We say that f is continuous at $x_0 \in D$ if for each $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(x_0)| < \varepsilon$ for all $x \in D$ satisfying $|x - x_0| < \delta$.

We say that f is continuous at $x_0 \in D$ if for each $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(x_0)| < \varepsilon$ for all $x \in D$ satisfying $|x - x_0| < \delta$.

We say that $f: D \to \mathbb{R}$ is continuous if f is continuous at each $x_0 \in D$.

We say that f is continuous at $x_0 \in D$ if for each $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(x_0)| < \varepsilon$ for all $x \in D$ satisfying $|x - x_0| < \delta$.

We say that $f: D \to \mathbb{R}$ is continuous if f is continuous at each $x_0 \in D$.

Definition: Let $D \subseteq \mathbb{R}$ and let $x_0 \in \mathbb{R}$ such that for some h > 0, $(x_0 - h, x_0 + h) \setminus \{x_0\} \subseteq D$.

We say that f is continuous at $x_0 \in D$ if for each $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(x_0)| < \varepsilon$ for all $x \in D$ satisfying $|x - x_0| < \delta$.

We say that $f: D \to \mathbb{R}$ is continuous if f is continuous at each $x_0 \in D$.

Definition: Let $D \subseteq \mathbb{R}$ and let $x_0 \in \mathbb{R}$ such that for some h > 0, $(x_0 - h, x_0 + h) \setminus \{x_0\} \subseteq D$.

If $f:D\to\mathbb{R}$, then $\ell\in\mathbb{R}$ is said to be the limit of f at x_0 if for each $\varepsilon>0$, there exists $\delta>0$ such that $|f(x)-\ell|<\varepsilon$ for all $x\in D$ satisfying $0<|x-x_0|<\delta$.

We say that f is continuous at $x_0 \in D$ if for each $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(x_0)| < \varepsilon$ for all $x \in D$ satisfying $|x - x_0| < \delta$.

We say that $f: D \to \mathbb{R}$ is continuous if f is continuous at each $x_0 \in D$.

Definition: Let $D \subseteq \mathbb{R}$ and let $x_0 \in \mathbb{R}$ such that for some h > 0, $(x_0 - h, x_0 + h) \setminus \{x_0\} \subseteq D$.

If $f:D\to\mathbb{R}$, then $\ell\in\mathbb{R}$ is said to be the limit of f at x_0 if for each $\varepsilon>0$, there exists $\delta>0$ such that $|f(x)-\ell|<\varepsilon$ for all $x\in D$ satisfying $0<|x-x_0|<\delta$.

We write: $\lim_{x \to x_0} f(x) = \ell$.

Similarly we define: $\lim_{x\to x_0+} f(x) = \ell$ and $\lim_{x\to x_0-} f(x) = \ell$, and also $\lim_{x\to \infty} f(x) = \ell$, $\lim_{x\to x_0} f(x) = -\infty$, etc.

and also $\lim_{x\to\infty} f(x) = \ell$, $\lim_{x\to x_0} f(x) = -\infty$, etc.

Result: Let $D \subseteq \mathbb{R}$ and let $x_0 \in D$ such that for some h > 0, $(x_0 - h, x_0 + h) \subseteq D$. Then $f : D \to \mathbb{R}$ is continuous at x_0 iff $\lim_{x \to \infty} f(x) = f(x_0)$.

and also $\lim_{x\to\infty} f(x) = \ell$, $\lim_{x\to x_0} f(x) = -\infty$, etc.

Result: Let $D \subseteq \mathbb{R}$ and let $x_0 \in D$ such that for some h > 0, $(x_0 - h, x_0 + h) \subseteq D$. Then $f : D \to \mathbb{R}$ is continuous at x_0 iff $\lim_{x \to x_0} f(x) = f(x_0)$.

Similarly the other two cases.

and also $\lim_{x\to\infty} f(x) = \ell$, $\lim_{x\to x_0} f(x) = -\infty$, etc.

Result: Let $D \subseteq \mathbb{R}$ and let $x_0 \in D$ such that for some h > 0, $(x_0 - h, x_0 + h) \subseteq D$. Then $f : D \to \mathbb{R}$ is continuous at x_0 iff $\lim_{x \to x_0} f(x) = f(x_0)$.

Similarly the other two cases.

Sequential criterion of continuity: $f: D \to \mathbb{R}$ is continuous at $x_0 \in D$ iff for every sequence (x_n) in D such that $x_n \to x_0$, we have $f(x_n) \to f(x_0)$.

and also $\lim_{x\to\infty} f(x) = \ell$, $\lim_{x\to x_0} f(x) = -\infty$, etc.

Result: Let $D \subseteq \mathbb{R}$ and let $x_0 \in D$ such that for some h > 0, $(x_0 - h, x_0 + h) \subseteq D$. Then $f : D \to \mathbb{R}$ is continuous at x_0 iff $\lim_{x \to x_0} f(x) = f(x_0)$.

Similarly the other two cases.

Sequential criterion of continuity: $f: D \to \mathbb{R}$ is continuous at $x_0 \in D$ iff for every sequence (x_n) in D such that $x_n \to x_0$, we have $f(x_n) \to f(x_0)$.

Similar criterion for limit.

and also $\lim_{x\to\infty} f(x) = \ell$, $\lim_{x\to x_0} f(x) = -\infty$, etc.

Result: Let $D \subseteq \mathbb{R}$ and let $x_0 \in D$ such that for some h > 0, $(x_0 - h, x_0 + h) \subseteq D$. Then $f : D \to \mathbb{R}$ is continuous at x_0 iff $\lim_{x \to x_0} f(x) = f(x_0)$.

Similarly the other two cases.

Sequential criterion of continuity: $f: D \to \mathbb{R}$ is continuous at $x_0 \in D$ iff for every sequence (x_n) in D such that $x_n \to x_0$, we have $f(x_n) \to f(x_0)$.

Similar criterion for limit.

Example:
$$\lim_{n\to\infty} \frac{\sin(\sqrt{n+1}-\sqrt{n})}{\sqrt{n+1}-\sqrt{n}} = 1$$

1.
$$f(x) = \begin{cases} 3x + 2 & \text{if } x < 1, \\ 4x^2 & \text{if } x \ge 1. \end{cases}$$

1.
$$f(x) = \begin{cases} 3x + 2 & \text{if } x < 1, \\ 4x^2 & \text{if } x \ge 1. \end{cases}$$

$$2. \ f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

1.
$$f(x) = \begin{cases} 3x + 2 & \text{if } x < 1, \\ 4x^2 & \text{if } x \ge 1. \end{cases}$$

2.
$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

3.
$$f(x) = \begin{cases} \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

1.
$$f(x) = \begin{cases} 3x + 2 & \text{if } x < 1, \\ 4x^2 & \text{if } x \ge 1. \end{cases}$$

2.
$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

3.
$$f(x) = \begin{cases} \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

4.
$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

1.
$$f(x) = \begin{cases} 3x + 2 & \text{if } x < 1, \\ 4x^2 & \text{if } x \ge 1. \end{cases}$$

$$2. \ f(x) = \begin{cases} x \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

3.
$$f(x) = \begin{cases} \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

4.
$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

5.
$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q}, \\ -x & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

- (a) f + g, fg and |f| are continuous at x_0 ,
- (b) f/g is continuous at x_0 if $g(x) \neq 0$ for all $x \in D$.

- (a) f + g, fg and |f| are continuous at x_0 ,
- (b) f/g is continuous at x_0 if $g(x) \neq 0$ for all $x \in D$.

Result: Composition of two continuous functions is continuous.

- (a) f + g, fg and |f| are continuous at x_0 ,
- (b) f/g is continuous at x_0 if $g(x) \neq 0$ for all $x \in D$.

Result: Composition of two continuous functions is continuous.

Further examples of continuous functions:

Polynomial function, Rational function, sine function, cosine function, exponential function, etc.

- (a) f + g, fg and |f| are continuous at x_0 ,
- (b) f/g is continuous at x_0 if $g(x) \neq 0$ for all $x \in D$.

Result: Composition of two continuous functions is continuous.

Further examples of continuous functions:

Polynomial function, Rational function, sine function, cosine function, exponential function, etc.

Result: If $f: D \to \mathbb{R}$ is continuous at $x_0 \in D$ and $f(x_0) \neq 0$, then there exists $\delta > 0$ such that $f(x) \neq 0$ for all $x \in D$ satisfying $|x - x_0| < \delta$.

Intermediate value theorem: Let I be an interval of \mathbb{R} and let $f: I \to \mathbb{R}$ be continuous. If $a, b \in I$ with a < b and if f(a) < k < f(b), then there exists $c \in (a, b)$ such that f(c) = k.

Intermediate value theorem: Let I be an interval of \mathbb{R} and let $f: I \to \mathbb{R}$ be continuous. If $a, b \in I$ with a < b and if f(a) < k < f(b), then there exists $c \in (a, b)$ such that f(c) = k.

Examples:

(a) The equation $x^2 = x \sin x + \cos x$ has at least two real roots.

Intermediate value theorem: Let I be an interval of \mathbb{R} and let $f: I \to \mathbb{R}$ be continuous. If $a, b \in I$ with a < b and if f(a) < k < f(b), then there exists $c \in (a, b)$ such that f(c) = k.

- (a) The equation $x^2 = x \sin x + \cos x$ has at least two real roots.
- (b) If $f:[0,1] \to [0,1]$ is continuous, then there exists $c \in [0,1]$ such that f(c) = c.

Intermediate value theorem: Let I be an interval of \mathbb{R} and let $f: I \to \mathbb{R}$ be continuous. If $a, b \in I$ with a < b and if f(a) < k < f(b), then there exists $c \in (a, b)$ such that f(c) = k.

- (a) The equation $x^2 = x \sin x + \cos x$ has at least two real roots.
- (b) If $f:[0,1] \to [0,1]$ is continuous, then there exists $c \in [0,1]$ such that f(c) = c.
- (c) Let $f:[0,2] \to \mathbb{R}$ be continuous such that f(0)=f(2). Then there exist $x_1, x_2 \in [0,2]$ such that $x_1 - x_2 = 1$ and $f(x_1) = f(x_2)$.

Result: If $f : [a, b] \to \mathbb{R}$ is continuous, then $f : [a, b] \to \mathbb{R}$ is bounded.

Result: If $f : [a, b] \to \mathbb{R}$ is continuous, then $f : [a, b] \to \mathbb{R}$ is bounded.

Example: There does not exist any continuous function from [0,1] onto $(0,\infty)$.

Result: If $f : [a, b] \to \mathbb{R}$ is continuous, then $f : [a, b] \to \mathbb{R}$ is bounded.

Example: There does not exist any continuous function from [0,1] onto $(0,\infty)$.

Result: If $f:[a,b] \to \mathbb{R}$ is continuous, then there exist $x_0, y_0 \in [a,b]$ such that $f(x_0) \le f(x) \le f(y_0)$ for all $x \in [a,b]$.