Definition: Let $D(\neq \emptyset) \subseteq \mathbb{R}$ and let $f: D \rightarrow \mathbb{R}$.

Definition: Let $D(\neq \emptyset) \subseteq \mathbb{R}$ and let $f: D \rightarrow \mathbb{R}$.
We say that f is continuous at $x_{0} \in D$ if for each $\varepsilon>0$, there exists $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$ for all $x \in D$ satisfying $\left|x-x_{0}\right|<\delta$.

Definition: Let $D(\neq \emptyset) \subseteq \mathbb{R}$ and let $f: D \rightarrow \mathbb{R}$.
We say that f is continuous at $x_{0} \in D$ if for each $\varepsilon>0$, there exists $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$ for all $x \in D$ satisfying $\left|x-x_{0}\right|<\delta$.

We say that $f: D \rightarrow \mathbb{R}$ is continuous if f is continuous at each $x_{0} \in D$.

Definition: Let $D(\neq \emptyset) \subseteq \mathbb{R}$ and let $f: D \rightarrow \mathbb{R}$.
We say that f is continuous at $x_{0} \in D$ if for each $\varepsilon>0$, there exists $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$ for all $x \in D$ satisfying $\left|x-x_{0}\right|<\delta$.

We say that $f: D \rightarrow \mathbb{R}$ is continuous if f is continuous at each $x_{0} \in D$.

Definition: Let $D \subseteq \mathbb{R}$ and let $x_{0} \in \mathbb{R}$ such that for some $h>0,\left(x_{0}-h, x_{0}+h\right) \backslash\left\{x_{0}\right\} \subseteq D$.

Definition: Let $D(\neq \emptyset) \subseteq \mathbb{R}$ and let $f: D \rightarrow \mathbb{R}$.
We say that f is continuous at $x_{0} \in D$ if for each $\varepsilon>0$, there exists $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$ for all $x \in D$ satisfying $\left|x-x_{0}\right|<\delta$.

We say that $f: D \rightarrow \mathbb{R}$ is continuous if f is continuous at each $x_{0} \in D$.

Definition: Let $D \subseteq \mathbb{R}$ and let $x_{0} \in \mathbb{R}$ such that for some $h>0,\left(x_{0}-h, x_{0}+h\right) \backslash\left\{x_{0}\right\} \subseteq D$.

If $f: D \rightarrow \mathbb{R}$, then $\ell \in \mathbb{R}$ is said to be the limit of f at x_{0} if for each $\varepsilon>0$, there exists $\delta>0$ such that $|f(x)-\ell|<\varepsilon$ for all $x \in D$ satisfying $0<\left|x-x_{0}\right|<\delta$.

Definition: Let $D(\neq \emptyset) \subseteq \mathbb{R}$ and let $f: D \rightarrow \mathbb{R}$.
We say that f is continuous at $x_{0} \in D$ if for each $\varepsilon>0$, there exists $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$ for all $x \in D$ satisfying $\left|x-x_{0}\right|<\delta$.

We say that $f: D \rightarrow \mathbb{R}$ is continuous if f is continuous at each $x_{0} \in D$.

Definition: Let $D \subseteq \mathbb{R}$ and let $x_{0} \in \mathbb{R}$ such that for some $h>0,\left(x_{0}-h, x_{0}+h\right) \backslash\left\{x_{0}\right\} \subseteq D$.

If $f: D \rightarrow \mathbb{R}$, then $\ell \in \mathbb{R}$ is said to be the limit of f at x_{0} if for each $\varepsilon>0$, there exists $\delta>0$ such that $|f(x)-\ell|<\varepsilon$ for all $x \in D$ satisfying $0<\left|x-x_{0}\right|<\delta$.

We write: $\lim _{x \rightarrow x_{0}} f(x)=\ell$.

Similarly we define: $\lim _{x \rightarrow x_{0}+} f(x)=\ell$ and $\lim _{x \rightarrow x_{0}-} f(x)=\ell$,

Similarly we define: $\lim _{x \rightarrow x_{0}+} f(x)=\ell$ and $\lim _{x \rightarrow x_{0}-} f(x)=\ell$, and also $\lim _{x \rightarrow \infty} f(x)=\ell, \lim _{x \rightarrow x_{0}} f(x)=-\infty$, etc.

Similarly we define: $\lim _{x \rightarrow x_{0}+} f(x)=\ell$ and $\lim _{x \rightarrow x_{0}-} f(x)=\ell$, and also $\lim _{x \rightarrow \infty} f(x)=\ell, \lim _{x \rightarrow x_{0}} f(x)=-\infty$, etc.

Result: Let $D \subseteq \mathbb{R}$ and let $x_{0} \in D$ such that for some $h>0$, $\left(x_{0}-h, x_{0}+h\right) \subseteq D$. Then $f: D \rightarrow \mathbb{R}$ is continuous at x_{0} iff $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

Similarly we define: $\lim _{x \rightarrow x_{0}+} f(x)=\ell$ and $\lim _{x \rightarrow x_{0}-} f(x)=\ell$,
and also $\lim _{x \rightarrow \infty} f(x)=\ell, \lim _{x \rightarrow x_{0}} f(x)=-\infty$, etc.
Result: Let $D \subseteq \mathbb{R}$ and let $x_{0} \in D$ such that for some $h>0$, $\left(x_{0}-h, x_{0}+h\right) \subseteq D$. Then $f: D \rightarrow \mathbb{R}$ is continuous at x_{0} iff $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

Similarly the other two cases.

Similarly we define: $\lim _{x \rightarrow x_{0}+} f(x)=\ell$ and $\lim _{x \rightarrow x_{0}-} f(x)=\ell$,
and also $\lim _{x \rightarrow \infty} f(x)=\ell, \lim _{x \rightarrow x_{0}} f(x)=-\infty$, etc.
Result: Let $D \subseteq \mathbb{R}$ and let $x_{0} \in D$ such that for some $h>0$, $\left(x_{0}-h, x_{0}+h\right) \subseteq D$. Then $f: D \rightarrow \mathbb{R}$ is continuous at x_{0} iff $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

Similarly the other two cases.
Sequential criterion of continuity: $f: D \rightarrow \mathbb{R}$ is continuous at $x_{0} \in D$ iff for every sequence $\left(x_{n}\right)$ in D such that $x_{n} \rightarrow x_{0}$, we have $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$.

Similarly we define: $\lim _{x \rightarrow x_{0}+} f(x)=\ell$ and $\lim _{x \rightarrow x_{0}-} f(x)=\ell$,
and also $\lim _{x \rightarrow \infty} f(x)=\ell, \lim _{x \rightarrow x_{0}} f(x)=-\infty$, etc.
Result: Let $D \subseteq \mathbb{R}$ and let $x_{0} \in D$ such that for some $h>0$, $\left(x_{0}-h, x_{0}+h\right) \subseteq D$. Then $f: D \rightarrow \mathbb{R}$ is continuous at x_{0} iff $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

Similarly the other two cases.
Sequential criterion of continuity: $f: D \rightarrow \mathbb{R}$ is continuous at $x_{0} \in D$ iff for every sequence $\left(x_{n}\right)$ in D such that $x_{n} \rightarrow x_{0}$, we have $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$.

Similar criterion for limit.

Similarly we define: $\lim _{x \rightarrow x_{0}+} f(x)=\ell$ and $\lim _{x \rightarrow x_{0}-} f(x)=\ell$, and also $\lim _{x \rightarrow \infty} f(x)=\ell, \lim _{x \rightarrow x_{0}} f(x)=-\infty$, etc.

Result: Let $D \subseteq \mathbb{R}$ and let $x_{0} \in D$ such that for some $h>0$, $\left(x_{0}-h, x_{0}+h\right) \subseteq D$. Then $f: D \rightarrow \mathbb{R}$ is continuous at x_{0} iff $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

Similarly the other two cases.
Sequential criterion of continuity: $f: D \rightarrow \mathbb{R}$ is continuous at $x_{0} \in D$ iff for every sequence $\left(x_{n}\right)$ in D such that $x_{n} \rightarrow x_{0}$, we have $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$.

Similar criterion for limit.
Example: $\lim _{n \rightarrow \infty} \frac{\sin (\sqrt{n+1}-\sqrt{n})}{\sqrt{n+1}-\sqrt{n}}=1$

Examples:

1. $f(x)=\left\{\begin{array}{cl}3 x+2 & \text { if } x<1, \\ 4 x^{2} & \text { if } x \geq 1 .\end{array}\right.$

Examples:

1. $f(x)=\left\{\begin{array}{cc}3 x+2 & \text { if } x<1, \\ 4 x^{2} & \text { if } x \geq 1 .\end{array}\right.$
2. $f(x)=\left\{\begin{array}{cl}x \sin \frac{1}{x} & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{array}\right.$

Examples:

1. $f(x)=\left\{\begin{array}{cl}3 x+2 & \text { if } x<1, \\ 4 x^{2} & \text { if } x \geq 1 .\end{array}\right.$
2. $f(x)=\left\{\begin{array}{cc}x \sin \frac{1}{x} & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{array}\right.$
3. $f(x)=\left\{\begin{array}{cl}\sin \frac{1}{x} & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{array}\right.$

Examples:

1. $f(x)=\left\{\begin{array}{cl}3 x+2 & \text { if } x<1, \\ 4 x^{2} & \text { if } x \geq 1 .\end{array}\right.$
2. $f(x)=\left\{\begin{array}{cc}x \sin \frac{1}{x} & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{array}\right.$
3. $f(x)=\left\{\begin{array}{cl}\sin \frac{1}{x} & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{array}\right.$
4. $f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q}, \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} .\end{cases}$

Examples:

1. $f(x)=\left\{\begin{array}{cl}3 x+2 & \text { if } x<1, \\ 4 x^{2} & \text { if } x \geq 1 .\end{array}\right.$
2. $f(x)=\left\{\begin{array}{cc}x \sin \frac{1}{x} & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{array}\right.$
3. $f(x)=\left\{\begin{array}{cl}\sin \frac{1}{x} & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{array}\right.$
4. $f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q}, \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} \text {. }\end{cases}$
5. $f(x)=\left\{\begin{array}{cl}x & \text { if } x \in \mathbb{Q}, \\ -x & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} \text {. }\end{array}\right.$

Result: Let $f, g: D \rightarrow \mathbb{R}$ be continuous at $x_{0} \in D$. Then
(a) $f+g, f g$ and $|f|$ are continuous at x_{0},
(b) f / g is continuous at x_{0} if $g(x) \neq 0$ for all $x \in D$.

Result: Let $f, g: D \rightarrow \mathbb{R}$ be continuous at $x_{0} \in D$. Then (a) $f+g, f g$ and $|f|$ are continuous at x_{0},
(b) f / g is continuous at x_{0} if $g(x) \neq 0$ for all $x \in D$.

Result: Composition of two continuous functions is continuous.

Result: Let $f, g: D \rightarrow \mathbb{R}$ be continuous at $x_{0} \in D$. Then
(a) $f+g, f g$ and $|f|$ are continuous at x_{0},
(b) f / g is continuous at x_{0} if $g(x) \neq 0$ for all $x \in D$.

Result: Composition of two continuous functions is continuous.
Further examples of continuous functions:
Polynomial function, Rational function, sine function, cosine function, exponential function, etc.

Result: Let $f, g: D \rightarrow \mathbb{R}$ be continuous at $x_{0} \in D$. Then (a) $f+g, f g$ and $|f|$ are continuous at x_{0},
(b) f / g is continuous at x_{0} if $g(x) \neq 0$ for all $x \in D$.

Result: Composition of two continuous functions is continuous.
Further examples of continuous functions:
Polynomial function, Rational function, sine function, cosine function, exponential function, etc.

Result: If $f: D \rightarrow \mathbb{R}$ is continuous at $x_{0} \in D$ and $f\left(x_{0}\right) \neq 0$, then there exists $\delta>0$ such that $f(x) \neq 0$ for all $x \in D$ satisfying $\left|x-x_{0}\right|<\delta$.

Result: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and if $f(a) \cdot f(b)<0$, then there exists $c \in(a, b)$ such that $f(c)=0$.

Result: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and if $f(a) \cdot f(b)<0$, then there exists $c \in(a, b)$ such that $f(c)=0$.

Intermediate value theorem: Let I be an interval of \mathbb{R} and let $f: I \rightarrow \mathbb{R}$ be continuous. If $a, b \in I$ with $a<b$ and if $f(a)<k<f(b)$, then there exists $c \in(a, b)$ such that $f(c)=k$.

Result: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and if $f(a) \cdot f(b)<0$, then there exists $c \in(a, b)$ such that $f(c)=0$.

Intermediate value theorem: Let I be an interval of \mathbb{R} and let $f: I \rightarrow \mathbb{R}$ be continuous. If $a, b \in I$ with $a<b$ and if $f(a)<k<f(b)$, then there exists $c \in(a, b)$ such that $f(c)=k$.

Examples:
(a) The equation $x^{2}=x \sin x+\cos x$ has at least two real roots.

Result: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and if $f(a) \cdot f(b)<0$, then there exists $c \in(a, b)$ such that $f(c)=0$.

Intermediate value theorem: Let I be an interval of \mathbb{R} and let $f: I \rightarrow \mathbb{R}$ be continuous. If $a, b \in I$ with $a<b$ and if $f(a)<k<f(b)$, then there exists $c \in(a, b)$ such that $f(c)=k$.

Examples:
(a) The equation $x^{2}=x \sin x+\cos x$ has at least two real roots.
(b) If $f:[0,1] \rightarrow[0,1]$ is continuous, then there exists $c \in[0,1]$ such that $f(c)=c$.

Result: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and if $f(a) \cdot f(b)<0$, then there exists $c \in(a, b)$ such that $f(c)=0$.

Intermediate value theorem: Let I be an interval of \mathbb{R} and let $f: I \rightarrow \mathbb{R}$ be continuous. If $a, b \in I$ with $a<b$ and if $f(a)<k<f(b)$, then there exists $c \in(a, b)$ such that $f(c)=k$.

Examples:
(a) The equation $x^{2}=x \sin x+\cos x$ has at least two real roots.
(b) If $f:[0,1] \rightarrow[0,1]$ is continuous, then there exists $c \in[0,1]$ such that $f(c)=c$.
(c) Let $f:[0,2] \rightarrow \mathbb{R}$ be continuous such that $f(0)=f(2)$. Then there exist $x_{1}, x_{2} \in[0,2]$ such that $x_{1}-x_{2}=1$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$.

Result: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then $f:[a, b] \rightarrow \mathbb{R}$ is bounded.

Result: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then $f:[a, b] \rightarrow \mathbb{R}$ is bounded.

Example: There does not exist any continuous function from $[0,1]$ onto $(0, \infty)$.

Result: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then $f:[a, b] \rightarrow \mathbb{R}$ is bounded.

Example: There does not exist any continuous function from $[0,1]$ onto $(0, \infty)$.
Result: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then there exist $x_{0}, y_{0} \in[a, b]$ such that $f\left(x_{0}\right) \leq f(x) \leq f\left(y_{0}\right)$ for all $x \in[a, b]$.

