Differentiability and Derivative: Let $D \subseteq \mathbb{R}$ and let $x_{0} \in D$ such that there exists an interval I of \mathbb{R} satisfying $x_{0} \in I \subseteq D$.

Differentiability and Derivative: Let $D \subseteq \mathbb{R}$ and let $x_{0} \in D$ such that there exists an interval I of \mathbb{R} satisfying $x_{0} \in I \subseteq D$.

A function $f: D \rightarrow \mathbb{R}$ is said to be differentiable at x_{0} if $\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ (or, equivalently $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$) exists in \mathbb{R}.

Differentiability and Derivative: Let $D \subseteq \mathbb{R}$ and let $x_{0} \in D$ such that there exists an interval $/$ of \mathbb{R} satisfying $x_{0} \in I \subseteq D$.

A function $f: D \rightarrow \mathbb{R}$ is said to be differentiable at x_{0} if $\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ (or, equivalently $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$) exists in \mathbb{R}.

If f is differentiable at x_{0}, then the derivative of f at x_{0} is $f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$.

Differentiability and Derivative: Let $D \subseteq \mathbb{R}$ and let $x_{0} \in D$ such that there exists an interval I of \mathbb{R} satisfying $x_{0} \in I \subseteq D$.

A function $f: D \rightarrow \mathbb{R}$ is said to be differentiable at x_{0} if $\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ (or, equivalently $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$) exists in \mathbb{R}.

If f is differentiable at x_{0}, then the derivative of f at x_{0} is $f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$.
$f: D \rightarrow \mathbb{R}$ is said to be differentiable if f is differentiable at each $x_{0} \in D$.

Differentiability and Derivative: Let $D \subseteq \mathbb{R}$ and let $x_{0} \in D$ such that there exists an interval I of \mathbb{R} satisfying $x_{0} \in I \subseteq D$.

A function $f: D \rightarrow \mathbb{R}$ is said to be differentiable at x_{0} if $\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ (or, equivalently $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$) exists in \mathbb{R}.

If f is differentiable at x_{0}, then the derivative of f at x_{0} is $f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$.
$f: D \rightarrow \mathbb{R}$ is said to be differentiable if f is differentiable at each $x_{0} \in D$.

Result: If $f: D \rightarrow \mathbb{R}$ is differentiable at $x_{0} \in D$, then f is continuous at x_{0}.

Examples:

1. For $n=1,2,3$, let $f_{n}(x)=\left\{\begin{array}{cl}x^{n} \sin \frac{1}{x} & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{array}\right.$

Examples:

1. For $n=1,2,3$, let $f_{n}(x)=\left\{\begin{array}{cl}x^{n} \sin \frac{1}{x} & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{array}\right.$
2. $f(x)=\left\{\begin{array}{cl}x^{2} & \text { if } x \in \mathbb{Q}, \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} \text {. }\end{array}\right.$

Examples:

1. For $n=1,2,3$, let $f_{n}(x)=\left\{\begin{array}{cl}x^{n} \sin \frac{1}{x} & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{array}\right.$
2. $f(x)=\left\{\begin{array}{cl}x^{2} & \text { if } x \in \mathbb{Q}, \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} \text {. }\end{array}\right.$

Rules for finding derivatives:

Examples:

1. For $n=1,2,3$, let $f_{n}(x)=\left\{\begin{array}{cl}x^{n} \sin \frac{1}{x} & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{array}\right.$
2. $f(x)=\left\{\begin{array}{cl}x^{2} & \text { if } x \in \mathbb{Q}, \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} \text {. }\end{array}\right.$

Rules for finding derivatives:
Definition: $f: D \rightarrow \mathbb{R}$ has a local maximum (resp. minimum) at $x_{0} \in D$ if there exists $\delta>0$ such that $f(x) \leq f\left(x_{0}\right)$ (resp. $\left.f\left(x_{0}\right) \leq f(x)\right)$ for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right) \cap D$.

Examples:

1. For $n=1,2,3$, let $f_{n}(x)=\left\{\begin{array}{cl}x^{n} \sin \frac{1}{x} & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{array}\right.$
2. $f(x)=\left\{\begin{array}{cl}x^{2} & \text { if } x \in \mathbb{Q}, \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} \text {. }\end{array}\right.$

Rules for finding derivatives:
Definition: $f: D \rightarrow \mathbb{R}$ has a local maximum (resp. minimum) at $x_{0} \in D$ if there exists $\delta>0$ such that $f(x) \leq f\left(x_{0}\right)$ (resp. $\left.f\left(x_{0}\right) \leq f(x)\right)$ for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right) \cap D$.

Result: If $f: D \rightarrow \mathbb{R}$ has a local maximum or local minimum at an interior point x_{0} of D and if f is differentiable at x_{0}, then $f^{\prime}\left(x_{0}\right)=0$.

Rolle's theorem: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, if f is differentiable on (a, b) and if $f(a)=f(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Rolle's theorem: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, if f is differentiable on (a, b) and if $f(a)=f(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Examples:

(a) The equation $x^{2}=x \sin x+\cos x$ has exactly two real roots.

Rolle's theorem: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, if f is differentiable on (a, b) and if $f(a)=f(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Examples:
(a) The equation $x^{2}=x \sin x+\cos x$ has exactly two real roots.
(b) The equation $x^{4}+2 x^{2}-6 x+2=0$ has exactly two real roots.

Rolle's theorem: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, if f is differentiable on (a, b) and if $f(a)=f(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Examples:

(a) The equation $x^{2}=x \sin x+\cos x$ has exactly two real roots.
(b) The equation $x^{4}+2 x^{2}-6 x+2=0$ has exactly two real roots.

Mean value theorem: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and if f is differentiable on (a, b), then there exists $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$.

Result: Let $f: I \rightarrow \mathbb{R}$ be differentiable. Then
(a) $f^{\prime}(x)=0$ for all $x \in I$ iff f is constant on I.

Result: Let $f: I \rightarrow \mathbb{R}$ be differentiable. Then
(a) $f^{\prime}(x)=0$ for all $x \in I$ iff f is constant on I.
(b) $f^{\prime}(x) \geq 0$ for all $x \in I$ iff f is increasing on I.

Result: Let $f: I \rightarrow \mathbb{R}$ be differentiable. Then
(a) $f^{\prime}(x)=0$ for all $x \in I$ iff f is constant on I.
(b) $f^{\prime}(x) \geq 0$ for all $x \in I$ iff f is increasing on I.
(c) $f^{\prime}(x) \leq 0$ for all $x \in I$ iff f is decreasing on I.

Result: Let $f: I \rightarrow \mathbb{R}$ be differentiable. Then
(a) $f^{\prime}(x)=0$ for all $x \in I$ iff f is constant on I.
(b) $f^{\prime}(x) \geq 0$ for all $x \in I$ iff f is increasing on I.
(c) $f^{\prime}(x) \leq 0$ for all $x \in I$ iff f is decreasing on I.
(d) $f^{\prime}(x)>0$ for all $x \in I \Rightarrow f$ is strictly increasing on I.

Result: Let $f: I \rightarrow \mathbb{R}$ be differentiable. Then
(a) $f^{\prime}(x)=0$ for all $x \in I$ iff f is constant on I.
(b) $f^{\prime}(x) \geq 0$ for all $x \in I$ iff f is increasing on I.
(c) $f^{\prime}(x) \leq 0$ for all $x \in I$ iff f is decreasing on I.
(d) $f^{\prime}(x)>0$ for all $x \in I \Rightarrow f$ is strictly increasing on I.
(e) $f^{\prime}(x)<0$ for all $x \in I \Rightarrow f$ is strictly decreasing on I.

Result: Let $f: I \rightarrow \mathbb{R}$ be differentiable. Then
(a) $f^{\prime}(x)=0$ for all $x \in I$ iff f is constant on I.
(b) $f^{\prime}(x) \geq 0$ for all $x \in I$ iff f is increasing on I.
(c) $f^{\prime}(x) \leq 0$ for all $x \in I$ iff f is decreasing on I.
(d) $f^{\prime}(x)>0$ for all $x \in I \Rightarrow f$ is strictly increasing on I.
(e) $f^{\prime}(x)<0$ for all $x \in I \Rightarrow f$ is strictly decreasing on I.
(f) $f^{\prime}(x) \neq 0$ for all $x \in I \Rightarrow f$ is one-one on I.

Result: Let $f: I \rightarrow \mathbb{R}$ be differentiable. Then
(a) $f^{\prime}(x)=0$ for all $x \in I$ iff f is constant on I.
(b) $f^{\prime}(x) \geq 0$ for all $x \in I$ iff f is increasing on I.
(c) $f^{\prime}(x) \leq 0$ for all $x \in I$ iff f is decreasing on I.
(d) $f^{\prime}(x)>0$ for all $x \in I \Rightarrow f$ is strictly increasing on I.
(e) $f^{\prime}(x)<0$ for all $x \in I \Rightarrow f$ is strictly decreasing on I.
(f) $f^{\prime}(x) \neq 0$ for all $x \in I \Rightarrow f$ is one-one on I.

Examples:
(a) $\sin x \geq x-\frac{x^{3}}{6}$ for all $x \in\left[0, \frac{\pi}{2}\right]$.

Result: Let $f: I \rightarrow \mathbb{R}$ be differentiable. Then
(a) $f^{\prime}(x)=0$ for all $x \in I$ iff f is constant on I.
(b) $f^{\prime}(x) \geq 0$ for all $x \in I$ iff f is increasing on I.
(c) $f^{\prime}(x) \leq 0$ for all $x \in I$ iff f is decreasing on I.
(d) $f^{\prime}(x)>0$ for all $x \in I \Rightarrow f$ is strictly increasing on I.
(e) $f^{\prime}(x)<0$ for all $x \in I \Rightarrow f$ is strictly decreasing on I.
(f) $f^{\prime}(x) \neq 0$ for all $x \in I \Rightarrow f$ is one-one on I.

Examples:
(a) $\sin x \geq x-\frac{x^{3}}{6}$ for all $x \in\left[0, \frac{\pi}{2}\right]$.
(b) If $f(x)=x^{3}+x^{2}-5 x+3$ for all $x \in \mathbb{R}$, then f is one-one on $[1,5]$ but not one-one on \mathbb{R}.

Intermediate value property of derivatives: Let $f: I \rightarrow \mathbb{R}$ be differentiable and let $a, b \in I$ with $a<b$. If $f^{\prime}(a)<k<f^{\prime}(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=k$.

Intermediate value property of derivatives: Let $f: I \rightarrow \mathbb{R}$ be differentiable and let $a, b \in I$ with $a<b$. If $f^{\prime}(a)<k<f^{\prime}(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=k$.

Example: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable such that $f(-1)=5, f(0)=0$ and $f(1)=10$. Then there exist $c_{1}, c_{2} \in(-1,1)$ such that $f^{\prime}\left(c_{1}\right)=-3$ and $f^{\prime}\left(c_{2}\right)=3$.

Intermediate value property of derivatives: Let $f: I \rightarrow \mathbb{R}$ be differentiable and let $a, b \in I$ with $a<b$. If $f^{\prime}(a)<k<f^{\prime}(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=k$.

Example: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable such that $f(-1)=5, f(0)=0$ and $f(1)=10$. Then there exist $c_{1}, c_{2} \in(-1,1)$ such that $f^{\prime}\left(c_{1}\right)=-3$ and $f^{\prime}\left(c_{2}\right)=3$.

Local maximum \& Local minimum : Sufficient conditions:

Intermediate value property of derivatives: Let $f: I \rightarrow \mathbb{R}$ be differentiable and let $a, b \in I$ with $a<b$. If $f^{\prime}(a)<k<f^{\prime}(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=k$.

Example: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable such that $f(-1)=5, f(0)=0$ and $f(1)=10$. Then there exist $c_{1}, c_{2} \in(-1,1)$ such that $f^{\prime}\left(c_{1}\right)=-3$ and $f^{\prime}\left(c_{2}\right)=3$.

Local maximum \& Local minimum : Sufficient conditions:

1. First derivative test

Intermediate value property of derivatives: Let $f: I \rightarrow \mathbb{R}$ be differentiable and let $a, b \in I$ with $a<b$. If $f^{\prime}(a)<k<f^{\prime}(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=k$.

Example: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable such that $f(-1)=5, f(0)=0$ and $f(1)=10$. Then there exist $c_{1}, c_{2} \in(-1,1)$ such that $f^{\prime}\left(c_{1}\right)=-3$ and $f^{\prime}\left(c_{2}\right)=3$.

Local maximum \& Local minimum : Sufficient conditions:

1. First derivative test
2. Second derivative test

Intermediate value property of derivatives: Let $f: I \rightarrow \mathbb{R}$ be differentiable and let $a, b \in I$ with $a<b$. If $f^{\prime}(a)<k<f^{\prime}(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=k$.

Example: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable such that $f(-1)=5, f(0)=0$ and $f(1)=10$. Then there exist $c_{1}, c_{2} \in(-1,1)$ such that $f^{\prime}\left(c_{1}\right)=-3$ and $f^{\prime}\left(c_{2}\right)=3$.

Local maximum \& Local minimum : Sufficient conditions:

1. First derivative test
2. Second derivative test

Example: Local maxima and local minima of f, where $f(x)=1-x^{2 / 3}$ for all $x \in \mathbb{R}$.

L'Hôpital's rules:

1. Let $f:(a, b) \rightarrow \mathbb{R}$ and $g:(a, b) \rightarrow \mathbb{R}$ be differentiable at $x_{0} \in(a, b)$. Also, let $f\left(x_{0}\right)=g\left(x_{0}\right)=0$ and $g^{\prime}\left(x_{0}\right) \neq 0$. Then $\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)}$.

L'Hôpital's rules:

1. Let $f:(a, b) \rightarrow \mathbb{R}$ and $g:(a, b) \rightarrow \mathbb{R}$ be differentiable at $x_{0} \in(a, b)$. Also, let $f\left(x_{0}\right)=g\left(x_{0}\right)=0$ and $g^{\prime}\left(x_{0}\right) \neq 0$.
Then $\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)}$.
2. Let $f:(a, b) \rightarrow \mathbb{R}$ and $g:(a, b) \rightarrow \mathbb{R}$ be differentiable such that $\lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a+} g(x)=0$ and $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. If $\lim _{x \rightarrow a+} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\ell$, then $\lim _{x \rightarrow a+} \frac{f(x)}{g(x)}=\ell$.

L'Hôpital's rules:

1. Let $f:(a, b) \rightarrow \mathbb{R}$ and $g:(a, b) \rightarrow \mathbb{R}$ be differentiable at $x_{0} \in(a, b)$. Also, let $f\left(x_{0}\right)=g\left(x_{0}\right)=0$ and $g^{\prime}\left(x_{0}\right) \neq 0$.
Then $\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)}$.
2. Let $f:(a, b) \rightarrow \mathbb{R}$ and $g:(a, b) \rightarrow \mathbb{R}$ be differentiable such that $\lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a+} g(x)=0$ and $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. If $\lim _{x \rightarrow a+} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\ell$, then $\lim _{x \rightarrow a+} \frac{f(x)}{g(x)}=\ell$.

Examples: (a) $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x}$
(b) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{1+\cos 2 x}$
(c) $\lim _{x \rightarrow 0} \frac{x^{2} \sin \frac{1}{x}}{\sin x}$
(d) $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{1}{x}}$
(e) $\lim _{x \rightarrow \infty} \frac{x-\sin x}{2 x+\sin x}$

Taylor's theorem: Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f, f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$ are continuous on $[a, b]$ and $f^{(n+1)}$ exists on (a, b).

Taylor's theorem: Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f, f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$ are continuous on $[a, b]$ and $f^{(n+1)}$ exists on (a, b). Then there exists $c \in(a, b)$ such that
$f(b)=f(a)+f^{\prime}(a)(b-a)+\frac{f^{\prime \prime}(a)}{2!}(b-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(b-a)^{n}$
$+\frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}$.

Taylor's theorem: Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f, f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$ are continuous on $[a, b]$ and $f^{(n+1)}$ exists on (a, b). Then there exists $c \in(a, b)$ such that
$f(b)=f(a)+f^{\prime}(a)(b-a)+\frac{f^{\prime \prime}(a)}{2!}(b-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(b-a)^{n}$ $+\frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}$.

Example: $1+\frac{x}{2}-\frac{x^{2}}{8} \leq \sqrt{1+x} \leq 1+\frac{x}{2}$ for all $x>0$.

Taylor's theorem: Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f, f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$ are continuous on $[a, b]$ and $f^{(n+1)}$ exists on (a, b). Then there exists $c \in(a, b)$ such that $f(b)=f(a)+f^{\prime}(a)(b-a)+\frac{f^{\prime \prime}(a)}{2!}(b-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(b-a)^{n}$ $+\frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}$.

Example: $1+\frac{x}{2}-\frac{x^{2}}{8} \leq \sqrt{1+x} \leq 1+\frac{x}{2}$ for all $x>0$.
Power series: A series of the form $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$, where $x_{0}, a_{n} \in \mathbb{R}$ for $n=0,1,2, \ldots$ and $x \in \mathbb{R}$.

Taylor's theorem: Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f, f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$ are continuous on $[a, b]$ and $f^{(n+1)}$ exists on (a, b). Then there exists $c \in(a, b)$ such that
$f(b)=f(a)+f^{\prime}(a)(b-a)+\frac{f^{\prime \prime}(a)}{2!}(b-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(b-a)^{n}$ $+\frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}$.

Example: $1+\frac{x}{2}-\frac{x^{2}}{8} \leq \sqrt{1+x} \leq 1+\frac{x}{2}$ for all $x>0$.
Power series: A series of the form $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$, where $x_{0}, a_{n} \in \mathbb{R}$ for $n=0,1,2, \ldots$ and $x \in \mathbb{R}$.

It is sufficient to consider the series $\sum_{n=0}^{\infty} a_{n} x^{n}$.

Convergence - Examples:
(a) $\sum_{n=0}^{\infty} \frac{x^{n}}{n}$
(b) $\sum_{n=0}^{\infty} n!x^{n}$
(c) $\sum_{n=0}^{\infty} x^{n}$

Convergence - Examples:
(a) $\sum_{n=0}^{\infty} x^{n}$
(b) $\sum_{n=0}^{\infty} n!x^{n}$
(c) $\sum_{n=0}^{\infty} x^{n}$

Result:
(a) If $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges for $x=x_{1} \neq 0$, then it converges absolutely for all $x \in \mathbb{R}$ satisfying $|x|<\left|x_{1}\right|$.

Convergence - Examples:
(a) $\sum_{n=0}^{\infty} \frac{x^{n}}{n}$
(b) $\sum_{n=0}^{\infty} n!x^{n}$
(c) $\sum_{n=0}^{\infty} x^{n}$

Result:
(a) If $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges for $x=x_{1} \neq 0$, then it converges absolutely for all $x \in \mathbb{R}$ satisfying $|x|<\left|x_{1}\right|$.
(b) If $\sum_{n=0}^{\infty} a_{n} x^{n}$ diverges for $x=x_{2}$, then it diverges for all $x \in \mathbb{R}$ satisfying $|x|>\left|x_{2}\right|$.

Convergence - Examples:
(a) $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
(b) $\sum_{n=0}^{\infty} n!x^{n}$
(c) $\sum_{n=0}^{\infty} x^{n}$

Result:
(a) If $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges for $x=x_{1} \neq 0$, then it converges absolutely for all $x \in \mathbb{R}$ satisfying $|x|<\left|x_{1}\right|$.
(b) If $\sum_{n=0}^{\infty} a_{n} x^{n}$ diverges for $x=x_{2}$, then it diverges for all $x \in \mathbb{R}$ satisfying $|x|>\left|x_{2}\right|$.

Radius of convergence: For every power series $\sum_{n=0}^{\infty} a_{n} x^{n}$, there exists a unique R satisfying $0 \leq R \leq \infty$ such that the series converges absolutely if $|x|<R$ and diverges if $|x|>R$.

Convergence - Examples:
(a) $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
(b) $\sum_{n=0}^{\infty} n!x^{n}$
(c) $\sum_{n=0}^{\infty} x^{n}$

Result:
(a) If $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges for $x=x_{1} \neq 0$, then it converges absolutely for all $x \in \mathbb{R}$ satisfying $|x|<\left|x_{1}\right|$.
(b) If $\sum_{n=0}^{\infty} a_{n} x^{n}$ diverges for $x=x_{2}$, then it diverges for all $x \in \mathbb{R}$ satisfying $|x|>\left|x_{2}\right|$.

Radius of convergence: For every power series $\sum_{n=0}^{\infty} a_{n} x^{n}$, there exists a unique R satisfying $0 \leq R \leq \infty$ such that the series converges absolutely if $|x|<R$ and diverges if $|x|>R$.
The series may or may not converge for $|x|=R$.

Methods to find the radius/interval of convergence:

Methods to find the radius/interval of convergence:
Examples: (a) $\sum_{n=0}^{\infty} \frac{x^{n}}{n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n \cdot 4^{n}}(x-1)^{n}$

Methods to find the radius/interval of convergence:
Examples: (a) $\sum_{n=0}^{\infty} \frac{x^{n}}{n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n \cdot 4^{n}}(x-1)^{n}$

Term-by-term operations on power series:

Methods to find the radius/interval of convergence:
Examples: (a) $\sum_{n=0}^{\infty} \frac{x^{n}}{n^{2}} \quad$ (b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n \cdot 4^{n}}(x-1)^{n}$
Term-by-term operations on power series:
Taylor series \& Maclaurin series: Convergence

Methods to find the radius/interval of convergence:
Examples: (a) $\sum_{n=0}^{\infty} \frac{x^{n}}{n^{2}} \quad$ (b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n \cdot 4^{n}}(x-1)^{n}$
Term-by-term operations on power series:
Taylor series \& Maclaurin series: Convergence
Examples: Taylor series expansions of $e^{x}, \sin x$ and $\cos x$.

Result on local maxima and local minima:
Let $x_{0} \in(a, b)$ and let $n \geq 2$. Also, let $f, f^{\prime}, \ldots, f^{(n)}$ be continuous on (a, b) and $f^{\prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)=\cdots=f^{(n-1)}\left(x_{0}\right)=0$ but $f^{(n)}\left(x_{0}\right) \neq 0$.

Result on local maxima and local minima:
Let $x_{0} \in(a, b)$ and let $n \geq 2$. Also, let $f, f^{\prime}, \ldots, f^{(n)}$ be continuous on (a, b) and
$f^{\prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)=\cdots=f^{(n-1)}\left(x_{0}\right)=0$ but $f^{(n)}\left(x_{0}\right) \neq 0$.
(a) If n is even and $f^{(n)}\left(x_{0}\right)<0$, then f has a local maximum at x_{0}.
(b) If n is even and $f^{(n)}\left(x_{0}\right)>0$, then f has a local minimum at x_{0}.
(c) If n is odd, then f has neither a local maximum nor a local minimum at x_{0}.

Result on local maxima and local minima:
Let $x_{0} \in(a, b)$ and let $n \geq 2$. Also, let $f, f^{\prime}, \ldots, f^{(n)}$ be continuous on (a, b) and
$f^{\prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)=\cdots=f^{(n-1)}\left(x_{0}\right)=0$ but $f^{(n)}\left(x_{0}\right) \neq 0$.
(a) If n is even and $f^{(n)}\left(x_{0}\right)<0$, then f has a local maximum at x_{0}.
(b) If n is even and $f^{(n)}\left(x_{0}\right)>0$, then f has a local minimum at x_{0}.
(c) If n is odd, then f has neither a local maximum nor a local minimum at x_{0}.

Example Local maximum and local minimum values of f, where $f(x)=x^{5}-5 x^{4}+5 x^{3}+12$ for all $x \in \mathbb{R}$.

