BTech Course Structure and Syllabus for Biotechnology

 

(To be applicable from 2013 batch onwards)

 

Course    No.

Course Name

L

T

P

C

 

Course        No.

Course Name

L

T

P

C

Semester - 1

 

Semester -2

CH101

Chemistry

3

1

0

8

 

BT101

Modern Biology

3

0

0

6

EE101

Electrical Sciences

3

1

0

8

 

CS 101

Introduction to Computing

3

0

0

6

MA101

Mathematics - I

3

1

0

8

 

MA102

Mathematics - II

3

1

0

8

PH101

Physics - I

2

1

0

6

 

ME101

Engineering Mechanics

3

1

0

8

CH110

Chemistry Laboratory

0

0

3

3

 

PH102

Physics - II

2

1

0

6

ME110/   PH 110

Workshop /Physics Laboratory

0

0

3

3

 

CS110

Computing Laboratory

0

0

3

3

ME 111

Engineering Drawing

1

0

3

5

 

EE102

Basic Electronics Laboratory

0

0

3

3

SA 101

Physical Training -I

0

0

2

0

 

PH110/             ME 110

Physics Laboratory/Workshop

0

0

3

3

 

SA 102

Physical Training -II

0

0

2

0

12

4

9

41

 

 

 

 

 

14

3

9

43

Semester 3

 

Semester 4

MA201

Mathematics- III

3

1

0

8

 

BT202

Microbiology

3

0

0

6

BT201

Biochemistry

3

0

0

6

 

BT205

Biophysics

2

1

0

6

CL201

Chemical Process Calculations

2

1

0

6

 

BT208

Molecular Biology & Genetic Engineering

3

1

0

8

CL202

Fluid Mechanics

3

1

0

8

 

CL205

Mass Transfer Operation - I

2

1

0

6

CL203

Chemical Engineering Thermodynamics -I

2

1

0

6

 

HS2xx

HSS Elective - II

3

0

0

6

HS2xx

HSS Elective - I

3

0

0

6

 

BT290

Biomolecular Analysis Laboratory

0

0

6

6

NCC/NSO/COS

0

0

2

0

 

NCC/NSO/COS

0

0

2

0

16

4

0

40

 

 

 

13

3

6

38

Semester 5

 

Semester 6

BT301

Bioinformatics and Computational Biology

2

0

0

4

 

BT302

Biochemical Engineering

3

1

0

8

BT303

Immunology

3

0

0

6

 

BT305

Industrial Microbiology

3

0

0

6

BT309

Plant Biotechnology

3

0

0

6

 

BT306

IPR, Ethics and Bio-safety

3

0

0

6

CL303

Chemical Reaction Engineering - I

2

1

0

6

 

BT308

Animal Cell Biotechnology

3

0

0

6

HS3xx

HSS Elective -III

3

0

0

6

 

BTxxx

Departmental Elective - I

3

0

0

6

BT380

Molecular Biotechnology Laboratory

0

0

6

6

 

BT330

Biochemical Engineering Laboratory

0

0

6

6

BT310

Bioinformatics and Computational Biology Lab

0

0

6

6

 

 

 

15

1

6

38

13

1

12

40

 

 

 

 

 

 

 

Semester 7

 

Semester 8

BT404

Bioseparation Engineering

3

0

0

6

 

BT401

Frontiers in Biotechnology

3

0

0

6

BT405

Environmental Biotechnology

3

0

0

6

 

BTxxx

Departmental Elective - IV

3

0

0

6

BTxxx

Departmental Elective - II

3

0

0

6

 

BTxxx

Departmental Elective - V

3

0

0

6

BTxxx

Departmental Elective - III

3

0

0

6

 

HS4xx

HSS Elective - IV

3

0

0

6

XXxxx

Open Elective - I

3

0

0

6

 

XXxxx

Open Elective - II

3

0

0

6

BT 498

Project -I

0

0

6

6

 

BT 499

Project  -II

0

0

6

6

15

0

6

36

 

 

 

15

0

6

36

 

CH 101             Chemistry                    (3-1-0-8)

 

Structure and Bonding; Origin of quantum theory, postulates of quantum mechanics; Schrodinger wave equation: operators and observables, superposition theorem and expectation values, solutions for particle in a box, harmonic oscillator, rigid rotator, hydrogen atom; Selection rules of microwave and vibrational spectroscopy; Spectroscopic term symbol; Molecular orbitals: LCAO-MO; Huckel theory of conjugated systems; Rotational, vibrational and electronic spectroscopy; Chemical Thermodynamics: The zeroth and first law, Work, heat, energy and enthalpies; The relation between C­­v and Cp; Second law: entropy, free energy (the Helmholtz and Gibbs) and chemical potential; Third law; Chemical equilibrium; Chemical kinetics: The rate of reaction, elementary reaction and chain reaction; Surface: The properties of liquid surface, surfactants, colloidal systems, solid surfaces, physisorption and chemisorption; The periodic table of elements; Shapes of inorganic compounds; Chemistry of materials; Coordination compounds: ligand, nomenclature, isomerism, stereochemistry, valence bond, crystal field and molecular orbital theories; Bioinorganic chemistry and organometallic chemistry; Stereo and regio-chemistry of organic compounds, conformers; Pericyclic reactions; Organic photochemistry; Bioorganic chemistry: Amino acids, peptides, proteins, enzymes, carbohydrates, nucleic acids and lipids; Macromolecules (polymers); Modern techniques in structural elucidation of compounds (UV-vis, IR, NMR); Solid phase synthesis and combinatorial chemistry; Green chemical processes.

 

Texts:

1. P. W. Atkins, Physical Chemistry, 5th Ed., ELBS, 1994.

2. C. N. Banwell, and E. M. McCash, Fundamentals of Molecular Spectroscopy, 4th Ed., Tata McGraw-Hill, 1962.

3. F. A. Cotton, and G. Wilkinson, Advanced Inorganic Chemistry, 3rd Ed., Wiley Eastern Ltd., New Delhi, 1972, reprint in 1988.

4. D. J. Shriver, P. W. Atkins, and C. H. Langford, Inorganic Chemistry, 2nd Ed., ELBS ,1994.

5. S. H. Pine, Organic Chemistry, McGraw-Hill, 5th Ed., 1987

 

References:

1. I. A. Levine, Physical Chemistry, 4th Ed., McGraw-Hill, 1995.

2. I. A. Levine, Quantum Chemistry, EE Ed., prentice Hall, 1994.

3. G. M. Barrow, Introduction to Molecular Spectroscopy, International Edition, McGraw-Hill, 1962

4. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry: Principle, structure and reactivity, 4th Ed., Harper Collins, 1993

5. L. G. Wade (Jr.), Organic Chemistry, Prentice Hall, 1987.

 

 

 

CS 101             Introduction to Computing                  (3-0-0-6)

 

Introduction: The von Neumann architecture, machine language, assembly language, high level programming languages, compiler, interpreter, loader, linker, text editors, operating systems, flowchart; Basic features of programming (Using C): data types, variables, operators,  expressions, statements, control structures, functions; Advanced programming features: arrays and pointers, recursion, records (structures), memory management, files, input/output, standard library functions, programming tools, testing and debugging; Fundamental operations on data: insert, delete, search, traverse and modify; Fundamental data structures: arrays, stacks, queues, linked lists; Searching and sorting: linear search, binary search, insertion-sort, bubble-sort, selection-sort, radix-sort, counting-sort; Introduction to object-oriented programming

 

Texts:

 

1.  A Kelly and I Pohl, A Book on C, 4th Ed., Pearson Education, 1999.

2.  A M Tenenbaum, Y Langsam and M J Augenstein, Data Structures Using C, Prentice Hall India, 1996.

 

References:

 

1. H Schildt, C: The Complete Reference, 4th Ed., Tata Mcgraw Hill, 2000

2. B Kernighan and D Ritchie, The C Programming Language, 4th Ed., Prentice Hall of India, 1988.

 

CS 110                         Computing Laboratory             (0-0-3-3)

 

Programming Laboratory will be set in consonance with the material covered in CS101. This will include assignments in a programming language like C.

 

References:

 

1.     B. Gottfried and J. Chhabra,  Programming With C,  Tata Mcgraw Hill, 2005

 

MA 102       Mathematics - II           (3-1-0-8)

 

Vector functions of one variable – continuity and differentiability; functions of several variables – continuity, partial derivatives, directional derivatives, gradient, differentiability, chain rule; tangent planes and normals, maxima and minima, Lagrange multiplier method; repeated and multiple integrals with applications to volume, surface area, moments of inertia, change of variables; vector fields, line and surface integrals; Green’s, Gauss’ and Stokes’ theorems and their applications.

 

First order differential equations – exact differential equations, integrating factors, Bernoulli equations, existence and uniqueness theorem, applications; higher-order linear differential equations – solutions of homogeneous and nonhomogeneous equations, method of variation of parameters, operator method; series solutions of linear differential equations, Legendre equation and Legendre polynomials, Bessel equation and Bessel functions of first and second kinds; systems of first-order equations, phase plane, critical points, stability. 

 

Texts:

1.        G. B. Thomas (Jr.) and R. L. Finney, Calculus and Analytic Geometry, 9th Ed., Pearson Education India, 1996.

2.        S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984. 

References:

1.      T. M. Apostol, Calculus - Vol.2, 2nd Ed., Wiley India, 2003.

2.      W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 9th Ed., Wiley India, 2009.

3.      E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice Hall India, 1995.

4.      E. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.

 

ME 101             Engineering Mechanics                        (3-1-0-8)

 

Basic principles: Equivalent force system; Equations of equilibrium; Free body diagram; Reaction; Static indeterminacy. Structures: Difference between trusses, frames and beams, Assumptions followed in the analysis of structures; 2D truss; Method of joints; Method of section;  Frame; Simple beam;  types of loading and supports;  Shear Force and bending Moment diagram in beams; Relation among load, shear force and bending moment. Friction: Dry friction; Description and applications of friction in wedges, thrust bearing (disk friction), belt, screw, journal bearing (Axle friction); Rolling resistance. Virtual work and Energy method: Virtual Displacement; Principle of virtual work; Applications of virtual work principle to machines; Mechanical efficiency; Work of a force/couple (springs etc.); Potential energy and equilibrium; stability. Center of Gravity and Moment of Inertia: First and second moment of area; Radius of gyration;  Parallel axis theorem;  Product of inertia, Rotation of axes and principal moment of inertia;  Moment of inertia of simple and composite bodies. Mass moment of inertia. Kinematics of Particles: Rectilinear motion; Curvilinear motion; Use of Cartesian, polar and spherical coordinate system; Relative and constrained motion; Space curvilinear motion. Kinetics of Particles: Force, mass and acceleration; Work and energy; Impulse and momentum; Impact problems; System of particles. Kinematics and Kinetics of Rigid Bodies: Translation; Fixed axis rotational;  General plane motion; Coriolis acceleration;  Work-energy;  Power;  Potential energy;  Impulse-momentum and associated conservation principles;  Euler equations of motion and its application.

 

Texts

1. I. H. Shames, Engineering Mechanics: Statics and Dynamics, 4th Ed., PHI, 2002.

2. F. P. Beer and E. R. Johnston, Vector Mechanics for Engineers, Vol I - Statics, Vol II – Dynamics, 3rd Ed., Tata McGraw Hill, 2000.

 

 

References

1. J. L. Meriam and L. G. Kraige, Engineering Mechanics, Vol I – Statics, Vol II – Dynamics, 5th Ed., John  Wiley, 2002.

2. R. C. Hibbler, Engineering Mechanics, Vols. I and II, Pearson Press, 2002.

 

 

PH 102             Physics - II                   (2-1-0-6)

 

Vector Calculus: Gradient, Divergence and Curl, Line, Surface, and Volume integrals, Gauss's divergence theorem and Stokes' theorem in Cartesian, Spherical polar, and Cylindrical polar coordinates, Dirac Delta function.

 

Electrostatics: Gauss's law and its applications, Divergence and Curl of Electrostatic fields, Electrostatic Potential, Boundary conditions, Work and Energy, Conductors, Capacitors, Laplace's equation, Method of images, Boundary value problems in Cartesian Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displacement, Boundary conditions in dielectrics, Energy in dielectrics, Forces on dielectrics.

 

Magnetostatics: Lorentz force, Biot-Savart and Ampere's laws and their applications, Divergence and Curl of Magnetostatic fields, Magnetic vector Potential, Force and torque on a magnetic dipole, Magnetic materials, Magnetization, Bound currents, Boundary conditions.

 

Electrodynamics: Ohm's law, Motional EMF, Faraday's law, Lenz's law, Self and Mutual inductance, Energy stored in magnetic field, Maxwell's equations, Continuity Equation, Poynting Theorem, Wave solution of Maxwell Equations.

 

Electromagnetic waves: Polarization, reflection & transmission at oblique incidences.

 

Texts:

  1. D. J. Griffiths, Introduction to Electrodynamics, 3rd Ed., Prentice-Hall of India, 2005.
  2. A.K.Ghatak, Optics, Tata Mcgraw Hill, 2007.

 

References:

  1. N. Ida, Engineering Electromagnetics, Springer, 2005.
  2. M. N. O. Sadiku, Elements of Electromagnetics, Oxford, 2006.
  3. R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics, Vol.II, Norosa Publishing House, 1998.
  4. I. S. Grant and W. R. Phillips, Electromagnetism, John Wiley, 1990.

 

 

EE 102 Basic Electronics Laboratory               (0-0-3-3)

 

Experiments using diodes and bipolar junction transistor (BJT): design and analysis of half -wave and full-wave rectifiers, clipping circuits and Zener regulators, BJT characteristics and BJT amplifiers; experiments using operational amplifiers (op-amps): summing amplifier, comparator, precision rectifier, astable and monostable multivibrators and oscillators; experiments using logic gates: combinational circuits such as staircase switch, majority detector, equality detector, multiplexer and demultiplexer; experiments using flip-flops: sequential circuits such as non-overlapping pulse generator, ripple counter, synchronous counter, pulse counter and numerical display.

References:

 

  1. A. P. Malvino, Electronic Principles, Tata McGraw-Hill, New Delhi, 1993.
  2. R. A. Gayakwad, Op-Amps and Linear Integrated Circuits, PHI, New Delhi,  2002.

3.     R.J. Tocci, Digital Systems, 6th Ed., 2001.

 

BT 201  Biochemistry                      (3-0-0-6)

Basic concept and design of metabolism; carbohydrate metabolism: glycolysis, gluconeogenesis, citric acid cycle, pentose phosphate pathway, glycogen metabolism, oxidative phosphorylation; photosynthesis; fatty acid metabolism; protein: synthesis, targeting and turnover; biosynthesis of amino acids and nucleotides; Integration of metabolisms; hormones; enzymes: structure, mechanism and reaction kinetics; introduction to information metabolism. 

 

Texts: 

1.        D. L. Nelson and M. M. Cox, Lehninger Principles of Biochemistry, 5th Ed., Macmillan Worth, 2007.

2.        J. L. Tymoczko, J. M. Berg and L. Stryer, Biochemistry, 5th Ed., W. H. Freeman, 2002. 

 

References

1.        W. W. Parson, D. E. Vance and G. L. Zubay, Principles of Biochemistry, Wm. C. Brown Publishers, 1995.

2.        K. E. Van Holde, C. K. Mathews and K. G. Ahern, Biochemistry, Pearson Education, 2000.

3.        R. K. Murray, D. K. Granner, P. A. Mayes and V. W. Rodwell, Harper’s Biochemistry, McGraw Hill, 2002.

 

 

BT 202  Microbiology                        (3-0-0-6)

 

Microbial cell structure and function; fundamentals of microbial taxonomy and diversity; molecular tools in microbial taxonomy; microscopic techniques; microbial nutrition; growth and control; microbial metabolism; mutations and DNA repair; plasmids; transformation; conjugation; transduction; transposons; fundamentals of gene regulation; fundamentals of microbial genomics; microbial pathogenicity and diseases. 

 

Texts: 

1.     G. Tortora, B. Funke and C. Case, Microbiology, An Introduction (International Edition), 8th Ed., Pearson Education, 2003.

2.     M. Madigan, J. Martinko and J. Parker, Brock’s Biology of Microorganisms, 10th Ed., Prentice Hall, 2002. 

 

References

1.     R. Y. Stanier, J. L. Ingraham, M.L. Wheelis and P. R. Painter, General Microbiology, 5th Ed., Macmillan Press, 1987.

2.     L. M. Prescott, J. P. Harley and D. A. Klein, Microbiology, 6th Ed., McGraw Hill, 2005.

3.     J. G. Black, Microbiology: Principles & Explorations, 5th Ed., John Wiley & Sons Inc., 2002.

4.     Benjamin Lewin, Genes VIII, Pearson Education, International Edition, 2004.  

 

 

BT 205  Biophysics                           (2-1-0-6)

 

Structure and structural dynamics of DNA, RNA and proteins; techniques for monitoring structure and dynamics: absorption, fluorescence, circular dichroism, light scattering; methods for separation and characterization of molecules; size-exclusion chromatography; electrophoresis; MALDI–TOF; ESI–quadrupole mass spectrometry; thermodynamics and equilibria of macromolecules in solution; biophysics of membranes; photobiological processes; nerve impulse; muscle contraction; modelling biological processes; protein folding and aggregation; protein function (Myosin and Kinesin). 

 

Texts: 

1.    K. E. van Holde, W. C. Johnson and P. S. Ho, Principles of Physical Biochemistry, Prentice Hall, 1998.

2.   C. R. Cantor and P. R. Schimmel, Biophysical Chemistry (Parts I, II and III), W. H. Freeman and Co., 1980. 

 

Reference: 

 

1.  K. A. Dill and S. Bromberg, Molecular Driving Forces. Statistical thermodynamics in Chemistry and Biology, Garland Science, 2003.

 

 

BT 208  Molecular Biology & Genetic Engineering      (3-1-0-8)

 

 

Cell organization and subcellular structure; structure and properties of nucleic acids; organization of prokaryotic and eukaryotic genomes; mechanisms of DNA replication; mutagenesis and processes of DNA repair; transcription; translation; mechanisms of DNA recombination; regulation of gene expression; eukaryotic RNA splicing and processing; cell cycle; programmed cell death; cell transformation; genes in differentiation and development; oncogenes. genetic engineering: restriction modification enzymes; cloning vectors: plasmids, phages, cosmids, phagemids, yeast and bacterial artificial chromosomal vectors; construction cDNA and genomic libraries; screening of libraries: by DNA hybridization, immuno and protein assays; gene cloning and expression in prokaryotes and eukaryotes; recombinant protein expression in E. coli, yeast and baculovirus; mammalian cell expression vectors (Selectable markers, Two-hybrid expression system); chimeric vectors; Site-directed mutagenesis and its applications; transposons, gene targeting; site specific recombination; polymerase chain reaction (PCR); applications of reverse transcription PCR (RT-PCR) and real time PCR; principles and applications of DNA finger printing; gene mapping by restriction fragment length polymorphism (RFLP); application of differential display and subtractive hybridization. 

 

Texts:          

1.    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Molecular Biology of Cell, 4th Ed., Garland Publishing, 2002.

2.    H. Lodish, A. Berk, S. L. Zipursky, M. P. Scott and J. Darnell, Molecular Cell Biology, 4th Ed., W. H. Freeman & Co., 2003.                                         

 

References: 

1.    B. Lewin, Genes VIII, International Edition, Pearson Education, 2004. 

2.    B. R. Glick and J. J. Pasternak, Molecular Biotechnology: Principles and Applications of Recombinant DNA, 3rd Ed., ASM Press, 2003.

3.    R. M. Twyman, S. B. Primrose and R. W. Old, Principles of Gene Manipulation, Blackwell Science, 2001.

 

 

 

BT 290   Biomolecular Analysis Laboratory                (0-0-6-6)

 

Theory, operation and handling of instruments to be used in this Lab course; Estimation of DNA in solution; Estimation of protein in solution; Estimation of carbohydrate; Enzyme Linked Immuno Assay; Purification of protein by chromatography; Equilibrium unfolding of a protein; Gel electrophoresis of protein; Study of Enzyme kinetics.

 

Texts:

 

1. R. Boyer, Modern Experimental Biochemistry, 3rd  Ed., Pearson Education (Singapore) Pvt. Ltd., 2001.

2. R. L. Switzer and L. F. Garrity, Experimental Biochemistry, 3rd  Ed., W. H. Freeman, 1999.

 

Reference:

 

1. K. Wilson and J. Walker (ed.), Practical Biochemistry, Principles and Techniques, Cambridge University Press, 1995.

 

 

BT 301   Bioinformatics and Computational Biology   (2-0-0-4)

 

Introduction to bioinformatics; Gene bank sequence database; submitting sequences to database; Analysis of genome content and organization; Analysis of protein content and organization; Analysis of protein structures; Identification of signature motifs in proteins; Secondary structure prediction; Comparative genomics and proteomics, Basics of aligning nucleic acid and protein sequences; Phylogenetic analysis using internet; protein structure-function relationships; computational analysis of protein-ligand binding; enzyme catalysis and protein folding.  

 

Texts: 

1.     D. Baxevanis, and B. F. F. Ouellette, Bioinformatics – A Practical Guide to the Analysis of Genes and Proteins, 2nd Ed., John Wiley and Sons Inc., 2001.

2.     A. R. Leach, Molecular Modelling: Principles and Applications, Addison-Wesley Pub. Co. 1997. 

 

References: 

1.      P. E. Bourne and H. Weissig, Structural Bioinformatics, WILEY, 2003.

2.     T. Lengauer, Bioinformatics - From Genomes to Drugs, Vols 1 and 2, Wiley-VCH, 2002.

 

 

BT 303   Immunology                         (3-0-0- 6)

 

Introduction to immune system; evolution of immunity; elements of Immune system; cell migration & inflammation; immunogens & antigens; antibody structure and function – catalytic Antibodies, antigen antibody interactions, humoral and cellular immunity – MHC, antibody diversity, dendritic cells (APC), control mechanisms in the immune response cytokines – complement – autoimmunity; immunity to different types of pathogens, vaccination; tumor immunology; immune diseases and disorders; transplantation immunology; co-stimulatory pathways; hybridoma and immunoassays. 

 

Texts: 

 

1.  I. Roitt, J. Brostoff and D. Male, Immunology, 6th Ed., Harcourt Publishers, 2001.

2.  R. A. Goldsby, T. J. Kindt, B. A. Osborne and J. Kuby, Immunology, W. H. Freeman & Co, 2003.

 

 

References: 

 

1.  A. K. Abbas, A. H. Lichtman and J. S. Pober, Cellular and Molecular Immunology, W. B. Saunders Co., 2000.

2.  D. M. Weir and J. Stewart, Immunology, Churchill Livingstone, 1997.

3.  A. Cooke, M. Owen, J. Trowsdale, B. Champion and D. K. Male, Advanced Immunology, Mosby Publ., 1996.

4.  R. Coico, G. Sunshine and E. Benjammini, Immunology: A short Course, Wiley-Liss Publ., 2003.

 

 

BT 309  Plant Biotechnology                          (3-0-0-6)

 

 

Plant morphogenesis; cellular totipotency; in vitro culture; protoplast isolation and culture; somatic hybridization; haploid and triploid production; somaclonal variation; embryo rescue and synthetic seeds; production of secondary metabolites; cryopreservation and conservation of germplasm; plant gene structure, function and regulation; plant transformation; marker genes; promoters; molecular analysis; chloroplast transformation; genetic engineering for resistance to insects, pests, virus, pathogens and tolerance to herbicides; gene silencing; metabolic engineering; molecular farming; molecular markers for plant improvement; plant genomics. 

 

Texts:  

1.     A. Slater, N. Scott and M. Fowler, Plant Biotechnology: The genetic manipulation of plants, Oxford University Press, 2003.

2.     S. S. Bhojwani and M. K. Razdan, Plant Tissue Culture: Theory and Practice, Elsevier, 1996.

References: 

1.     J. Hammond, P. McGarvey and V. Yusibov, Plant Biotechnology: New Products and  Applications, Springer Verlag, 1999.

2.     P. Jones, P. J. Jones and J. M. Sutton, Plant Molecular Biology: Essential Techniques, John Wiley & Sons, 1997.

3.     Potrykus and G. Spangenberg, Gene Transfer to Plants, Springer Verlag, 1995.

 

 

BT 380  Molecular Biotechnology Laboratory            (0-0-6-6)

 

 

Theory, operation and handling of instruments to be used in this Lab course; Aseptic Techniques for plant and microbial culture; In vitro plant regeneration by Organogenesis, Somatic embryogenesis, Meristem and Nodal segment Culture; Meiotic and Mitotic Chromosome preparation; Isolation of pure microbial culture and quantification of viable cells; Preparation of chemically competent E. coli cells; Transformation of E. coli; Small scale isolation of recombinant plasmid from E. coli; Analysis of the recombinant plasmid using Restriction Endonucleases; Agrobacterium-mediated plant transformation & transient reporter gene expression assay; Analysis of a transgene by PCR.

 

Texts:

1. H. S. Chawla, Laboratory Manual for Plant Biotechnology, Oxford & IBH Publishing Co., New Delhi, 2003

2. S. J. Karcher, Molecular Biology: A Project Approach, Academic Press, 2001.

 

References:

1. J. Sambrook, D. W. Russell and J. Sambrook, Molecular Cloning, A laboratory Manual, Cold Spring Harbor Laboratory, USA, 1999.

2. J. G. Chirikjian, Biotechnology: Theory and Techniques (Genetic Engineering, Mutagenesis and Separation Technology), Jones & Bartlett Publishers, U.K., 1995.

3. H. Jones and John M. Walker, Plant Gene Transfer and Expression Protocols: Methods in Molecular Biology, 49, Humana Press, 1996.

4. J. G. Chirikjian, Biotechnology: Theory and Techniques (Plant Biotechnology, Animal Cell Culture and Immunobiotechnology), Jones & Bartlett Publishers, U.K., 1996.

5. D. M. Glover and B. D Hames, DNA Cloning II, IRL Press, 1995.

 

 

BT 310   Bioinformatics and Computational Biology Laboratory           (0-0-6-6)

 

Molecular databases and their organization; Analysis of Restriction sites in a known DNA fragment; Design of a specific PCR primer for an amplicon; Homology search algorithm; Multiple sequence alignment and phylogenetic analysis; Gene identification strategies; Identification of structural and functional motifs; Visualization and analysis of protein structure; Homology Modeling of protein.

 

Texts:

 

1. B. Bryan, Bioinformatics computing: the complete practical guide to bioinformatics for lifescientists, Prentice  Hall, 2000.

2. S. Misener and S. A. Krawetz, Bioinformatics: methods and protocols, Humana Press, 2000.

 

References:

 

1.   D. Baxevanis and B.F. F. Ouellette, Bioinformatics: a practical guide to the analysis of genes and proteins, 2nd  Ed., John Wiley & Sons, 2001.

2.   S. A. Krawetz and D. D. Womble, Introduction to bioinformatics: a theoretical and practical approach, Humana Press, 2003.

3. D. Higgins and W. Taylor (ed.), Bioinformatics: sequence, structure and databanks-a practical Approach, Oxford, 2000.

 

 

BT 302   Biochemical Engineering                (3-1-0-8)

 

Unique features of the field, definitions and concepts, introduction of organisms as mass and energy consumers, metabolic stoichiometry and energetics, kinetics of substrate utilization, product formation and biomass production in cell cultures, Transport phenomena in bioprocess systems: gas-liquid mass transfer in cellular systems, determination of oxygen transfer rates, Design and analysis of biological reactors: batch, continuous, fed-batch, fluidized bed reactor, packed bed reactor, bubble column, trickle bed reactor,  animal and plant cell reactor technology, aeration and agitation, Instrumentation and control: physical, chemical and biosensors, online sensors, computers and interfaces,  scale up, applied enzyme catalysis; media and air sterilization, product recovery, bioprocess economics.  

 

Texts:  

1.        H. W. Blanch and D. S. Clark, Biochemical Engineering, Marcel, Dekker Inc., 1996.

2.       J. E. Bailey and D. F. Ollis, Biochemical Engineering Fundamentals, 2nd Ed., McGraw-Hill Inc., 1986.

 

References: 

1.   P. A. Belter, E. L. Cussler and W. S. Hu, Bioseparations: Downstream Processing for Biotechnology, John Wiley & Sons, 1988. 

2.  H. J. Rehm and G. Reed,  Biotechnology-A multi- Volume Comprehensive Treatise, Vol 3, 2nd Ed., VCH, 1993

3.  M. Moo-Young, Comprehensive Biotechnology, Vol 2, Pergamon Press, 2004

4.  S. Aiba, A. E. Humphrey and N. Millis, Biochemical Engineering, Prentice-Hall 1978

5.  P. F. Stanbury and A. Whitaker, Principles of fermentation technology, Pergamon press, 1984

6.    H. C. Vogel and C. L. Tadaro, Fermentation and Biochemical Engineering Handbook - Principles, Process Design, and Equipment, 2nd Ed., William Andrew Publishing/Noyes, 1997.

 

 

BT 305   Industrial Microbiology                                     (3-0-0-6)

 

Pre-requisite:  BT 202 or equivalent. 

 Basis and development of Industrial Fermentation Processes (Screening cultures, media, inoculum, scale-up); Control of microorganisms; Fermentation Processes; Microbial production of Antibiotics, Alcohols, Enzymes, Organic acids, Amino acids, Vitamins, Biopolymers; Microbial polysaccharides; Bioplastics; Biosurfactants; Bioinsecticides; Pigments and flavors with their applications; Microbial leaching; Bio-transformation; Bio-degradation; Food production involving microorganisms and their products; Fermentation involving genetically engineered microbes; Industrial applications of extremophiles; Safety aspects of industrial processes. 

Texts: 

 

1.    M. A. Malden, Industrial Microbiology: An Introduction, Blackwell Science, 2001. 

2.    A. N. Glazer and H. Nikaido, Microbial Biotechnology: Fundamentals of Applied Microbiology, W. H. Freeman & Co, 1995.  

 

References:

 

1.    L. Demain, R. M. Atlas, G. Cohen, C. L. Hershberger, W. S. Hu, D. H. Sherman, R. C. Wilson and J. H. David, Manual of Industrial Microbiology and Biotechnology, 2nd Ed, ASM Press, 1999.

2.      H. J. Rehm and G. Reed, Biotechnology: A Comprehensive Treatise, VCH publisher, 2001.

 

 

BT 306  IPR, Ethics and Bio-Safety                               (3-0-0-6)

 

General overview of Intellectual Properties; Patent and utility models; Design and trademark; Trade secret and unfair competition; New plant varieties and geographical indication; Copyright and related rights; International intellectual property treaties; Patents structure  and classification; Patenting procedures;  Economic impact of the patent system and legal issues;  Licensing and enforcing intellectual property; Commercializing an invention; Case studies; Scope of intellectual properties in India – Biodiversity and Traditional knowledge; Biosafety- classification and description of biosafety levels; Design of clean rooms and biosafety labs; Biosafety regulations to protect nature; Growers and consumers interest and nation interest; Potential risk from genetically modified organisms; Ethical issues in research and case studies.

 

Texts:

1.     C.B. Raju, Intellectual Property Rights, Serial Publication, New Delhi, 2006

2.     B.A.Brody and H.T. Engelhardt (Jr.), Bioethics: Reading & Cases, Person Education, Inc., 2007

 

References:

1.     P.N. Cheremisinoff, R. P. Ouellette and R.M. Bartholomew, Biotechnology Applications and Research, Technomic Publishing Co., Inc., USA, 1985.

2.     D. Balasubramaniam, C.F.A. Bryce, K. Dharmalingam, J. Green and K. Jayaraman, Concepts in Biotechnology, University Press (Orient Longman Ltd.), 2002.

3.     D. Bourgagaize, T.R. Jewell and R. G. Buiser, Biotechnology: Demystifying the Concepts, Wesley Longman, USA, 2000.

 

 

BT 308                   Animal Cell Biotechnology               ( 3-0-0-6)

Pre-requisite: BT 208 or equivalent

 

Animal cell biotechnology: Animal cell and tissue engineering; Animal cell culture techniques relevant to mRNA knockdown (e.g. antisense and ribozyme technology); generation of immortalized cell lines. In vitro organogenesis; Stem Cells; Differentiation of animal and human cells; Animal cloning; Mechanisms of drug resistance and cell death; Basic developmental Biology; Structure and organization of tissues; Cell Surface markers; FACS analysis; Cell Migration: control of cell migration in tissue engineering; Transplantation immunology. 

 

Texts: 

1.        T. A. Brown, Gene Cloning and DNA Analysis: An Introduction, Blackwell Science, 2001. 

2.        T. A. Brown, Genomes, 2nd Ed., BIOS Scientific Publishers, 2002.

 

References:  

1.        B. R. Glick and J. J. Pasternak, Molecular Biotechnology: Principles and Applications of Recombinant DNA, 3rd Ed., ASM Press, 2003. 

2.        R. I. Freshney, Animal Cell Culture:  A Practical Approach, 2nd Ed., IRL Press, 1992.

3.        R. E. Spier, Encyclopedia of Cell Technology, Vols 1 and 2, Wiley Biotechnology Encyclopedia, John Wiley & Sons, 2000.

4.        A. Doyle, J. B. Griffiths and D. G. Newell, Cell and Tissue Culture Laboratory Procedures, John Wiley & Sons, 1998.

 

 

BT 330   Biochemical Engineering Laboratory                           (0-0-6-6)

 

Theory, operation and handling of instruments to be used in this Lab course; Determination of biomass concentration by dry weight method; Determination of bacterial specific growth rate and substrate utilization rate in a batch operated reactor; Study of substrate inhibition kinetics of bacterial growth in shake flask culture; Production and purification of an enzyme from a microbial source; Determination of deactivation kinetics of a soluble enzyme; Determination of Kla.

 

Texts:

 

1. J. E. Bailey and D. F. Ollis, Biochemical Engineering Fundamentals, 2nd Ed., McGraw-Hill Inc., 1986.

2. P. A. Belter, E. L. Cussler and W. S. Hu., Bioseparations: Downstream Processing for Biotechnology, John Wiley & Sons, 1988.

 

References:

 

1. H. J. Rehm and G. Reed., Biotechnology - A Multi-volume Comprehensive Treatise, Vol.3, 2nd Ed., VCH, 1993.

2. M. Moo-Young, Comprehensive Biotechnology, Vol 2, Pergamon Press, 2004.

3. P. F. Stanbury and A. Whitaker, Principles of fermentation technology, Pergamon Press, 1984.

4. S. Aiba, A. E. Humphrey and N. Millis, Biochemical Engineering, Prentice-Hall 1978.

 

 

BT 404   Bioseparation  Engineering             (3-0-0-6)

 

Downstream processing of products: filtration, centrifugation, sedimentation, solvent extraction, aqueous two phase system, sorption, precipitation, chromatography ; whole broth processing; Cell separation: disruption by presses, homogenizers, milling, sonication, and non mechanical methods; preparative electrophoresis; product recovery schemes for antibiotics, commercial enzymes and organic acids. 

 

 

Texts: 

1.    T. Nagamune, S. Katoh and T. Yonemoto, Bioseparation Engineering, Elsevier Science Publication, 2002.

2.   M. R. Ladisch, Bioseparations Engineering: Principles, Practice and Economics, Wiley-Inter Science, 2001. 

 

 

References: 

1.    R. G. Harrison, P. Todd, S. Rudge and D. P. Petrides, Biosperations Sceince and Engineering, Oxford University Press, 2003.

2.    P. A. Belter, E. L. Cussler and W. S. Hu, Bioseparations: Downstream Processing for Biotechnology, John Wiley & Sons, 1988.

 

 

BT 405   Environmental Biotechnology        (3-0-0-6)

 

Introduction to environment; pollution and its control; pollution indicators; waste management: domestic, industrial, solid and hazardous wastes; strain improvement; biodiversity and its conservation; microbes for bioremediation technology such as petroleum, hydrocarbon decontamination, radionuclei, toxic metal, dyes and lignin removal and xenobiotics; phytoremediation; biomass for removal and biosorption of heavy metal and other inorganic ions; removal of volatile organic compounds from waste gas. 

 

Texts: 

1.     B. Ritmann and P. L. McCarty, Environmental Biotechnology: Principle & Applications, 2nd Ed., McGraw Hill Science, 2000.

2.     G. M. Evans and J. C. Furlong, Environmental Biotechnology: Theory and Applications, Wiley Publishers, 2002. 

 

References: 

1.     H. S. Peavy, D. R. Rowe and G. Tchobanoglous, Environmental Engineering, McGraw-Hill Inc., 1985.

2.     J. S. Devinny, M. A. Deshusses and T. S. Webster, Biofiltration for Air Pollution Control, CRC Press, 1998.

3.     H. J. Rehm and G. Reed, Biotechnology – A Multi-volume Comprehensive Treatise, Vol. 11, 2nd Ed., VCH Publishers Inc., 1993.

 

 

BT 401   Frontiers in Biotechnology                              (3-0-0-6)

 

Introduction to microfluidics and microfabrication, micropatterning and lithographic techniques, applications of microfluidic systems in biology; Biosensors and biofuel cells; Mechanisms, therapeutic and computational aspects of cancer, AIDS and neurodegenerative disorders; Systems biology; Modern analytical techniques in biotechnology.

 

Texts:

 

1. J.Cooper, and T. Cass, Biosensors, 2nd Ed., Oxford University Press, 2004.

2. L. Pecorino, Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics, 2nd Edn., OUP, 2008.

 

References:

 

1. J.B. Park and J.D. Bronzino, Biomaterials: Principles and Applications. CRC Press. 2002.

2. T.S. Hin (ed.), Engineering Materials for Biomedical Applications. World Scientific. 2004.

3. V. C. Yang and T. T. Ngo (eds.), Biosensors and their applications, Kluwer Academic/Plenum Publishers, Moscow, 2000.

4. T. Finkel and J. S. Gutkind (eds.), Signal transduction and human disease, Wiley Interscience, 2003.

 

 

.