let $f, f', ..., f^{(n)}$ be continuous on (a, b) and $f'(x_0) = f''(x_0) = \cdots = f^{(n-1)}(x_0) = 0$ but $f^{(n)}(x_0) \neq 0$.

- (a) If n is even and $f^{(n)}(x_0) < 0$, then f has a local maximum at x_0 .
- (b) If n is even and $f^{(n)}(x_0) > 0$, then f has a local minimum at x_0 .

(c) If n is odd, then f has neither a local maximum nor a local minimum at x_0 .

Result on local maxima and local minima:

Let $x_0 \in (a, b)$ and let $n \ge 2$. Also, let $f, f', ..., f^{(n)}$ be continuous on (a, b) and $f'(x_0) = f''(x_0) = \cdots = f^{(n-1)}(x_0) = 0$ but $f^{(n)}(x_0) \ne 0$.

- (a) If n is even and $f^{(n)}(x_0) < 0$, then f has a local maximum at x_0 .
- (b) If n is even and $f^{(n)}(x_0) > 0$, then f has a local minimum at x_0 .
- (c) If *n* is odd, then *f* has neither a local maximum nor a local minimum at x_0 .

Example Local maximum and local minimum values of f, where $f(x) = x^5 - 5x^4 + 5x^3 + 12$ for all $x \in \mathbb{R}$.

(日) (同) (三) (三) (三) (○) (○)