Problem Set 2
Turbulent Flows (ME 695)
Department of Mechanical Engineering
Indian Institute of Technology Guwahati

1. Turbulent-viscosity hypothesis relates deviatoric Reynolds stress with the mean strain rate given by
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where v is turbulent viscosity, U;, u} are mean and fluctuating velocities and k = 1/2(u/u}) is the turbulent
kinetic energy with (.) means averaging. Show that in order to yield non-negative normal stresses, it is

necessary and sufficient for the turbulent viscosity to satisfy
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with S being the largest eigenvalue of the mean strain-rate tensor.
2. Dynamical equation for the mean squared vorticity fluctuation 1/2(w}w!) can be derived by a procedure

identical to the one followed for the turbulent kinetic energy. Derive it and explain significance of each term.
Note w; = ; + wl.
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3. If pseudo-dissipation of turbulent kinetic energy is defined as € = v(0u;/0xz;0u;/0x;) then show that
the alternative form of the turbulent kinetic energy equation is
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where P is the production of turbulent kinetic energy. Also find the difference between € and true dissipation.

4. Starting from the Fourier representation for the velocity prove that
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and hence show that the dissipation rate €(t) is given by
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where ®;;(k, t) is the velocity spectrum tensor.

5. In isotropic turbulence directional information of the velocity spectrum tensor ®;;(«,t) can depend only
on k. Since the only second-order isotropic tensors that can be formed from & are §;; and ;x; show that



energy spectrum function E(k,t) can completely describe ®;;(k,t) by
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where P;; (k) is the matrix that projects a vector onto the plane normal to k.

6. Show the evolution equation for kinetic energy of the Fourier mode, defined as E(k, t) = (1/2)(a} 1),
is given by
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where 7 = \/—1 and ¢* is the complex conjugate of ¢. By integrating the above equation over all k obtain
the kinetic energy equation in the physical space
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and explain the nature and role of the term 7'(k, t).

7. Using the definition of the energy spectrum function E(k) = f (1/2)®;i(k)dS, and one-dimensional

o0

spectra E;j(k1) = (1/m) / R;; (rl)e*%’””drl show that the one-dimensional spectra can be computed
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from the energy spectrum function by
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Also show that F11(k1) is a monotonically decreasing function of x; with maximum at x; = 0. Here
¢ ...dS, implies integral over the surface of the sphere with radius .

8. Consider the model energy-spectrum function
E(r) = O k™3 fr (kL) f, (kn)

where f7, and f,, are non-dimensional functions that describe the shape of (k) in the energy containing
and dissipation ranges, respectively. Find out the properties of these functions so that the Kolmogorov -5/3
law is recovered. Show that the expression for dissipation obtained from integration of the model spectrum
is
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Now show that if the dissipation part of the spectrum is modeled as f, (k1) = exp(—[Boxn) then the above
integral is
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Hence show that in the limit of high Reynolds number 3y ~ 2.094. Note I'(z) = / exp(—t)t*~Ldt is the
0

Gamma function, L, n) are length of largest and smallest scale eddies.



