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1. Turbulent-viscosity hypothesis relates deviatoric Reynolds stress with the mean strain rate given by
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where νT is turbulent viscosity, Ui, u
′

i are mean and fluctuating velocities and k = 1/2〈u′iu′i〉 is the turbulent

kinetic energy with 〈.〉 means averaging. Show that in order to yield non-negative normal stresses, it is

necessary and sufficient for the turbulent viscosity to satisfy

νT ≤ k

3Sλ

with Sλ being the largest eigenvalue of the mean strain-rate tensor.

2. Dynamical equation for the mean squared vorticity fluctuation 1/2〈ω′

iω
′

i〉 can be derived by a procedure

identical to the one followed for the turbulent kinetic energy. Derive it and explain significance of each term.
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3. If pseudo-dissipation of turbulent kinetic energy is defined as ǫ̃ = ν〈∂u′i/∂xj∂u′i/∂xj〉 then show that

the alternative form of the turbulent kinetic energy equation is

(
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+ Uj
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∂xj
)k = − ∂

∂xj
[1/2〈u′iu′iu′j〉+ 〈u′jp′〉/ρ] + ν∇2k + P − ǫ̃

where P is the production of turbulent kinetic energy. Also find the difference between ǫ̃ and true dissipation.

4. Starting from the Fourier representation for the velocity prove that
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κkκlR̂ij(κ, t) =
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and hence show that the dissipation rate ǫ(t) is given by

ǫ(t) =
∑

κ
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where Φij(κ, t) is the velocity spectrum tensor.

5. In isotropic turbulence directional information of the velocity spectrum tensor Φij(κ, t) can depend only

on κ. Since the only second-order isotropic tensors that can be formed from κ are δij and κiκj show that



energy spectrum function E(κ, t) can completely describe Φij(κ, t) by

Φij(κ, t) =
E(κ, t)

4πκ2
Pij(κ)

where Pij(κ) is the matrix that projects a vector onto the plane normal to κ.

6. Show the evolution equation for kinetic energy of the Fourier mode, defined as Ê(κ, t) = (1/2)〈û∗i ûi〉,
is given by
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where î =
√
−1 and φ∗ is the complex conjugate of φ. By integrating the above equation over all κ obtain

the kinetic energy equation in the physical space

dk
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= −ǫ

and explain the nature and role of the term T̂ (κ, t).

7. Using the definition of the energy spectrum function E(κ) =

∮

(1/2)Φii(κ)dSκ and one-dimensional

spectra Eij(κ1) = (1/π)
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from the energy spectrum function by
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Also show that E11(κ1) is a monotonically decreasing function of κ1 with maximum at κ1 = 0. Here
∮

...dSκ implies integral over the surface of the sphere with radius κ.

8. Consider the model energy-spectrum function

E(κ) = Cǫ2/3κ−5/3fL(κL)fη(κη)

where fL and fη are non-dimensional functions that describe the shape of E(κ) in the energy containing

and dissipation ranges, respectively. Find out the properties of these functions so that the Kolmogorov -5/3

law is recovered. Show that the expression for dissipation obtained from integration of the model spectrum

is

ǫ = 2Cνǫ2/3η−4/3
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Now show that if the dissipation part of the spectrum is modeled as fη(κη) = exp(−β0κη) then the above

integral is
∫
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0

x1/3 exp(−β0x)dx = β
−4/3
0
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Hence show that in the limit of high Reynolds number β0 ≈ 2.094. Note Γ(x) =

∫

∞

0

exp(−t)tx−1dt is the

Gamma function, L, η are length of largest and smallest scale eddies.


